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Abstract

Microgrids are small-scale power systems with local generation, storage systems and load demands, that can operate connected to
the main grid or islanded. In such systems, optimal components sizing is necessary to make the system secure and reliable, while
minimizing costs. In this paper, a stand-alone microgrid considering electric power, cooling/heating and hydrogen consumption
is built. A unit commitment algorithm, formulated as a mixed integer linear programming problem, is used to determine the best
operation strategy for the system. A genetic algorithm is used to search for the best size of each component. The influence of
three factors (operation strategy, accuracy of load and renewable generation forecasts, and degradation of fuel cell, electrolyzer and
battery) on sizing results is discussed. A 1-hour rolling horizon simulation is used to check the validity of the sizing results. A
robust optimization method is also used to handle the uncertainties and evaluate their impact on results.
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Nomenclature

Acronyms

CCHP combined cooling heat and power

CHP combined heat and power

DG distributed generation

EA evolutionary algorithm

FC fuel cell

FCL following the cooling load

FEL following the electric load

FTL following the thermal load

GA genetic algorithm

MG microgrid

MILP mixed integer linear problem

MINLP mixed integer nonlinear problem

MIP mixed integer problem

MRM maximum rectangle method
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PSO particle swarm optimization

UC unit commitment

Symbols

∆Vel voltage increase of electrolyzer

∆V f c voltage drop of FC

ṅcon
H2 FC consumed hydrogen

ṅpro
H2 production rate of hydrogen in electrolyzer

ACcost(t) utilization cost of air conditioner in time t

AHCcost(t) utilization cost of absoption heat chiller in time t

Bch,dis
cost (t) utilization cost of battery storage system in time t

Cinv investment cost

Cmnt annual maintenance cost

Cac produced cooling by air conditioner

Cahc produced cooling by absorption heat chiller

Cop total operation cost

F(.) total cost function

Hele
cost(t) utilization cost of electrolyzer in time t

H f c
cost(t) utilization cost of fuel cell in time t

HBcost(t) utilization cost of heat boiler in time t
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HS (t) state of the heat storage system in time t

HS cost(t) utilization cost of heat storage system in time t

Iel/Ael current density of the electrolyzer

i f c FC current density

kel electrolyzer produced hydrogen coefficient

kel(tday) hydrogen produced coefficient value in time tday

k f c FC consumed hydrogen coefficient

k f c(tday) FC consumed hydrogen coefficient in time tday

krun continue run time steps of fuel cell and electrolyzer

Lcooling(t) cooling load demand in time t

LH2 (t) hydrogen load demand in time t

Lheat(t) heating load demand in time t

Lpower(t) electric load demand in time t

LOH(t) level of hydrogen in time t

Pac input power of air conditioner

Pch(t) charging power of battery

Pdis(t) discharging power of battery

Pmax
ele (tday) maximum input power of electrolyzer in time tday

Pel input power of electrolyzer

P f c FC output power

Pmax
f c (tday) FC maximum output power in time tday

Phb input power of heat boiler

PV(t) output power of PV in time t

Qahc input heat of absorption heat chiller

Q f c FC produced heat

Qhb produced heat by heat boiler

Qsh(t) solar heating of PV in time t

S OC(t) state-of-charge in time t

tday operation time of FC

Vel voltage of the electrolyzer

V f c FC voltage

Variables

∆δi(t) whether component i started or not in time t

δele(t) ON/OFF state of electrolyzer in time t

δ f c(t) ON/OFF state of fuel cell in time t

δ j(t) ON/OFF state of component j in time t

γ
j
1 minimum power of component j

γ
j
2 maximum power of component j

CB capacity of battery

cutPV (t) curtailed power of PV in time t

cutsolar(t) curtailed solar heating of PV in time t

HS max maximum volume of heat storage system

LS cooling(t) coolting load shedding in time t

LS heat(t) heating load shedding in time t

LS power(t) electric load shedding in time t

NPV number of PV panels

Nsh number of solar panels

Pmax
ac maximum power of air conditioner

Pmax
el maximum input power of electrolyzer

Pmax
f c FC maximum output power

Pmax
hb maximum power of heat boiler

P j(t) power of component j in time t

Qmax
ahc maximum power of absorption heat chiller

Qhsch(t) heat storage input power in time t

Qhsdis(t) heat storage output power in time t

Vmax
H2

maximum volume of hydrogen tanks

Zac(t) actual input power of air conditioner in time t

Zbach(t) actual input power of battery in time t

Zbadis(t) actual output power of battery in time t

Zele(t) actual input power of electrolyzer in time t

Z f c(t) actual output power of fuel cell in time t

Zhb(t) actual input power of heat boiler in time t
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1. Introduction

Power systems are increasingly suffering from damage
caused by natural disasters (e.g., hurricanes, storms, floods,
earthquakes), which often result in blackouts and power inter-
ruptions [1]. In traditional centralized power supply systems,
no alternative power source can be used if the main distribution
network is damaged by a natural disaster, which makes tradi-
tional power systems fragile. Through distributed generation
(DG), loads can be powered by local resources, which reduces
the dependence on the rest of the system and improves overall
power system resilience. Local DGs and loads can be combined
to build a microgrid (MG), which has multiple benefits such as
the ability enhance resistance to natural disasters [1, 2]. For
local DGs, a conventional source is diesel gensets, which have
some drawbacks such as the emissions resulting from their op-
eration, as well as dependence on fuel supply [1, 2]. Generation
from renewable energy sources can also be considered to form
a renewable energy-based MG.

In this work, we consider microgrids with multiple energies,
including electric, thermal and hydrogen loads (Fig. 1). Com-
bined heat and power (CHP) plants are typically efficient and
economical, and have applications in the residential and indus-
trial sectors, especially when multiple energies are considered
[3, 4, 5]. Similarly, fuel cells are a promising technology for ef-
ficient and sustainable energy conversion [6], and are expected
to play an important role in future distributed energy generation
[7]. Fuel cells are thus considered for a CHP plant. A fuel cell
can operate as the main MG power plant to serve the electric
and heat load demand of the whole system. Electric loads are
powered by PV panels, a fuel cell, and a battery system; heat-
ing loads are heated by a solar heating system, a heat boiler,
heat from the fuel cell, and a heat storage system; cooling loads
are cooled by an air conditioner and an absorption heat chiller.
In order to balance the intermittent and varying PV output, an
electrolyzer and a battery are used. The electrolyzer is used
as a long-term storage unit, which can convert electrical power
to hydrogen stored in hydrogen tanks. The fuel cell, the elec-
trolyzer and the hydrogen tanks operate as a long-term storage
system, which has several advantages, such as a high storage
capacity, and a high energy per unit of volume [8]. The battery
system is used as a short-term storage and is inappropriate for
long-term storage, due to its low energy density and nonneg-
ligible self-discharge rate [9]. Similarly, heat storage is used
to balance heat power (heat from the fuel cell, and intermittent
heat from the solar heating system).

A multiple-energy system is a key aspect to evolve toward
a cleaner and affordable energy supply system [10] and to im-
prove power system resilience [11]. But how to decide the ca-
pacity of each component in this complex system with a given
load profile remains a challenge. For example, if the compo-
nents are oversized, capital and operation costs will be higher,
while if the components are undersized, generation curtailment
or load shedding may occur. This means that the sizing results
are affected not only by the architecture of system, but also by
the operation strategy [12]. Depending on how components are
used, the necessary capacity may vary greatly, which in turn

Figure 1: Stand-alone microgrid architecture.

impacts sizing results. On the other hand, input data (load de-
mand, PV output) forecasting errors also influence how com-
ponents are used. This means that forecasting errors must be
considered. At last, due to the fact that the fuel cell and the
electrolyzer are used as the main storage system, and as oper-
ation time goes, the performance of fuel cell and electrolyzer
can be expected to decrease, so this degradation process must
also be considered [13, 14].

In this paper, we decompose the sizing problem into a leader-
follower problem. The follower problem, namely, the energy
management strategy, is formulated as a unit commitment prob-
lem, in the form of mixed integer problem. We use linear pro-
gramming (LP) to obtain the optimal operation strategy. The
leader problem, namely, the sizing problem, uses an evolution-
ary algorithm (EA) to search for the best sizing values [15].
In our previous paper [16], we use this method to research
about the sizing problem of an islanded MG (where only elec-
tric energy was considered), and simulation results showed the
interest of this co-optimization method. In this paper, a com-
bined cooling/heat/power and hydrogen microgrid is consid-
ered, while we also consider the influence of fuel cell and elec-
trolyzer degradation on sizing results.

The main contributions of this paper include:

1. The design of a combined cooling/heat/power and hydro-
gen microgrid system based on a hybrid storage system.

2. The development of a degradation model of the fuel cell
and the electrolyzer to evaluate how time and use influ-
ence efficiency. The influence of this degradation on sizing
results is then investigated.

3. To reduce the degradation of the hydrogen storage system,
startup and shutdown times and up and down times are
considered. Three operation strategies are compared to an-
alyze their influence on sizing results.

4. A 1-hour resolution rolling-horizon simulation is used to
verify the validity of the sizing results for the whole sys-
tem. A robust method is then used to assess the impact of
the forecasting errors on load demand and PV output.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 describes the system
model, Section 4 the operation strategy, Section 5 the sizing
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methodology, and Section 6 the simulation results. Finally, Sec-
tion 7 concludes the paper.

2. Related work

In this section, we review related work about the optimal
sizing problem of MG. The sizing of MG is influenced by
two main factors: the operation strategy, which determines the
power flow in the whole system, and the forecasting error on
input data (load demand, PV output, etc.).

2.1. Operation strategy

The operation strategy of a combined cooling heat and power
(CCHP) system needs to be considered from two aspects: time
scale and solution method. Based on the selected time scale,
two strategies can be considered: day-ahead scheduling and
short term dispatching. A day-ahead scheduler provides unit
commitment solutions aiming to find cost-effective combina-
tions of generating units output, while a short term dispatcher
returns the economic dispatch aiming to minimize the opera-
tion cost of the committed assets based on short term forecasts.
In [17], authors review the energy management of a micro-
grid, and point out that based on the time scale, two scheduling
strategies (unit commitment and economic dispatch) are used
together. In [18], a multi-timescale MG scheduling and dis-
patching strategy is developed for the coupled multi-type en-
ergy supply in an MG. In day-ahead scheduling, the objective
function is to minimize the operation cost, and the objective
of real-time dispatching is to make the real-time actual elec-
tricity power exchange between the MG and to make the main
grid follow its day-ahead schedules as close as possible. In
[19], authors present a two-stage coordinated control approach
for CCHP microgrid energy management. The first stage is a
rolling-horizon economic dispatch. The second stage is a real-
time adjustment stage, which adjusts the controllable sources
to make the real-time energy exchanged with the main grid and
the state of the battery follow its economic dispatch as closely
as possible. In our sizing problem, the time duration is equal
to one year, considering the tradeoff between accuracy and the
computation burden. Hourly profiles are adopted in the opera-
tion strategy [20].

Regarding the solution method (i.e., decision-making), the
operation strategies of a CCHP system can be divided into two
main types: rule-based operation strategies and optimization-
based operation strategies.

In the studied multi-energy system, several loads must be sat-
isfied. This means that some priority rules must be set, lead-
ing to traditional rule-based strategies: following the electric
load (FEL), following the thermal load (FTL) or following the
cooling load (FCL). In [21], authors review different optimiza-
tion operation strategies, including basic operation strategies
and hybrid operation strategies. [22] presents a novel optimal
operational strategy for a CCHP system based on two typical
operating modes: FEL and FTL. An integrated performance
criterion which considers primary energy consumption, car-
bon dioxide emissions and operational cost, is used to decide

which operating mode is chosen. In [23], authors compare five
strategies: electrical-equivalent load following, continuous op-
eration, peak shaving, and base load. In [24], four operation
strategies are compared: FCL, FTL, FEL, maximum power
output, and waste heat allocation proportion. [25] presents a
multi-agent-based demand-side energy management system for
autonomous polygeneration microgrids. with three types of de-
mands (electricity, hydrogen, potable water). The goals are to
have no potable water and hydrogen shortage, and to prevent the
battery from deep discharging. The activation of each agent is
based on rules. These rule-based operation strategies are how-
ever difficult to use for complex systems, where a large number
of rules are needed, especially in multiple energy system.

Due to the drawbacks of rule-based strategies, optimiza-
tion methods are also commonly used. A first category in-
cludes heuristic optimization methods, which are adequate to
solve non-linear and non-convex problems. [26] proposes a
time-varying acceleration coefficient particle swarm optimiza-
tion (PSO) algorithm to solve the non-linear and non-convex
CHP economic dispatch problem. The objective is to minimize
the total heat and power production cost. [27] presents an arti-
ficial immune system algorithm for solving the CHP economic
dispatch problem. The objective is to minimize the total fuel
cost. [28] proposes a bacterial foraging-based fuzzy satisfac-
tory optimization algorithm to solve the multi-objective energy
management problem for a CHP-based microgrid. The objec-
tives are to minimize the total operating cost and the emis-
sions. [29] introduces a multi-objective PSO economic dis-
patch optimization method for a system that incorporates CHP
and wind power units. [30] proposes a multi-objective opti-
mization model which aims to maximize the energy-saving ra-
tio and minimize the energy costs of a micro-CCHP system.
[31] presents a scenario-based scheduling method for a fuel
cell-based CHP microgrid, which aims at maximizing the ex-
pected profit. A modified firefly algorithm is used to solve the
problem.

EA-based optimization relies on stochastic search, which can
give a satisfatory solution with a reasonable computation time,
but it does not guarantee obtaining an optimal solution.

The second category corresponds to mixed integer program-
ming optimization (MIP), which uses deterministic methods.
[32] explores opportunities for increasing the flexibility of CHP
units using electrical boilers and heat storage tanks for better
integration of wind power. A linear model is proposed for the
centralized dispatch of integrated energy systems. [33] presents
a mixed integer linear problem (MILP) optimization model for
combined cooling, heat and power system operation. The ob-
jective is to minimize the total operation and maintenance costs.
[34] presents the optimization of a CCHP system using MILP to
determine the preliminary design of such systems with thermal
storage. The objective function is to minimize the total annual
cost. The effect of legal constraints in the design and opera-
tion of CCHP systems is highlighted in this study. In [35], the
objective of the operation strategy is to maximize the gross op-
erational margin and net present value, and the problem is for-
mulated as an MIP model. In [36], the optimal control problem
is formulated as a mixed integer nonlinear program (MINLP),
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and is solved using discrete dynamic programming. In [37], an
MILP algorithm is used to solve the optimal dispatch problem,
and the objective function is to minimize the operation cost. In
[38], an operation strategy is formed as an MILP problem aim-
ing to maximize greenhouse gas emissions reductions.

Unit commitment (UC) optimization, formed as an MIP
problem, can be solved using a linear-programming based
branch-and-bound algorithm [39], which is appropriate to solve
energy management problems in CCHP systems. The optimal
sheduling set points are determined based on current and future
conditions, which can guarantee obtaining the global optimal
results.

In our CCHP system, a rule-based operation strategy is dif-
ficult to use, because a large number of rules would need to be
built to satisfy the power flow and system constraints. In EA op-
eration strategies, premature convergence and reasonable com-
putation times need to be considered. In this paper, we adopt the
UC optimization method to control the operation of the micro-
grid system. The optimization problem is formed as an MILP
problem, and several constraints are used to describe different
operation strategies.

2.2. Uncertainty
Due to the fact that forecasting errors on load demand and

PV output are unavoidable, and the accuracy of input data in-
fluences the actual power flow in the system, our scheduling
algorithm must consider these errors. Two main methods can
be used to handle such uncertainty: scenario-based methods
[40, 41, 42] and robust optimization [43, 44, 45, 46]. [40]
presents a stochastic method based on cloud theory to reflect
uncertainties, and uses a krill herd method (a metaheuristic opti-
mization algorithm that copies the search performance of krills
during the foraging process) to solve the optimization problem.
[41] presents an energy and reserve scheduling method for an
MG based on stochastic optimization. Five interval wind speed
and solar irradiance discrete probability distribution functions
are considered for wind and PV generation fluctuation for each
hour. Then a scenario tree technique is used to combine differ-
ent states of wind and PV fluctuations. [42] presents a scenario-
based robust energy management method to account for the
worst-case amount of renewable generation and load. Taguchis
orthogonal array testing method is used to provide possible test-
ing scenarios, and then the worst-case scenario is found. The
Monte Carlo method is used to verify the robustness of the en-
ergy management method. In [43], the uncertain operational
and environmental parameters of the microgrid are quantified
in terms of prediction intervals by a non-dominated sorting ge-
netic algorithm (NSGA-II)-trained neural network, which gives
the lower and upper prediction bounds between which the un-
certain value is expected to lie with a given confidence. Then
robust optimization is used to achieve optimal scheduling under
uncertainty. [44] presents a robust optimization-based schedul-
ing method for multi-microgrids considering uncertainty. The
problem is transformed into a min-max robust counterpart, and
solved using linear duality theory and Karush-Kuhn-Tucker op-
timality conditions. [45] proposes a robust UC model to mini-
mize the generalized social cost which considers the uncertainty

of the price elasticity of demand. This is a min-max problem
which is converted into an MILP problem by dualizing the in-
ner maximization problem. [46] presents a robust EMS for
MGs. Authors use a fuzzy prediction interval model to obtain
the uncertainty boundaries of wind output. The upper and lower
boundaries of wind energy are then interpreted as the best and
worst-case operating conditions.

From the above papers, we can see that scenario-based meth-
ods usually require generating many scenarios, which can take
a lot of simulation time. On the other hand, robust methods
are used to find the worst case, which requires less computa-
tion time, although results are more conservative. As a con-
sequence, in this paper, in order to consider the influence of
different forecasting errors levels and reduce the computation
time, a robust optimization method is selected to find the worst
case and best case based on the forecasting error.

2.3. Sizing method
The traditional sizing method for CCHP systems is the max-

imum rectangle method (MRM) which uses the hourly load
curve and finds the rectangle area under this curve [47], [48].
EA are also used to search for the optimal sizing of MGs.
[49, 15] compare different heuristic techniques to find the op-
timal sizing of MG, where the objective function is the total
annual cost. ACO [50], ABSO [51], SA [52], and PSO [53]
methods are also used to compute the optimal size of MG.

Co-optimization methods have also been used to search for
the optimal sizing values. There are different types of co-
optimization methods. The first type uses sizing values chosen
from a set of discrete values, and the operation strategy is based
on rules. For example, [23] presents a method to design a tri-
generation plant. Operation strategies are based on rules. The
objective of this trigeneration planning model is to minimize the
energy production and investment costs over the planning hori-
zon, achieving maximum investment returns. The sizing value
of each component is selected from a set of discrete values. [24]
researches about the operation and configuration optimization
of a CCHP system. Firstly, it chooses different configurations
of sizing values, then chooses an operation strategy (FCL, FTL,
FEL, and maximum power output) and waste heat allocation
proportion. At last, the daily costs are compared, and the opti-
mal system configuration is obtained.

The second type of co-optimization method has sizing values
chosen from a set of discrete values, and the operation strategy
is based on an optimization method. For example, [54] presents
an optimal sizing method for cogeneration systems in two steps:
first the capacity of each equipment is selected from a set of
discrete values, then the optimal operation problem is solved
using MINLP based on the above sizing values. [55] presents
a generic deterministic linear programming model (which aims
to minimize expected annual cost of the system) to determine
the optimal size of a micro-CHP unit. [35] presents an optimal
design method for a hospital complex. The objective of the
operation strategy is to maximize the gross operational margin
and net present value. It is formulated as an MIP model.

The third type of methods uses sizing values chosen using
an evolutionary algorithm, and the operation strategy is based
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on rules. For example, in [56], authors adopt MRM to deter-
mine the lower and higher limits for the total nominal power of
the prime mover. GA is used to search for the optimal sizing
value of each component. Four operation strategies based on
rules are compared. The objective function is named relative
annual benefit, and includes investment and maintenance costs
of equipment, buying and selling electricity, as well as opera-
tional and environmental costs. [57] presents an optimization-
based sizing method for CCHP. GA is used to search for the
best sizing values, and the objective function is to minimize the
total fossil energy consumption. Two operation strategies (im-
proved strategy and base FEL strategy) are compared, and the
primary energy saving ratio is employed to evaluate the strat-
egy. [58] describes a thermodynamic performance analysis to
optimize the configurations of a hybrid CCHP system incorpo-
rating solar energy and natural gas. GA is used to search for the
best configuration, and the operation strategy is based on rules.
The objective function is to maximize the annual primary en-
ergy savings and the annual total cost savings.

The fourth type of methods relies on sizing values chosen us-
ing an evolutionary algorithm, and an operation strategy based
on optimization. For example, [36] presents a multi-objective
model based optimization approach for the optimal sizing of all
components. GA and non-linear mesh adaptive direct search
method are used to decide the sizing values. The objectives are
the capital expenditure, the levelized cost of energy, and emis-
sions. The optimal control problem is formulated as an MINLP,
and is solved using discrete dynamic programming. In [59],
authors present a bilevel program for islanded MG with com-
pressed air energy storage. The upper level problem is solved
using GA, and the lower level problem is solved using the MILP
technique. [37] presents a two-stage optimal planning and de-
sign method for a CCHP microgrid system. On the first stage,
a multi-objective GA based on NSGA-II is applied to solve the
optimal design problem. The objective function is to minimize
the total net present cost and carbon dioxide emissions. On the
second stage, an MILP algorithm is used to solve the optimal
dispatch problem, where the objective function is to minimize
the operation cost.

In addition to the above main types, a few other co-
optimization methods can be mentioned. For example, in [38],
the authors provide an analysis that shows that CHP systems
should be sized and operated to reduce greenhouse gas emis-
sions. A controlled random search method is used to search
for optimal sizing values, and the operation strategy is formu-
lated as an MILP problem aiming to maximize greenhouse gas
emissions reductions. In [60], authors present a co-optimization
method for microgrid planning in electrical power systems. The
leader problem optimizes the planning decisions for the MG
and the main grid. Then, with the proposed plan, the short-
term and economic operation subproblems are solved to check
constraints violations. In [61], authors present an MG planning
model. This problem is decomposed into an investment master
problem and an operation subproblem. The two problems are
linked via the benders decomposition method. In [62], a multi-
objective MINLP model is formulated for the simultaneous sys-
tem synthesis, technology selection, unit sizing, and operation

optimization of a large-scale CCHP system. The objective func-
tion is to minimize the total annual cost and the annual global
CO2 emissions. The augmented constraint method is applied to
determine the Pareto frontier of the design configuration.

The reviewed co-optimization methods are summarized in
Table 1.

Table 1: Selected papers on co-optimization methods.
Refs. Sizing method Operation strategy
[54] discrete values MINLP
[55] discrete values LP
[23, 24] discrete values rule-based
[56, 57, 58] GA rule-based
[35] discrete values MIP
[36] GA/NOMAD MINLP
[59] GA MILP
[62] augmented ε-constraint MINLP
[37] NSGA-II MILP
[38] controlled random search MILP

From the above review, we can conclude that the sizing prob-
lem is a hybrid optimization problem. Based on a given oper-
ation strategy, different sizing combinations are generated to
run the strategy. However, no related paper has researched the
sizing problem of islanded microgrids while considering the
degradation of hydrogen storage, especially when considering
multiple energies. In this paper, we therefore research about
the optimal sizing problem using the co-optimization method.
Namely, GA is used to search for the sizing values, and UC
optimization is used to derive the operation strategy.

3. Components models

In this paper, the stand-alone microgrid is assumed to con-
tain nine components: PV panels, a solar heating system, a
battery storage system, a hydrogen storage system (including
an electrolyzer, hydrogen tanks and a fuel cell), a heat boiler
(which uses electricity to produce heat), an air conditioner, an
absorption heat chiller (which uses heat to produce cooling), a
heat storage system, and electric, thermal, cooling and hydro-
gen loads.

3.1. Solar generation components

The output of the PV generator can be calculated from [59,
63]:

PPV = NPV · fPV · PS TC ·
GA

GS TC
· (1 + (TC − TS TC) ·CT ) (1)

where NPV is the number of PV panels, fPV the conversion
efficiency, PS TC the PV array power under standard test con-
ditions (STC), GA the global solar radiation on the PV array,
GS TC the solar radiation under STC, TC the temperature of the
PV cells, TS TC the STC temperature (298 K), and CT the PV
temperature coefficient.
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For the solar heating system, the output is computed with
[64]:

Qsh = Nsh · ηsh ·GA (2)

where Nsh is the area of the heating system, and ηsh its effi-
ciency.

3.2. Fuel cell model

A fuel cell (FC) can produce electricity from hydrogen (H2),
which can be drawn from hydrogen tanks. In this paper, we use
the voltage electrical model presented in [65] to describe the
characteristic of FC:

V f c = (EOC − r f c · i f c − a · ln(i f c) − m · en0·i f c ) · N f c (3)

where V f c is the FC voltage, EOC is the open-circuit voltage of
one cell, i f c is the current density in one cell, N f c is the number
of cells, and n0, r f c, a, and m are empirical coefficients.

As an FC generates electricity and heat at the same time, the
produced heat can be calculated as in [66]:

Q f c = N f c · (1.48 −
V f c

N f c
) · I f c (4)

Then the hydrogen consumed by the FC is computed using:

ṅcon
H2 =

N f cI f c

2FU
(5)

where F is the Faraday constant, and U is the utilization effi-
ciency of hydrogen in the FC.

From the above equations, we can derive that P f c = f (ṅcon
H2 ),

where f (.) is a nonlinear function. In order to reduce the calcu-
lation time and obtain a linear model, we use linear regression
to simplify this function, without significant loss of model ac-
curacy in the normal operation zones:

ṅcon
H2 = k f c · P f c (6)

where k f c is a constant.

3.3. Fuel cell degradation model

The FC operates as the main power source, which means that
it will run for a large number of hours, and over time, its per-
formance will decrease. The degradation of the fuel cell must
thus be considered [13, 14]. Here, we consider a steady-state
lifetime FC model, where the output current is a constant value,
which reduces the degradation of fuel cell. As the FC oper-
ates as a long term storage system, cycling loads (load changes,
start-stop, idling, and high power) will be the main load de-
mands, which will accelerate the degradation of the fuel cell
[67]. But in this first planning stage, the future operation states
of the fuel cell are unknown, which means that the accelerated
factors of degradation are unknown. In other words, the future
operation states can only be estimated. The steady state lifetime
model is therefore adopted, where it is assumed that the FC will
operate at a constant output.

The degradation of the fuel cell causes the voltage drop,
which can be represented as:

∆V f c = kvd · tday (7)

where ∆V f c is the voltage drop of fuel cell, tday is the operation
duration, kvd is a constant value.

The degradation of the fuel cell mainly influences the resis-
tance r f c [13]. This means that resistance r f c will change as the
fuel cell keeps operating. This can be written as:

r f c(tday) = kr f c · kvd · tday (8)

where r f c(tday) is the resistance at time tday, and kr f c is a con-
stant coefficient.

The degradation model of the fuel cell can then be written as:

V f c = (EOC − r f c(tday) · i f c − a · ln(i f c) − m · en0·i f c ) · N f c (9)

With the above degradation model, Fig. 2 can be obtained,
which shows the voltage/current characteristic of the fuel cell
after different operation durations.

Figure 2: Voltage/current characteristic of a fuel cell after different operationg
durations.

From Fig. 2, the relationship between output power and con-
sumed hydrogen considering the degradation model can be ob-
tained:

ṅcon
H2 = k f c(tday) · P f c (10)

where k f c(tday) is the coefficient value in time tday, derived from
current and voltage values.

On the other hand, the degradation of the fuel cell also de-
creases the maximum output power. As a fuel cell has a max-
imum output current, with different voltage/current curves, the
maximum output power is also different. This can be repre-
sented as:

Pmax
f c (tday) = Pmax

ini − k f cm · tday (11)

where Pmax
f c (tday) is the maximum output power at time tday,

Pmax
ini is the initial maximum output power, and k f cm is the coef-

ficient.
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3.4. Electrolyzer model
An electrolyzer can produce hydrogen from electricity, and

this hydrogen is then usually stored in tanks. The characteristic
of an electrolyzer can be described as follows [68, 69]:

Vel = Nel · Vrev + (r1 + r2 · T ) ·
Iel

Ael

+ (s1 + s2 · T + s3 · T 2) · log(1 + (t1 +
t2
T

+
t3
T 2 ) ·

Iel

Ael
)

(12)

where Vel is the voltage of the electrolyzer, Nel the number of
cells, Vrev the reversible cell potential, T the temperature and
Iel/Ael(A/m2) the current density. r1, r2, s1, s2 , s3, t1, t2, and t3
are empirical coefficients.

As for the FC, the theoretical production rate of hydrogen in
a cell is given by:

ṅpro
H2 = ηF

NelIel

2F
(13)

Based on Faradays efficiency, we can obtain the relation be-
tween the real production rate of hydrogen and the theoretical
one, using:

ηF =
(Iel/Ael)2

f1 + (Iel/Ael)2 f2 (14)

where f1 and f2 are coefficients.
As for the FC, we also linearize the model to obtain:

ṅpro
H2 = kel · Pel (15)

where kel is a constant.

3.5. Electrolyzer degradation model
Contrary to the FC, the degradation of the electrolyzer will

cause the cell voltage to increase [70, 71], which can be repre-
sented as:

∆Vel = kvi · tday (16)

where ∆Vel is voltage increase of the electrolyzer, tday is the
operation time, and kvi is a constant value.

Electrolyzer degradation mainly influences the resistance r1
in equation (12) [71]. This means that resistance r1 will change
as the electrolyzer continues operating. This can be written as:

r1(tday) = krele · kvi · tday (17)

where r1(tday) is the resistance at time tday, and krele is a coeffi-
cient.

The degradation model of fuel cell can then be written as:

Vel = Nel · Vrev + (r1(tday) + r2 · T ) ·
Iel

Ael

+ (s1 + s2 · T + s3 · T 2) · log
(
1 +

(
t1 +

t2
T

+
t3
T 2

)
·

Iel

Ael

) (18)

With the above degradation model, Fig. 3 can be obtained,
which shows the voltage/current characteristic of electrolyzer
after different operation durations.

Fom Fig. 3, the relationship between input power and pro-
duced hydrogen with the degradation model can be obtained:

ṅpro
H2 = kel(tday) · Pel (19)

Figure 3: Voltage/current characteristic of an electrolyzer after different opera-
tion durations.

where kel(tday) is the coefficient value at time tday.
On the other hand, the degradation of the electrolyzer also

decreases the maximum input power. As the electrolyzer has
a maximum input voltage, this means that with different volt-
age/current curves, the maximum input power will be different.
This can be represented as:

Pmax
ele (tday) = Pmax

inie − kelem · tday (20)

where Pmax
ele (tday) is the maximum input power in time tday, Pmax

inie
is the initial maximum input power, and kelem is the coefficient.

3.6. Hydrogen tank model

A hydrogen tank is used to store the hydrogen produced by
the electrolyzer, as well as to supply hydrogen to the fuel cell.
We use the level of hydrogen (LOH) to represent the state of the
hydrogen tank:

LOH(t) = LOH(t − ∆t) + ṅpro
H2 · ∆t − ṅcon

H2 · ∆t − LH2 (t) (21)

where LH2 (t) is the hydrogen load demand. Then, with the
law of perfect gases (PV = nRT ), the volume of the H2 tanks
can be calculated.

3.7. Battery

We use the state-of-charge (SOC) to represent the state of the
battery as follows:

S OC(t) =S OC(t − ∆t)

+
ηch · Pch(t) · ∆t

CB
−

Pdis(t) · ∆t
CB

(22)

where ηch is the charging efficiency, Pch(t) is the charging
power, Pdis(t) is the discharging power, ∆t is the interval time,
and CB is the capacity of the battery.
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3.8. Battery degradation model
For the battery, we use the same linear degradation model

as for the fuel cell. Calendar and cycling age [72] are the two
main factors that cause the degradation of battery. Four models
are used to fit the state-of-health (here, the ratio of the current
usable capacity to the initial or nominal capacity) of the battery
[72]. In addition, the degradation of the battery is also caused
by the cycling operation. For example, [73] shows the degra-
dation of the capacity with the number of cycles. Therefore, a
linear model is used to describe the degradation of the battery.

As in the first planning stage, the future operation of battery
is uknown, it is assumed that the degradation of the battery is
linear. Based on the linear model, the remaining capacity of
battery in each day can be calculated:

Cba(cycles) = Cini −
Cini −Clast

Cyclesmax
· cycles (23)

Figure 4: Remaining capacity of battery vs. number of cycles.

3.9. Thermal components
We use simple models for the thermal components. A heat

boiler uses electricity to produce heat, as follows:

Qhb = ηhb · Phb (24)

where Phb is the input power, ηhb the efficiency, and Qhb the
output heat.

An air conditioner is used to cool air [74]:

Cac = ηac · Pac (25)

where Pac is the input power, ηac the efficiency, and Cac the
cooling output cooling power.

Similarly, the absorption heat chiller uses heat to produce
cooling, so the relation is [74]:

Cahc = ηahc · Qahc (26)

where Qahc is the input heat, ηahc the efficiency, and Cahc the
output cooling power.

Finally, the state of the heat storage system is represented by
the amount of heat stored [28]:

HS (t) = HS (t − ∆t) + ηch
hs · Q

ch
hs(t) · ∆t −

Qdis
hs (t)

ηdis
hs

· ∆t (27)

where HS (t) is the stored heat at time ∆t. Qch
hs(t) and Qdis

hs (t) are
the charge and discharge heating power at time t. ηch

hs and ηdis
hs

are the charge and discharge efficiency, respectively.

4. UC optimization operation strategy

After modeling the system, the operation strategy of the mi-
crogrid must be described. In this paper, a UC optimization
method formed as an MILP is adopted to optimize system oper-
ation. UC optimization is based on current and future predicted
information to optimize the operating points of each component
while minimizing a cost function. In this case, the predicted in-
formation corresponds to solar radiation and loads, and the cost
function is the total cost (including capital cost, maintenance
cost and operation cost).

4.1. Cost function
In order to minimize the operation cost, the utilization costs

of different components need to be assessed. For the battery
storage system (BSS), the utilization cost of charge and dis-
charge are introduced as follows [75]:

Bch,dis
cost (t) =

Cinv
ba

2 · Ncycles
· (Pch(t) + Pdis(t)) (28)

where Cinv
ba is the investment cost of the battery, and Ncycles is

the number of cycles over the lifetime.
The hydrogen storage system (HSS) combines an elec-

trolyzer, a fuel cell and hydrogen tanks. As for the BSS, its
utilization cost can be computed as follows [75]:

Hele
cost(t) =

 Cinv
ele

Nele
hours

+ Co&m
ele

 · δele(t) + C startup
ele · ∆δele(t) (29)

H f c
cost(t) =

 Cinv
f c

N f c
hours

+ Co&m
f c

 · δ f c(t) + C startup
f c · ∆δ f c(t) (30)

where Cinv
ele ,C

inv
f c are the investment costs of the electrolyzer

and the fuel cell, Co&m
ele and Co&m

f c the operation and maintenance
costs, and C startup

ele and C startup
f c the startup costs. Variables δele(t)

and δ f c(t) are the state of the electrolyzer and the fuel cell.
When a unit is on, δi(t) = 1, i = {ele, f c}, otherwise it is set
to 0. Equation ∆δi(t) = max{δi(t) − δi(t − 1), 0}, i = {ele, f c}
represents whether the unit started or not.

We use a similar approach for thermal components. The heat
boiler, air conditioner and absoption heat chiller operation costs
are given by [76]:

HBcost(t) =
Cinv

hb

Nhb
li f e

· Phb(t) (31)

ACcost(t) =
Cinv

ac

Nac
li f e
· Pac(t) (32)

AHCcost(t) =
Cinv

ahc

Nahc
li f e

· Pahc(t) (33)
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For the heat storage system, the operation cost is:

HS cost(t) =
Cinv

hs

Nhs
li f e

· (Qch
hs(t) + Qdis

hs (t)) (34)

4.2. Operation cost function

The optimization tries to minimize the overall operation costs
over a given horizon of T time steps. The total cost function is
then as follows:

Cop =

T∑
t=1

{Bch,dis
cost (t) + Hele

cost(t) + H f c
cost(t) + a1 · HBcost(t)+

a2 · ACcost(t) + AHCcost(t) + HS cost(t)
+ α · (LS cooling(t) + LS heat(t) + LS power(t)
+ β · (cutPV (t) + cutsolar(t))}

(35)

where LS m(t) with m = {cooling, heat, power} are the shed
cooling, heat and power loads, and cutn(t) with n = {PV, solar}
are the curtailed PV power and solar heating. α and β are
penalty values for load shedding and curtailed power. When
there is excess PV generation, there are four solutions to handle
the resulting surplus: using the electrolyzer to store hydrogen,
charging the battery, using the heat boiler to store heat, and
using the air conditioner to supply cooling demands. The prior-
ities are set as follows: first the electrolyzer, second the battery,
then the heat boiler and at last, the air conditioner. Parameters
a1 and a2 are used to adjust the priorities.

4.3. Constraints

The stand-alone microgrid is subject to the fol-
lowing constraints, with i = {el, f c} and j =

{el, f c, bach, badis, hb, ac, ahc, hsch, hsdis}, Z j(t) = δ j(t)P j(t).
Variables γ j

1 and γ
j
2 are constant real values used to set the

minimum and maximum power range of each component:

γ
j
1Pmax

j ≤ P j(t) ≤ γ
j
2Pmax

j (36)

δ j(t) · γ
j
1Pmax

j ≤ Z j(t) ≤ δ j(t) · γ
j
2Pmax

j (37)

Z j(t) ≤ P j(t) − (1 − δ j(t)) · γ
j
1Pmax

j

Z j(t) ≥ P j(t) − (1 − δ j(t)) · γ
j
2Pmax

j

(38)

δele(t) + δ f c(t) ≤ 1
δbach(t) + δbadis(t) ≤ 1
δhsch(t) + δhsdis(t) ≤ 1

(39)

Equation (39) means that the fuel cell and the electrolyzer can-
not start up at the same time. The BSS and heat storage system
also cannot charge and discharge at the same time.

∆δi(t) = max{δi(t)− δi(t − 1), 0} can be expressed as ∆δi(t) =

δi(t) · (1 − δi(t − 1)).

Then, using [77], the above nonlinear equations system can
be transformed into the following linear constraints:

− δi(t) + ∆δi(t) ≤ 0
− (1 − δi(t − 1)) + ∆δi(t) ≤ 0
δi(t) + (1 − δi(t − 1)) − ∆δi(t) ≤ 1

(40)

In order to limit the startup/shutdown times of the fuel cell
and the electrolyzer, the following constraints are added: when
a fuel cell or electrolyzer starts up, it continues to run for at
least krun time steps:

Indi(t) = δi(t) − δi(t − 1)
δi(t : t + krun) ≥ Indi(t)

(41)

The power balance equation is written as:

PV(t) − cutPV (t) − (Lpower(t) − LS power(t)) = Zele(t)
− Z f c(t) + Zbach(t) − Zbadis(t) + Zac(t) + Zhb(t)

(42)

Similarly, for the heat and cooling balance equations:

Qsh(t) − cutsolar(t) − (Lheat(t) − LS heat(t)) + Q f c(t)
+ Qhb(t) = Qhsch(t) − Qhsdis(t) + Qahc(t)

(43)

Cac(t) + Cahc(t) = Lcooling(t) − LS cooling(t) (44)

Finally, for the SOC, LOH and HS constraints:

S OCmin ≤ S OC(t) ≤ S OCmax

LOHmin ≤ LOH(t) ≤ LOHmax

HS min ≤ HS (t) ≤ HS max

(45)

In summary, for the UC control strategy, the problem can be
formulated as:

min
S̃
{Cop}

s.t. (10), (11), (19), (20), (21), (22), (23), (36) − (45)
(46)

where S̃ is the set of variables.

5. Sizing methodology

Based on the above section, we can describe the power
flow in the microgrid system. Our goal is to com-
pute the optimal size value of each component, namely,
NPV ,Nsh,CB, Pmax

f c , Pmax
el ,Vmax

H2
, Pmax

hb , Pmax
ac ,Qmax

ahc , HS max. Let
set U represent these sizing variables. Then the sizing prob-
lem is minF(U), with F(.) the total cost function introduced in
the following.

In this paper, we use the co-optimization method with an EA
[78] to solve the sizing problem, and then MILP to solve the
operation problem. The simulation process is shown in Fig. 5:

1. First, N candidate solutions are generated for the GA.
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2. Each of these solutions is then used with the operation
problem. The UC MILP optimization is run to solve prob-
lem (46). As a one year (8760 hours) MILP optimization
would require a large simulation time, we adopt a method
based on 12 peak demand days. Each of the 12 days is
calculated with the MILP optimization. If no solution is
feasible, then a new candidate solution is generated.

3. The GA fitness function value is then computed to deter-
mine the total cost of each candidate solution, by calculat-
ing (49).

4. The process continues until any stopping criterion is met.
Here, an adaptive method is selected. Firstly, if the fitness
function values for two consecutive steps are the same,
then counter Num is incremented. If Num exceeds a given
maximum value (here Nummax = 30), the simulation stops
as the fitness function is not improving anymore. The sec-
ond criterion is on the number of iterations, for which a
maximum number (here Genmax = 100) is set.

Figure 5: Optimization process outline.

The total capital cost corresponds to the cost of buying the
equipment, and is given by:

Ccap = CRF · (NPV ·Cinv
PV + Nsh ·Cinv

sh + Pmax
f c ·C

inv
f c

+ Pmax
el ·C

inv
ele + VH2 ·C

inv
tank + Cbat ·Cinv

bat

+ Pmax
hb ·C

inv
hb + Pmax

ac ·C
inv
ac + Pmax

ahc ·C
inv
ahc

+ HS max ·Cinv
hs )

(47)

where Cinv variables represent the prices of each component.
CRF =

r(1+r)ninv

(1+r)ninv−1 is the capital recovery factor (CRF) [15], r
is the real interest rate and ninv is the expected life span of the
microgrid.

Similarly, the annual maintenance cost is given by:

Cmnt = NPV ·Cmnt
PV + VH2 ·C

mnt
tank + Cbat ·Cmnt

bat (48)

where Cmnt variables represent the annual maintenance costs of
the PV, hydrogen tanks and battery components. As the O&M
cost of the FC and the electrolyzer are considered in the oper-
ation strategy equations (28) to (30), they are not included in
the annual cost. The maintenance cost of the heat boiler, the air
conditioner, the absorbtion heat chiller, and the heat storage are
neglected.

The total cost function F(.) is thus:

F = Ccap + Cop + Cmnt (49)

Finally, the overall problem can be formulated as:

min
U∈U
{Ccap + min

U∗,S̃
{Cop} + Cmnt}

s.t. (10), (11), (19), (20), (21), (22), (23), (36) − (45)
(50)

In this paper, GA is used to search for the best sizing values.

6. Simulation results

6.1. System setup

In order to research about the influence of different operation
strategies, we set up three different strategies, shown in Table
2. Strategies S1 and S3 are used to compare the influence of
minimum startup power of the fuel cell, the electrolyzer and
the heat boiler on the sizing results. Strategies S2 and S3 are
used to compare different operation durations of the fuel cell
and the electrolyzer on the sizing results.

Table 2: Three different operation strategies.

Strategy γ
{ f c,ele}
1 γ

{ f c,ele}
2 krun[h]

S1 0.1 1 3
S2 0.5 1 5
S3 0.5 1 3

The other main operation parameters are shown in Table 3,
where ”hb” means heat boiler, ”ac” means air conditioner,
”ahc” means absorbtion heat chiller, ”hy” means hydrogen
tanks, and ”hs” means heat storage system.

Table 3: Simulation parameters.
Components γ1 γ2

hb 0 1
ac 0.1 0.9
ahc 0 0.9
Components min max
battery S OCmin = 0.5 S OCmax = 0.9
hy LOHmin = 1N.m3 –
hs HS min = 0 –

We also set α = β = 1010. The initial state of hydrogen in
tanks is LOHini = 106 N.m3. This large value is chosen in order
to make sure there is enough hydrogen to run the fuel cell, and
will be adjusted in the following. The initial state of the heat
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storage is HS ini = 3 · 103 kWh. The cost parameters are taken
from [16, 74, 79]. The degradation parameters are calculated
based on [13, 14, 70, 71] and are shown in Table 4. The model
is formulated in MATLAB and YALMIP [80], and solved with
Gurobi Optimizer. The simulations were run on a computer
with an Intel Xeon CPU E3-1220 3.1 GHz, with 16GB RAM.

Table 4: Degradation parameters.
kvd[V/h] k f cm[kW/d] kvi[V/h] kelem[kW/d]
3.736 · 10−6 0.002582 3 · 10−5 0.004933

Load demand data (for cooling, heat, electric power and hy-
drogen) and solar radiation are obtainted from a research build-
ing, located in Belfort, France. The corresponding profiles (one
day average) are shown in Figs. 6 and 7. Hydrogen is used to
run fuel cell research experiments. As no direct data is avail-
able, heating and cooling loads are calculated based on temper-
ature. In order to avoid long simulation times, we adopt 12 days
with one hour data as the input profiles. These days correspond
to the electricity load demand peak day, the heating load de-
mand peak day, and the cooling load demand peak day for each
season. Then, the sizing results are verified based on a 1-hour
rolling horizon simulation, and are adjusted if necessary.

Figure 6: Cooling/heat/electricity demand (one day average).

6.2. GA-based sizing results

GA [78] is based on the natural selection process similar to
biological evolution. It uses tools such as mutations, crossover
and selection to generate candidate solutions. In our simulation,
the population is 20, and the maximum number of iterations is
100. Each candidate solution gives the sizing values of each
component. With it, the MILP operation is run, and based on
the results, the population is updated.

The optimal size values shown in Table 5 are obtained. Here
∆VH2 = max{∆Vrd

H2
}, rd = {1, ..., 12}, where rd represents the

12 days, and ∆Vrd
H2

= Vrd
max − Vrd

min represents the hydrogen
volume change in tanks in the rdth day. Similarly, ∆HS =

max{∆HS rd}, rd = {1, ..., 12}, rd represents the 12 days, and
∆HS rd = HS rd

max − HS rd
min represents the heat power change in

the heat storage system in the rdth day. The hydrogen energy

Figure 7: Solar radiation (one day average).

can be expressed in another way: for S1, the hydrogen volume
can operate the fuel cell at 100 kW for 24.9 hours; for S2, the
duration changes to 28.5 hours; and for S3, to 44.6 hours.

The cost results are shown in Table 6. Here, C∗total,
C∗op represent real cost of the system, namely, C∗op =∑12

day=1
∑T

t=1{B
ch,dis
cost (t) + Hele

cost(t) + H f c
cost(t) + α · (LS cooling(t) +

LS heat(t) + LS power(t)) + β · (cutPV (t) + cutsolar(t))} (operation
cost of heat boiler, air conditioner, absorption heat chiller and
heat storage are not considered), C∗total = Ccap + C∗op + Cmnt.

It can be observed that with different operation strategies, the
sizing value of each component is different. In strategy S2, the
minimum start power of the fuel cell and the electrolyzer is set
to be 50% of their maximum power, and the minimum run time
of the fuel cell and the electrolyzer is 5 hours. These constraints
are strict and must be satisfied in the optimization process, lead-
ing to a smaller fuel cell, a larger PV and a larger electrolyzer.
In strategies S2 and S3, larger PV, electrolyzer, hydrogen tanks
and battery are needed, leading to larger capital costs.

Comparing these three operation strategies, we find that if the
operation conditions of the HSS are limited (in order to reduce
its degradation), the capital cost of the related auxiliary system
increases, and the lifetime of the HSS also increases. On the
contrary, if the limitations on operation conditions of the HSS
are not strict, which means that the HSS can operate in most
conditions, the related auxiliary system is smaller, but the life
time of HSS also decreases.

Based on the above sizing value, the scheduling results are
obtained by running the MILP algorithm. The MILP schedul-
ing is run for one day (electricity peak load demand day in sum-
mer) with strategy S2. Scheduling results are shown in Fig. 8,
which shows the electric power schedule. During the day, a
large surplus PV output can be observed. This may show that
the number of PV panels is too large (a smaller value may be
more appropriate), but as our simulation is based on 12 days,
this means that simulation results must be satisfied for all 12
days, so the number of PV panels is chosen from the global
view. We observe that the HSS is the main storage system (the
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Table 5: Sizing results.

Strategy NPV Pmax
f c [kW] Pmax

el [kW] ∆VH2 [N.m3] Cbat [kWh] Nsh [m2] Pmax
hb ∆HS [kWh] Pmax

ac Qmax
ahc

S1 121 272 396 1065 383 45 346 3000 117 1207
S2 206 114 584 1220 659 36 123 3000 129 3815
S3 327 131 690 1903 735 43 283 3000 159 686

Table 6: Cost results.
Strategy C∗total [e ] Ccap [e ] C∗op [e ]
S1 4.0683e+05 3.6766e+05 3.9171e+04
S2 9.6424e+05 4.7911e+05 4.8513e+05
S3 1.2729e+06 5.3004e+05 7.4290e+05

fuel cell outputs power at night and the electrolyzer consumes
the most power in the day time), with slow variations in out-
put, while the BSS serves as an auxiliary storage system, with
shorter and more dynamic charge and discharge periods. The
heat boiler and the air conditioner also operate to transfer elec-
tricity to heating and cooling power. The fuel cell generates
more electricity than the electric load demand, in order to sup-
ply the heating and cooling loads.

Fig. 9 shows the heating power schedule. During the night,
the fuel cell heating and the heat storage system supply most of
the heating load demand, and the absorption heat chiller uses
heat to serve the cooling load. During the day, the surplus heat-
ing power is stored in the heat storage system and is transferred
to cooling load using the AHC. The heat boiler uses electricity
to heat water, which can be stored or used in the absorption heat
chiller. The fuel cell also generates heat water which can be
transferred to rooms through pumps. Similarly, Fig. 10 shows
the cooling power schedule. The absorption heat chiller and the
air conditioner supply all the cooling load.

From the scheduling results, we can see that when there is no
PV power output and solar heat output (at night), the fuel cell
provides energy for the whole system. It provides electricity
to the electric load demand, to the air conditioner to serve the
cooling load, and collects heat power to serve the heat load.
The heat storage tank provides heating power to the heat load.
When there is surplus energy from the PV panels and the solar
heating system (during the day), the electrolyzer is used as the
main source to consume electricity by producing hydrogen. The
heat boiler is also used to consume electricity by producing heat
stored in heat tanks.

Regarding storage, Fig. 11 shows the change in LOH and
stored heat, and Fig. 12 the change of SOC. It shows that when
there is no PV output, the fuel cell produces power to supply the
electric load, and the heat storage tanks provide heat to the heat
demand. When there is enough PV output, surplus PV power
output and solar heat output are stored in hydrogen tanks and
heat tanks, respectively.

6.3. 1-hour rolling horizon simulation

In order to verify the optimal sizing results, a 1-hour rolling
horizon simulation is run. This simulation repeats the 1-hour

Figure 8: Strategy S2, electric power schedule (Power means PV outputs minus
electricity load demand; charge/discharge curves are for the battery).

Figure 9: Strategy S2, heating power schedule (Power means solar outputs mi-
nus heat load demand; charge/discharge curves are for the heat storage system).

one day UC scheduling for 365 days. Strategy S2 is adopted.
We only use 12 days as the input data to obtain the optimal siz-
ing results. In the rolling horizon simulation, the optimization
window moves from the current day to the next day, and then
repeats until the last day. So the state of the hydrogen tanks and
the heat storage system are based on the previous simulation
results. To determine the volume of the hydrogen tanks and
the heat storage system, we adjust the initial value to a large
value. With this new value, the rolling horizon simulation is
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Figure 10: Strategy S2, cooling power schedule.

Figure 11: LOH and stored heat.

Figure 12: LOH and SOC.

run, and the results are shown in Fig. 13. From Fig. 13, we can
see that load shedding and curtailed power occur, which means
that these sizing values must be adjusted. Firstly, we adjust the
sizing value of the heat boiler to be 123 + 209 = 332 kW, as
from Table 5, in the second row, we know that the sizing value
of the heat boiler is 123 kW, and from Fig. 13, we know that
the maximum heating shedding power is 209 kW. This means
that the curtailed PV power and more fuel cell output power
can be transferred to heat. Then, we adjust the fuel cell ca-
pacity to satisfy the heat boiler demand: 114 + 209/0.9 = 347
kW, as from Table 5, in the second row, we know that the siz-
ing value of the fuel cell is 114 kW, and the efficiency of the
heat boiler is 0.9. With these new sizing values, the 1-hour
rolling horizon simulation results are shown in Figs. 14, 15, 16,
and 17. We can then calculate the volume of hydrogen tanks:
max(LOH)−min(LOH) = 141, 270 N.m3. If we do not consider
the degradation of the fuel cell, these large amounts of hydrogen
can serve a fuel cell operating at 200 kW for 1,750 hours. For
the heat storage system, we obtain max(ht) − min(ht) = 4, 968
kWh.After this adjustment, the capital cost of the whole system
is 2.2616e+06. The large volume of the hydrogen tanks leads
to this large capital cost.

Figure 13: 1-hour rolling horizon simulation.

6.4. Influence of the degradation of the fuel cell, the elec-
trolyzer and battery

In this section, the degradation models of the fuel cell, the
electrolyzer and battery are considered. In this paper, 12 days
are used as the input profile, and if we consider the degradation
of the fuel cell, the electrolyzer and the battery, the maximum
output power of the fuel cell, the maximum input power of the
electrolyzer, the consumed hydrogen in fuel cell, the produced
hydrogen in the electrolyzer, the remaining capacity of battery
will all be different in these 12 days.

Based on equation (10) and (11), we can calculate the new
parameters for the fuel cell consumed hydrogen and the maxi-
mum output power in tday. For the electrolyzer, the new param-

14



Figure 14: 1-hour rolling horizon simulation, electric power schedule (2000-
2168h).

Figure 15: 1-hour rolling horizon simulation, heat power schedule (2000-
2168h).

eters are updated based on (19) and (20). For the battery, the
remaining capacity in each day is updated based on (23).

Then the UC optimization problem can be formed as problem
(46), and the overall problem is (50). We adopt strategy S1. The
simulation results are shown in Table 7. Degall means that the
degradation of the fuel cell, the electrolyzer and the battery is
considered. Deg means considering the degradation of fuel cell
and electrolyzer. We can see that in case Deg, due to the degra-
dation of the fuel cell, a larger capacity of fuel cell is needed to
satisfy the load demand; a larger heat boiler and air conditioner
are needed to transfer the PV output power to heat or cooling
due to the degradation of the electrolyzer. Then, we consider
the degradation of the battery with case Degall. We can see that
the capacity of the battery will increase, also for the capacity
of the fuel cell and the electrolyzer, with the larger electrolyzer,
then the capacity of the heat boiler and the air conditioner is
decreased compared to case Deg. The cost results are shown

Figure 16: 1-hour rolling horizon simulation, cooling power schedule (2000-
2168h).

Figure 17: 1-hour rolling horizon simulation.

in Table 8. We can see that in case Deg, the operation cost is
smaller. This is because the HSS operates more times (because
of the larger capacity of the fuel cell), and the utilization cost of
the HSS is much smaller, leading to lower operation costs. In
case Degall, due to the large capacity of the storage system, the
capital cost of the microgrid is also increased.

6.5. Influence of uncertainty

The forecasting errors on PV output and load demand in-
fluence the power flow on the whole system, as well as the
sizing results of the components. In this section, we adopt
a robust method to research about the influence of uncer-
tainty. We use the upper bound and lower bound to repre-
sent the uncertainty. P̃PV (t), ˜Lpower(t), L̃heat(t), ˜Lcooling(t), L̃H2 (t)
and ErPV , Erpower, Erheat, Ercooling, ErH2 are used to represent
the actual values and error bounds of PV output, solar heat-
ing output, electric load demand, heating load demand, cooling
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Table 7: Sizing results considering degradation of the fuel cell, the electrolyzer and the battery.

NPV Pmax
f c [kW] Pmax

el [kW] ∆VH2 [N.m3] Cbat [kWh] Nsh [m2] Pmax
hb ∆HS max[kWh] Pmax

ac Qmax
ahc

Degall 224 498 540 1159 843 43 200 3000 148 542
Deg 103 409 385 1087 101 48 671 3000 843 557
S1 121 272 396 1065 383 45 346 3000 117 1207

Table 8: Cost results considering degradation of the fuel cell and the elec-
trolyzer.

Strategy C∗total [e ] Ccap [e ] C∗op [e ]
Degall 7.8660e+05 5.3978e+05 2.4682e+05
Deg 4.0172e+05 3.8183e+05 1.9887e+04
S1 4.0683e+05 3.6766e+05 3.9171e+04

load demand, and hydrogen load demand respectively. The ac-
tual values can be represented as:

P̃PV (t) = PPV (t) ± PPV (t) · ErPV ,

˜Lpower(t) = Lpower(t) ± Lpower(t) · Erpower,

L̃heat(t) = Lheat(t) ± Lheat(t) · Erheat,

˜Lcooling(t) = Lcooling(t) ± Lcooling(t) · Ercooling,

L̃H2 (t) = LH2 (t) ± LH2 (t) · ErH2

(51)

Two cases are defined in Fig. 18. The worst case (the case
where the difference between the PV output and the load is the
largest) is when the PV output is equal to the upper bound value,
and the load is equal to the lower bound value; or when the PV
output is equal to the lower bound value, the load is equal to
the upper bound value. For the best case (the case where the
difference between the PV output and the load is the lowest),
the opposite is used.

If the sizing results can satisfy the worst and best cases, then
others cases can also be satisfied by the obtained sizing results.
This means that the worst and best case data must be used to run
the co-optimization method and obtain the sizing results. Table
9 shows the sizing results when ErPV = Erpower = Erheat =

Ercooling = ErH2 = 0.1. Table 10 shows the cost results. For the
worst-case, the HSS is used frequently because it is cheaper, so
larger hydrogen tanks are needed. For the best case, the BSS is
used frequently due to limitations of the HSS (minimum startup
power and continuous running time), so more BSS capacity is
needed. For these two cases, a larger heat storage system is
needed to handle the uncertainty.

7. Conclusion

In this paper, we introduced a co-optimization method to size
the components of a renewable energy based stand-alone micro-
grid which combines cooling, heat, electric power and hydro-
gen loads. The UC optimization method is used for defining
the operation strategy, which aims at minimizing the operation
cost through an MILP algorithm. A GA is used to compute

Figure 18: PV output minus load demand

the sizing value of each component, aiming to minimize the to-
tal cost. Three operation strategies are compared, which show
that sizing values are different with different strategies. Then
a 1-hour rolling horizon simulation is used to adjust the sizing
values of several components. The degradation of the fuel cell,
the electrolyzer and the battery is also considered and shows
that the sizing values of the fuel cell and the battery increases
when considering the degradation. Uncertainty on PV output
and load demand is addressed using robust optimization, and
results show that larger volumes of hydrogen tanks and heat
storage are needed to tackle these uncertainty factors. This co-
optimization method is useful to size complex islanded micro-
grids, and results show that the optimal size value and operation
algorithms are capable of scheduling multiple components and
managing flows from different natures (heat/cooling, electricity
and hydrogen).
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