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Abstract—In this paper, we propose to optimize both the
assignment of missions and the maintenance scheduling of moving
systems (e.g. trains) in a Prognostics and Health Management
(PHM) context. The problem is to associate a system to each
mission and to integrate the necessary maintenance operations
in the schedule according to the real state of health of systems.
This problem, which falls within the decision part of PHM, is
proposed to be solved using an optimal approach based on Lin-
ear Programming. Results based on computational experiments
assess the efficiency of the resolution method.

I. INTRODUCTION AND RELATED WORK

Maintenance of moving systems differs from traditional
maintenance problems, e.g. in a production context, in that the
location of these systems over time depends directly on their
use and on the missions they have been assigned to. This is for
instance the case for vehicles such as cars, trains or aircrafts. In
a Prognostics and Health Management (PHM) context, some
works have been carried out considering a single moving
system [1], [2] or several autonomous systems that have to
perform a shared global task [3]. Daigle et al. [1] proposed
for instance a model-based prognostics framework to predict
the remaining driving time and distance of a planetary rover,
which depends upon the amount of power that can be delivered
by its batteries and the rover path. Such predictions are used to
plan the future operation of the rover. Mission replaning of a
planetary rover as a function of its state of health has also been
studied by Balaban et al. in [2] and [4]. The proposed decision
algorithms were able to manage mechanical failures, electronic
defects and insufficient battery charge. Prescott at al. [3]
used prognostics on autonomous vehicles working together
to predict the probability of mission failure and to make an
informed decision on the future of the mission. These works
show that the decisions related to the assignment of missions
to certain systems can be based on systems real state of health
information, provided by the prognostics, allowing to optimize
their use. The general idea is the following: if decisions are
made with respect to the system health evolution over time,
the mission effectiveness can be maximized before energy and
health budgets are exceeded.

This idea can be extended for the optimization of the
assignment of missions to a fleet of moving systems. As the
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maintenance of such systems is strongly linked to the missions
they have to perform, we propose to jointly optimize the
missions assignment and the maintenance scheduling. This has
for instance been proposed in the railway domain, in which
some studies aim to optimize jointly the routing of trains and
their maintenance scheduling. Andres et al. [5] proposed a
mixed integer linear programming model that determines an
appropriate train routing and schedules the necessary mainte-
nance operations, with global cost minimization as objective.
Giacco et al. [6] proposed also a mixed integer linear program-
ming model to deal with the interaction between the rolling
stock routing and the maintenance planning. The objective
considered in this case was to minimize the total number of
rolling stock units that are used and the number of empty rides
and to maximize the distance traveled by each train between
two maintenance operations of the same type. These works
considered however traditional static maintenance strategies
that schedule maintenance operations in advance according
to time and distance criteria. This corresponds to preventive
maintenance, which often implies unnecessary maintenance
activities and reduces the useful life of rolling stock compo-
nents due to early replacement. Studies proposed in the railway
domain in a PHM context focused so far for the vast majority
on the prognostics phase. Some contributions tackled rolling
stock prognostics, with for instance the prediction of the
remaining useful life of train axle bearings [7] or rail wagon
bearings. Prognostics has also been applied on infrastructure
elements, such as railway turnouts [8] or rail tracks [9]. Very
few works addressed the decision part of PHM dealing with
maintenance optimization. Letot et al. [9] proposed an adaptive
opportunistic predictive maintenance model for railway tracks
based on the track geometry observation. They search for the
optimum tamping time considering a set of rail tracks sections.
Camci et al. [8], [10] addressed the problem of predictive
maintenance for systems located in various places, which
can be applied for the maintenance of railway switches. The
general problem has been introduced in [11] and resolution
methods based on a Genetic Algorithm formulation have been
proposed for many variants of the predictive maintenance
optimization problem in [8] and [10]. These works relate
however to the maintenance of geographically distributed, but
stationary systems, which are part of the railway infrastructure.

We focus in this paper on the joint optimization of the mis-



sion assignment to moving systems and the predictive main-
tenance scheduling of such systems, in a PHM context. The
aim is to determine an appropriate use of systems considering
predefined missions and prognostics information. The problem
is to associate a system to each mission and to integrate the
necessary maintenance operations in the schedule, according
to the real state of health of systems and its evolution.

For each system, prognostics information is considered in
the form of a degradation level which evolves over time
with the use of systems. Compared to traditional preventive
approaches (time-based and distance based scheduled mainte-
nance), consideration of prognostics results allows to match
each degradation level evolution to the real use of systems. It
is thus possible to take into account the impact of missions
on systems state of health. Each mission can indeed impact
the systems wear and tear in various ways, as a function of
different criteria such as the state of roads (or rail tracks),
the difference in height or the moving systems speed that is
authorized. This allows to enhance the decisions made in the
maintenance scheduling, as well as in the assignment process,
which defines which moving system has to be used for each
mission. The knowledge of systems state of health and the
prediction of their evolution allows indeed to choose the best
system for each mission. These decisions, which fall within
the decision part of the PHM process, are proposed to be
optimized using linear programming, considering a certain
number of constraints.

The organization of the paper is as follows: the problem
statement is first detailed in Section II, with the description
of the application framework and the optimization problem,
followed by a mathematical formulation of the problem. A
solution example is given in Section III to illustrate the use
of the mathematical model. The proposed resolution method
based on linear programming is then developed in Section IV
and simulation results are detailed in Section V. This work
is finally concluded and some future works are given in
Section VI.

II. PROBLEM STATEMENT

A. Application framework

The application addressed here is based on a set of m
systems Mj (1 6 j 6 m), which could for instance be
trains. All the systems are supposed to be of same type. They
are however differentiated by their global degradation level
provided by the prognostics. Each level, denoted Hj ∈ [0, 1]
(H0

j at the beginning of the scheduling process), stands for
the state of health of the system Mj . Hj = 0 means that
Mj is as good as new and Hj = 1 indicates that Mj has
reached its end of life and that a maintenance is required.
Each degradation level is supposed to remain constant when
the system is not used. In order to avoid failures, corrective
maintenance and associated additional costs, the maintenance
is triggered when the degradation reaches a certain threshold
denoted ∆j = ∆ ∈ [0, 1[. This threshold can be defined as
part of the decision process, or provided by the prognostics in
the form of a Remaining Useful Life (RUL) value. The relation

between the variable Hj , the threshold ∆ and the launch of a
maintenance operation is illustrated in Figure 1.
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Fig. 1. Evolution of a system state of health with maintenance

The scheduling is supposed to be done for a fixed horizon
H = K∆T , with ∆T the time unit, which can be defined as
a day. In this case, K stands for the number of days in the
schedule. Each day is denoted k, with 1 6 k 6 K. Each day
k, a certain number of missions, denoted P , has to be fulfilled.
Each mission Tp (1 6 p 6 P ) corresponds to a set of rides
assigned to a certain system, with the departure and arrival
at the maintenance center, and is associated to a degradation
δp ∈ [0, 1[, which corresponds to a wear rate. For simplicity’s
sake, missions are assumed to be the same each day and to
induce the same degradation on each system: δp = δ ∀ p. If
its state of health Hj is sufficient (such that Hj + δ 6 ∆j),
any system Mj can be assigned to any mission Tp.

The number of maintenance allowed during the scheduling
horizon H is limited for each optimization problem instance
to one operation for each system. This implies that the
considered number of time periods K has to be small enough
and fixed in compliance with the systems’ states of health.
Each maintenance is supposed to be perfect. Then, once a
maintenance operation is performed, the degradation level of
the maintained system falls to 0, which means that it is as
good as new (see Figure 1). The duration of each maintenance
is supposed to be one day (∆T ) for each system, whatever
the type of operation that needs to be done. This duration
does not necessarily correspond to the actual length of a
maintenance operation, but signifies that when a system needs
a maintenance, it is unavailable during the whole day k. The
capacity of the maintenance center is supposed to be limited.
This capacity, denoted c, is defined as the maximal number of
systems that can be maintained each day.

B. Optimization problem

The problem consists in assigning the appropriate system
to each mission, considering the prognostics information, the
impact of the mission on the system state of health and the
maintenance opportunities. The assignment problem and the
maintenance one are closely related. Indeed, the assignment
of systems to missions impacts directly the systems’ state of
health. One important part of the problem is then to maintain
the systems when needed in order to avoid failures, while
guarantying that as much systems as needed are available at
each time to carry out all the missions.



In order to optimize the maintenance, the objective taken
into account is the maximization of the use of each system
potential in terms of useful life. In other words, the aim
is to schedule each maintenance task as closely as possible
to the failure while avoiding it. For the considered set of
systems, the considered objective is to maximize the minimal
degradation level among those reached by all the systems
before each maintenance. A mathematical expression of this
objective function and the constraints associated to the con-
sidered optimization problem are detailed in next section.

C. Mathematical formulation

A mathematical formulation of the optimization problem
detailed before is proposed in set of Equations (1). In order to
express the objective function and the constraints associated
to the problem, some variables need first to be introduced.
Let xj,k ∈ {0, 1} (1 6 j 6 m, 1 6 k 6 K) be the binary
decision variables used to define the resource assignment such
that xj,k = 1 if the system Mj is used to process a mission
during the day k ; xj,k = 0 otherwise. Let yj,k ∈ {0, 1}
(1 6 j 6 m, 1 6 k 6 K) be the binary decision variables
used to schedule the maintenance operations such that yj,k = 1
if the system Mj has been maintained at day k ; yj,k = 0
otherwise. Each variable yj,k follows the trend depicted in
Figure 2.

time0

yj,k

1
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Fig. 2. Evolution trend followed by each binary variable yj,k

The considered objective function maximizes the degrada-
tion of each system before maintenance. This is consistent with
a predictive approach, which aims at maintaining the resources
only when needed. This objective can be expressed through the
minimization for each system Mj of the difference between
the number of time periods during which the system is in
revenue service to a maximal number of time periods during
which it can be used without failure, namely the RUL value
(see Equation (1a)).

Constraints defined in the mathematical program allow
to take into account characteristics related to the systems,
the missions and the maintenance. First set of constraints,
detailed in Equation (1b), ensures that, each day k, all the
P missions are assigned to a system Mj . A system Mj

can be assigned to a mission in a day k only if its state
of health is sufficient, that is, if the degradation caused by
the mission added to its actual degradation level does not
pass the degradation threshold ∆ (see Equation (1c)). The set
of constraints defined in Equation (1d) ensures that systems
are not assigned to missions the day k during which they
are maintained. Equation (1e) ensures that the capacity of

the maintenance center is observed each day. Equation (1f)
limits the number of maintenance operations per system to
one during the scheduling horizon H . The respect of the unit
step function shape for the binary variables yj,k (see Figure 2)
is finally ensured by Equation (1g).



min

m∑
j=1

(
RULj −

K∑
k=1

δ · xj,k(1− yj,k)

)
(1a)

m∑
j=1

xj,k = P ∀ k (1b)

K∑
k=1

δ · xj,k(1− yj,k) 6 RULj ∀ j (1c)

s.t. yj,k − yj,k−1 6 1− xj,k ∀ j, ∀ k (1d)
m∑
j=1

(yj,k − yj,k−1) 6 c ∀ k (1e)

K∑
k=1

(yj,k − yj,k−1) 6 1 ∀ j (1f)

yj,k > yj,k−1 ∀ j, ∀ k (1g)
with xj,k ∈ {0, 1} ∀ j, ∀ k (1h)

yj,k ∈ {0, 1} ∀ j, ∀ k (1i)
yj,0 = 0 ∀ j (1j)

III. SOLUTION EXAMPLE

The use of the proposed mathematical model is illustrated
on a simple use case, with m = 5 systems, P = 3 missions for
each day and a maintenance capacity c = 1. RUL values taken
into account for the systems are the following: RUL1 = 7,
RUL2 = 4, RUL3 = 1, RUL4 = 5 and RUL5 = 1 day(s). A
solution that complies with all the constraints defined in the
mathematical model is depicted in Figure 3 for a scheduling
horizon H = 10 days.
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Fig. 3. Schedule obtained with the mathematical program for the considered
use case – m = 5 systems, P = 3 missions per day, maintenance capacity
c = 1

One can first see that, each day, all the 3 missions are
assigned to a system. The maintenance capacity is then well
observed, as maximum one maintenance has been scheduled



each day. In this case, maintenance operations are more-
over launched when systems’ RUL are equal to 0, which is
consistent with the considered objective that maximizes the
degradation before maintenance.

IV. RESOLUTION BASED ON LINEAR PROGRAMMING

The mathematical program previously expressed being not
linear, some modifications are mandatory to solve the con-
sidered optimization problem with linear optimization. The
product of the two binary variables xj,k and yj,k has to be
linearized. This can be done by introducing a new variable
ej,k ∈ R associated to the constraints detailed in the set of
Equations (2) [12].


ej,k 6 xj,k ∀ j, ∀ k (2a)
ej,k 6 yj,k ∀ j, ∀ k (2b)
1− xj,k − yj,k + ej,k > 0 ∀ j, ∀ k (2c)
ej,k > 0 ∀ j, ∀ k (2d)

The linear program associated to the considered optimiza-
tion problem is detailed in the set of Equations (3).



min

m∑
j=1

(
RULj −

K∑
k=1

δ · (xj,k − ej,k)

)
(3a)

ej,k 6 xj,k ∀ j, ∀ k (3b)
ej,k 6 yj,k ∀ j, ∀ k (3c)
1− xj,k − yj,k + ej,k > 0 ∀ j, ∀ k (3d)
ej,k > 0 ∀ j, ∀ k (3e)
m∑
j=1

xj,k = P ∀ k (3f)

s.t.
K∑

k=1

δ · (xj,k − ej,k) 6 RULj ∀ j (3g)

yj,k − yj,k−1 6 1− xj,k ∀ j, ∀ k (3h)
m∑
j=1

(yj,k − yj,k−1) 6 c ∀ k (3i)

K∑
k=1

(yj,k − yj,k−1) 6 1 ∀ j (3j)

yj,k > yj,k−1 ∀ j, ∀ k (3k)
with xj,k ∈ {0, 1} ∀ j, ∀ k (3l)

yj,k ∈ {0, 1} ∀ j, ∀ k (3m)
yj,0 = 0 ∀ j (3n)
ej,k ∈ R ∀ j, ∀ k (3o)

V. SIMULATION RESULTS

The resolution method proposed in previous section has
been evaluated through simulations on random problem in-
stances. The problem generation is first described. Efficiency
of the approach is then discussed.

A. Problem generation

Random problem configurations have been generated using
a simulator and configured with many parameters. Each system
Mj has first been associated to a global RUL which stands
for the remaining time during which it can be used before
maintenance is needed. Only one RUL value being defined
for each system in this study, it can be seen as the RUL
of the limiting component, i.e., the minimal RUL of all the
components part of the system. Each system may have a
different state of health at the beginning of the decision
process, due to a different use before the time t = 0. RUL
values have been randomly selected in the range [0, 90] days.

A problem configuration corresponds to a specific set of
m systems with RUL values generated as defined before,
associated to a set of P rides per day and to a maintenance
capacity c. Several problem sizes have been considered, with
m = 20, 50, 100 and 200 systems. The number of missions
P per day and the maintenance capacity c have been adapted
to these problem sizes in order to obtain problems that can
be compared among themselves. For m = 20 systems, P
has been set to 15 missions and c ∈ {1, 2, 3, 4, 5} systems
that can be maintained each day. The consideration of several
maintenance capacities allows to a certain extent to study the
impact of the maintenance center capacity on the maintenance
schedules obtained with the proposed linear programming
based approach. Values for the other problem sizes are detailed
in Table I.

TABLE I
PROBLEM CONFIGURATIONS

nb. of systems m nb. of missions P maintenance capacity c

20 15 {1, 2, 3, 4, 5}
50 37 7
100 75 15
200 150 30

For each problem configuration, several decision hori-
zons have finally been tested (H = K∆T , with K ∈
{20, 30, 40, 50, 60, 70, 80, 90} the number of days), each be-
ing associated to a specific solution. Following results are
represented as a function of this number of days K in
the decision horizon. Each result depicted in the following
figures is the average of 20 random instances of one problem
configuration, for which the number m of systems, the number
P of missions and the maintenance capacity c is fixed. For
readability reasons, points have been scattered around the
corresponding horizon value on the abscissa.

B. Results

Figure 4 shows the mean maximum number of mainte-
nance operations per day for each problem configuration with
m = 20 systems. One can first see that the maintenance
capacity is well observed for all the cases. The number
of maintenance operations scheduled each day is moreover
below 3 whatever the maintenance capacity allowed. This
indicates that a great maintenance capacity might not be



necessary for the predictive maintenance and that the proposed
scheduling method naturally balances the maintenance load
over the scheduling horizon. This remark is however valid
only under the previously detailed limiting assumptions and
strongly linked with the values of the problem parameters. The
only difference between solutions with different maintenance
capacities might be the distribution of maintenance operations
over the scheduling horizon (i.e., the days during which
maintenance operations are scheduled).
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Fig. 4. Maximum number of maintenance operations per day for each
maintenance capacity c = 1, 2, 3, 4 and 5 – m = 20 systems, P = 15
missions

Figure 5 shows the total number of maintenance operations
scheduled over the whole scheduling horizon for each problem
instance with m = 20, 50, 100 and 200 systems, with asso-
ciated number of missions and maintenance capacities (see
Table I). Only one maintenance capacity has been associated
to problem instances with m = 20 systems, namely c = 3.
One can see that for large scheduling horizons, maintenance
has been scheduled for all the systems.
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Fig. 5. Total number of maintenance operations for each number of sys-
tems m = 20, 50, 100 and 200, with associated number of missions and
maintenance capacities (see Table I)

Computation times1 for the problem instances with m =
20, 50, 100 and 200 systems are depicted in Figure 6. Log-

1Simulations have been launched using MATLAB R© and the solver for
linear programming Gurobi R© (Computation parameters: Processor Intel
CoreTM i5-3550 CPU 3.30GHz×4, 15.6 Gio, 64 bits)

ically, computation times increase both with the scheduling
horizon and with the number of systems. This is due to the
increase of the number of variables in the linear program as
a function of K and m. Problems with m 6 200 systems can
be solved in less than 3 minutes. This time is reasonable and
consistent with a predictive maintenance scheduling process,
which should be quickly modifiable based on updated prog-
nostics data. The use of linear programming is however not
suitable for large problem instances, with a huge number of
system and/or long scheduling horizons. Some computation
time values are provided in Table II for several numbers
of systems m (m = 20, 50, 100, 200, 500, 1000 and 2000),
considering a scheduling horizon H = 90 days.
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Fig. 6. Computation times for each number of systems m = 20, 50, 100 and
200, with associated number of missions and maintenance capacities (see
Table I)

TABLE II
COMPUTATION TIMES FOR SEVERAL NUMBER OF SYSTEMS m, FOR A

SCHEDULING HORIZON H = 90 DAYS

nb. of systems m compututation time
20 3.23 s.
50 17.66 s.
100 53.43 s.
200 3.08 min
500 12 min.
1000 59.47 min.
2000 2.6 h.

VI. CONCLUSION AND FUTURE WORK

Maintenance scheduling of moving systems has been pro-
posed in a Prognostics and Health Management (PHM),
allowing to launch maintenance operations only when they
are needed. A mathematical formulation of the joint mission
assignment and maintenance scheduling problem has been de-
tailed, including an objective function which aims to minimize
the degradation level reached before each maintenance and
several constraints related to the application context. Linear
programming has been proposed to tackle the considered
optimization problem. Performance of this optimal approach
has been assessed through numerous simulations. First results
show that the proposed linear program provides satisfying



schedules in limited time for problem sizes that are for instance
consistent with a fleet of cars or trains.

As future work, simulations will be performed by consid-
ering missions with different associated degradations δp. En-
hancement of the mathematical model will also be performed
by introducing more realistic constraints, in particular con-
straints related to the maintenance capacity. For more realistic
problem sizes, with more systems and more missions, and
considering additional constraints, defining scalable heuristics
will finally be mandatory.
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