
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 1

CIPRNG: A VLSI Family of Chaotic Iterations
Post-Processings for F2-Linear Pseudorandom
Number Generation Based on Zynq MPSoC

Mohammed Bakiri, Jean-François Couchot, and Christophe Guyeux

Abstract—Hardware pseudorandom number generators are
continuously improved to satisfy both physical and ubiquitous
computing security system challenges. The main contribution of
this work is to propose two post-processing modules in hardware,
to improve the randomness of linear PRNGs while succeeding
in passing the TestU01 statistical battery of tests. They are
based on chaotic iterations and are denoted by CIPRNG-MC
and CIPRNG-XOR. They have various interesting properties,
encompassing the ability to improve the statistical profile of the
generators on which they iterate. Such post-processing have been
implemented on FPGA and ASIC without inferring any blocs
(RAM or DSP). A comparison in terms of area, throughput,
and statistical tests, is performed. The hardware pseudorandom
number generation can reach a throughput/latency ratio equal to
8.5 Gbps for Zynq-FPGA and 10.9 Gbps for ASIC, being thus the
fastest FPGA generators based on chaos that can pass TestU01.
In particular, it is established that CIPRNG-XOR is 2.5 times
faster and 5 times more efficient that almost all linear PRNGs
who pass TestU01.

Index Terms—Pseudorandom Number Generators, Discrete
dynamical systems, Statistical Tests, Hardware Security, Applied
Cryptography, System on Chip, FPGA.

I. INTRODUCTION

DESPITE its long history, random generation still remains
a hot topic, with the emergence of the so-called Random

as Service or Entropy as Service [1] needs. It also becomes
a key element in lightweight security cores in IoT devices.
Finally, cloud services suffer when they have to generate
multiple virtual machine instances (VM) from a golden image:
they look like to have a very limited ability in randomness
harvesting [2]. Despite the common use of these generators
in many applications as described above, their integration into
System on Chip becomes highly desirable, particularly for IoT
and Smart Cards. Therefore, the practical purpose of current
research works is to provide compact, high throughput, secure,
and reconfigurable pseudorandom generators for hardware
applications.

Let us recall that a random number generator algorithm is
defined by the state space S of the generator, the transition
mapping function f , the output extractor function g from a
given state, and the seed x0 [3]. The random output sequence
is y1,y2, . . . , where each yt is generated by the two main
steps described thereafter. The first step applies the transition

M. Bakiri is from Centre des Techniques Avancées (CDTA), Alger, Algeria.
M. Bakiri, Couchot and Guyeux were with the Femto-ST Institute, UMR

6174 CNRS, Université de Bourgogne Franche-Comté, France.
E-mail: jean-francois.couchot@univ-fcomte.fr.

Manuscript received XXX; revised XXX.

function according to the recurrence xt+1 = f (xt), where xt

and xt+1 both belong to S. The mapping function f can be
either an algorithm that deterministically produces random-like
numbers in a discrete and finite state space. Such generators
are denoted as pseudorandom number generators (PRNGs).
Differently, f can be based on a physical source of entropy to
produce randomness, thus making S a continuous space. The
whole approach is thus called a True random number generator
(TRNG). The second step consists in applying the function
generator to the new internal state leading to the output yt ,
that is, yt = g(xt). There is a large variety of such recursive
generators, which can be either linear or not, chaotic...

Random number generation is more studied in mathematics
for software aspects, whereas hardware and semiconductor
solutions are deeply investigated for true random generation.
On the one hand, linear PRNGs are a special case of linear re-
currence modulo 2 (that is, S is F2). Many research works and
solutions are regularly proposed to increase their performance
and statistical profile, and their linearity and security are inves-
tigated accordingly. Unfortunately, only a few of these linear
PRNGs are analyzed in details at the hardware level, such as
FPGA and ASIC. On the other hand, chaotic pseudorandom
number generators (CPRNGs) are non-linear generators of the
form: x0 ∈ R and xt+1 = f (xt), where f is a chaotic map.
They are an attractive application of the mathematical theory
of chaos. Reasons explaining such an interest encompass
their sensitivity to initial conditions, their unpredictability, and
their ability of reciprocal synchronization [4]. Truly chaotic
generators are a good demonstration of these characteristics:
their period is infinite, hardware resources are compact, and
statistical tests are often succeed quite reasonably [5]–[7].

One natural question that arises is: how can we inject
disorder in a deterministic digital system, while respecting the
mathematical definitions of chaos provided by Devaney [8]
and Li-Yorke [9] on such finite state machines? An usual
answer in digital embedded systems is to consider pseudo-
chaotic generators instead of truly chaotic ones [6], [10]–[12].
In spite of the quality of the TRNG output based on a
chaotic phenomenon, most of these techniques are however
produced in a manner that is either slow (i.e, in a range of
some Kbps to Mbps, to extract noise or jitter from a given
component [13]) or costly (e.g., extracting or measuring some
noise using oscilloscope or laser [5], [14]). Additionally, to
embed these TRNGs in a pure digital platform is an extreme
challenge, where the main concern is calibration of the bias
phenomenon coming from analog inputs. Digital TRNGs lead

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 2

thus to an uncontrollable uniformity and performance of the
outputs compared to the theory. Conversely, chaotic PRNG
appears as a convenient solution in SoC platforms such as
Zynq based FPGA [15].

Additionally, these PRNGs have various drawbacks, par-
ticularly they fail statistical tests of linear complexity of
their outputs. This work notably illustrates that 32-bits length
internal state is sufficient to pass the linear complexity tests
only if post-processing operations (permutations, for instance)
are applied to scramble the output. Another solution that
comes in mind is to enlarge the internal state space whilst
conserving the same output length (32 bits). However such a
second answer is contradictory with the objective of hardware
implementation which is notably to keep resources as reduced
as possible.

This article is an extended version of a paper accepted at
Secrypt 2016, the 13th International Conference on Security
and Cryptography [16]. We have reported the initial design
and evaluation of Chaotic Iterations based PRNG (CIPRNG)
as a possible post-processing for hardware PRNGs, demon-
strating its benefits compared to other linear PRNGs. This
proposal focuses on adding chaos (as mathematically defined
by Devaney [8] and Li-Yorke [9]) on linear PRNGs as a
post-processing, in which at each iteration, only a subset
of components of the iteration vector is updated. In this
article, we undertake a deeper evaluation of these linear
PRNGs, encompassing statistical tests, throughput & latency,
and Berlekamp-Massey algorithm [17] analyze. To the best
of our knowledge, no paper has really deeply investigated
hardware implementations of such linear PRNGs. Pseudo-
chaos generators implemented on FPGA have been considered
too in our investigations, which use various map functions like
the so-called Logistic Map [18], the Timing Reseeding [19],
or Differential Chaotic [20]. We also provide a detailed
description about the SoC platform for implementation and
randomness tests. In addition to the details of the CIPRNG-
XOR (presented in [16]) this article provides two new Chaotic
Iterations based post processes, namely Multi-Cycle CIPRNG-
MC and Multi-Cycle Multi-Dimension (CIPRNG-MCMD).
The underlying theory is emphasized since our proposal has
been completely proven in the rigorous framework of chaos
theory. Finally, we improve hardware aspects on FPGA by
merging them in ASIC implementation using UMC-65nm
Low Leakage Technology, which is done to compare area,
throughput, and power consumption of investigated generators
without inferring any blocks (DSP, RAM).

This extension of a conference article is organized as fol-
lows. Section II discusses hardware design (FPGAs and ASIC)
and analysis a set of selected linear and chaotic pseudorandom
number generators. Performance is regarded in Section III:
frequency, area size, weaknesses, and computation complexity
are investigated to select which linear PRNGs can be used
for post-processing. Then, in Section IV, we present the
mathematical topology foundation of chaotic iterations [21],
while its application for PRNGs is detailed in Section V.
We compare the implementation of both linear PRNGs and
chaotic iterations on FPGAs using Zynq platform in the
next section, while the ASIC implementation is discussed in

Section VII. This article ends by statistical tests (Sec. VIII)
and a conclusion section, in which our study is summarized
and intended future work is outlined.

II. BACKGROUND OF LINEAR AND CHAOTIC PRNGS

A. F2 Linear PRNGs

Let F2 be the finite field of cardinality 2. Let us firstly
recall that a common way to define a pseudorandom number
generator is to consider two functions f and g, and a linear
recurrence defined by

f : FN
2 → FN

2 g : FN
2 → FM

2

xt+1 = f (xt) and yt = g(xt)

where usually N>M, g is one way, x0 is a seed provided by
the user, and yt is returned to the user.

Let us remind that linear PRNGs are a special case of linear
recurrence modulo 2. Therefore, a linear PRNG of w bits can
be defined by the following equations:

xt+1 = A× xt (1)
yt = B× xt (2)

rt =
w

∑
`=l

yt
`−1 2−` (3)

Equation (1) defines the function f , where xt = (xt
0, . . . ,xt

k−1)

∈ Fk
2 is the k-bit vector at step t and A is a k× k transition

matrix with k-bit F2-vector.
Equations (2) and (3) define the function g, where yt =

(yt
0, . . . ,yt

w−1) ∈ Fk
2 is the w-bit output vector at step t, and

B is a w× k output transformation matrix with elements in
F2. This latter produces the output bits that correspond to the
internal RNG state, which is rewritten as rt ∈ [0,1]: the output
at step t. Let us provide some examples of such linear PRNGs.

Linear Feedback Shift Register (LFSR): Well-known ex-
amples of such generators are LFSR113 [22], LFSR258 [22],
and Taus88 [23]. Look-up Table Shift Register (LUT-SR [24])
is another LFSR, in which authors propose to turn the use of
LUT as a k-bit shift-register using Xilinx SRL32.

Linear Congruential Generators (LCGs): PCG32 [25] is
an instance of improved LCG: it post-processes a permutation
function (dropping bits using fixed and random rotations) to
improve the randomness of the outputs. We can also evoke
the MRG32K3a generator [26] (further denotes as MRG32),
which is a combined Multiple Recursive Generator (MRG),
whose period is 2191. KISS124 [27] is another 64-bits (2124

period) combined PRNG that calls 3 PRNGs: a 64-bit MWC
(Multiply-With-Carry), the XOR64, and finally a LCG.

Twisted Generalized Feedback Shift Register (TGFSR):
They are based on matrix linear recurrence of n sequence
words, each containing w-bits:

xk+n = xk+m⊕ (((xk & SMSB) | (xk+1 & SLSB))×A), (4)

where 0 6 m 6 n. Mersenne Twister [28], Well512 [29], and
TT800 [30] generators are special cases of TGFSR, which use
BRAM memory to READ/WRITE the tree words.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 3

Xorshift generators: XOR64 [31] and XOR128, with a
period of 264 and 2128 respectively, are examples of these
generators. We can also cite the XOR64∗ generators [32],
which scramble the result of a Xorshift using a 64-bit multipli-
cation, leading to a period of 21024 and 1024-bit state. Finally,
XOR128+ [33] proposes a generator of 128 states based on
two XOR64 and the sum of the new and previous generated
outputs, with a period of 2128.

B. Chaotic PRNG

This section presents a state-of-art of pseudo-chaotic gen-
erators which have already been implemented on FPGA.

Differential Chaotic PRNG. Authors in [34] propose a dig-
itized implementation of a nonlinear chaotic oscillator system
in Rössler format [20]. They solve the Lörenz hyperchaos with
other differential systems as the Chen [35] and Elwakil [36]
ones, using an approximated Euler numerical approach. An
implementation and optimization of this Lörenz equation are
given in [37], in which is used again an Euler approximation
with less area but same range of throughput. Finally, authors
of [38] have implemented the so-called Oscillator Frequency
Dependent Negative Resistors (OFDNR) [39], while using the
same Euler approximation.

Chaotic Mapping PRNG. Two different chaotic maps are
in general considered: the logistic map [18] and the Hénon
map [40]. In [41], the authors deploy the facilities of Matlab
DSP System Toolbox software to implement various ranges
of logistic map with various lengths, namely from 16 to 64
bits, where the resources are dependent on the precision (from
24 to 53 bits). Then, authors of [38] compare the logistic
map [41] results recalled previously with the Hénon ones.
Additionally, these authors propose two optimized versions
of chaotic logistic map in [42], in which they pipeline the
multiplication operations and synchronize them, while adding
some delays into each stage, in order to ensure a paral-
lel execution of sequences. Finally, in [43], four different
chaotic maps are implemented in FPGA, namely the so-called
Bernoulli, Chebychev [44], Tent, and Cubic chaotic maps. The
implementation is done with and without FPGA’s DSP blocks
for the multiplication operations.

Chaotic based Timing Reseeding (CTR). This main con-
cept [19] was first implemented in FPGA [45]. Instead of
initializing the chaotic PRNG with a new seed, the seed can be
selected by masking the current state xt+1 at a specific time.
They optimize in [45] the arithmetic operators as multiplica-
tion with Carry Lookahead Adder, while the authors of [46]
mix the output from the PRNG with an auxiliary generator
yt+1 to improve statistical tests.

III. QUANTIFYING HARDWARE PERFORMANCE OF PRNGS

A. Methodology

Previously presented hardware PRNGs are evaluated re-
garding their randomness, which can be done using statistical
tests. The objective of such tests is to evaluate whether the
output of a given RNG can be separated or not from a truly
random sequence obtained, for instance, by rolling a dice.

Such tests are usually grouped in batteries, like NIST [47],
and TestU01 [48] ones.

More precisely, the US National Institute of Standard and
Technologies has its own battery called NIST SP800− 22,
see [47]. It is constituted by 15 different statistical tests. The
binary sequence to evaluate must have a fixed length N, such
that 103 < N < 107. Then, for each statistical test, a set of s
sequences is produced by the RNG under consideration, and
p-values are obtained. They all need to be larger than 0.0001
to reasonably consider the associated sequences as uniformly
distributed and secure according to the NIST opinion.

TestU01, for its part, is currently the most complete and
stringent battery of tests for RNGs [48], which groups more
than 516 tests inside 7 sub-batteries. In this section, we
focus on three major sub-batteries, that encompass 319 tests
and which are specific to PRNGs. They are, namely, the
SmallCrush, Crush, and BigCrush batteries of tests. Big Crush
is the most difficult sub-battery in TestU01. This latter uses
approximately 238 pseudorandom numbers and applies 160
statistical tests (it computes 160 p-values, that must belong
to [0.001,0.999] in order to pass the considered test).

All the aforementioned linear PRNGs have been imple-
mented on FPGA using Zybo board and Xilinx Vivado tools.
The underlying design methodology relies on the use of two
high levels of implementation, namely the traditional Register-
Transfer Level (RTL) flow and the High-Level Synthesis
(HLS [49]). After applying our experiments, we have obtained
that almost all PRNGs pass NIST test but only PCG32,
MRG32, and XOR64∗ generators can pass the Big-Crush of
TestU01, the most stringent part of this battery, which is
coherent with the literature. Obtained test results have shown
that a particular and common test called linearity complexity
is very frequently failed. This behavior is explained in the next
section.

The first next subsections focus on 4 criteria, namely: the
linear complexity, the jump complexity [50], the arithmetic
operators, and the throughput. Note that the linear and jump
complexities are only studied in the linear PRNG case as
(1) chaotic PRNGs are not linear, and (2) all these chaotic
generators can successfully pass the NIST, which embeds
these two complexity tests. Concerning the latter, we further
remark that they are currently studied in the literature only
for hardware optimization: the novelty of chaotic PRNGs
in Table II lies solely in this optimization, and no deeper
theoretical study are performed on them. Additionally, they
should need to be combined with physical sources to pass
the TestU01 battery, which stricto sensu transform them in
TRNGs. And such TRNGs become too slow to be evaluated
with a so stringent battery [11].

B. Linear Complexity

For a given k-length finite binary sequence in Fk
2 issued

from a RNG, its linear complexity Lk is defined as the degree
of the shortest characteristic polynomial of the LFSR that
can generate the same sequence. Intuitively, non linearity is
observed when this degree Lk is small. Fig. 1 presents the
linear complexity profiles of some PRNGs when applying the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 4

Berlekamp-Massey algorithm. PCG32 and XOR64∗, which
can pass the whole TestU01, have the linear complexity
property. Conversely, other PRNGs like XOR64, WELL512,
TT800, and LUT-SR, fail to exhibit such a property.

At this point, we can wonder whether there is any relation
between linear complexity and other parameters like the space
(resources) used in FPGA. To answer this question, TestU01
computes another parameter named Jump Computation.

Fig. 1: Linear Complexity profiles Lk(xi) using Berlekamp-
Massey algorithm

C. Jump Complexity

TestU01 battery additionally calculates the number of jumps
that occur in the linear complexity for each local subsequence.
This number of jumps represents how many bits must be
added to the sequence to increase its linear complexity. It has
been proven [50] that ideal PRNGs have to perform jumps
symmetric to the k/2-line as in a perfect linear complexity,
with maximum jump heights of k/4, and close to b(k+1)/2c
for each k-length sequence.

Lets us first illustrate some of these properties using Fig. 2.
We compute the linear complexity profiles of the first 32 bits
(k = 32) of generators LFSR258, XOR64∗, and PCG32 using
the Berlekamp-Massey algorithm, where the complexity level
Lk(xi) is expressed as follow: L1(xi),L2(xi), . . . ,Lk−1(xi), with
L1(xi) = L(x1) and L2(xi) = L(x1,x2) . . . Each of these PRNGs
performs a jumps symmetric to the k/2-line as illustrated
in Fig. 2. Let us however explain some differences within
these jumps. We first notice that the Lk(x0,x1,x2,x3) is stable
for LFSR258 and XOR64∗. When we add x4 to compute
Lk(x0,x1,x2,x3,x4), LFSR258 jumps from 1 to 4 whereas
XOR64∗ is still stable. PCG32, for its part, is stable for less
bits and jump by 2 levels in the same interval, where the
first jump happens on the x7 and with more than 8 levels for
XOR64∗.

Let us consider a stream of random bits xi = x0,x1, . . . ,xn,
in which the perfect jump is the difference between two
successive linear complexity level Lk applied to xi and that
satisfy 0 < Lk(xi)−Lk(xi−1)≤ 2 (e.g., PCG32 has Lk(x0,x1)−
Lk(x0)= (1−1)= 0 and Lk(x0,x1,x2)−Lk(x0,x1)= (3−1)= 2
. . .).

0 5 10 15 20 25 30

0

5

10

15

Firt 32 bits under Tests Xi

L
in

ea
r

co
m

pl
ex

ity
le

ve
l

L k
(x

i)

XOR64*
PCG32

LFSR258

Fig. 2: Jump Computation for 32 bits of random: number of
jump < 2 lead to a perfect b(k+1)/2c) for k-sequences

Regarding FPGAs, these jumps determine how much re-
sources are required in order to have a perfect complexity
profile. For illustration purposes, some of these PRNG jumps
have been computed in Fig. 3, by starting from the linear
complexity profile Lk illustrated in Fig. 2. More precisely,
we computed the jump complexity of 200 linear complexity
degrees Lk(x) (k = 200 bits = 6 words), on the one hand for
XOR64∗ and PCG32 that can pass TestU01, and on the other
hand for XOR32, TT800, and LUT-SR, who failed this battery.

Let us take XOR64∗ and LUT-SR as demonstrators of each
category from Fig. 3. The aforementioned 200 complexity
linear levels illustrate that XOR64∗ needs a minimum of 52-
bits jump to perform a symmetric k/2-line (maximum jump
heights of k/4). However, only 38 jumps are perfect (< 2),
where Lk(x) can possibly be repeated between jumps. In
addition, we consider stable situations where no jump has
occurred (streams of repeated L(x) = L(x−1)), where unstable
jump is repeated only once. Indeed, we conclude that useful
bits are the minimum unique bits, which does not present any
form of stability in complexity profile Lk.

We can see that LUT-ST is 4 perfect jumps lower in total
than XOR64∗. The latter will be propagated for a long period
of time, which conducts to a less useful bit contribution for
passing linear tests. It is more obvious for XOR32, which
confirms the need to another process to face this issue. Indeed,
PRNGs that fail to pass TestU01 have the lowest number of
useful bits and of perfect jumps, when compared to successful
ones. Note that XOR64∗ uses a multiplication as a kind of
output scrambling. PCG32 has the same perspective in its
multiplication use, so why it has less useful bits at the end
while passing linearity test? To answer this question, we can
focus on Fig. 1, which illustrates the existence of stability in
linear complexity starting from shorter periods of time.

Some periods can be long, as in the case of PCG32 for
instance. When the PRNGs are running, the states space used
are constant for any operation. Such property is obvious in 32-
bit LCG generators like the PCG32. The latter deploys 32-bit
multiplications (64-bits state), but a 36-bits state is required
to pass TestU01 with a 32-bit output. This fact means a loss
of information that can create a new jump in complexity. This
is why PCG32 applies a permutation function to scramble the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 5

weak least significant bits (LSBs) after the multiplication.

Ju
mp<

=
2

Ju
mp>

2

Uns
tab

le
Stab

le

Tota
l-J

um
p

Usef
ul-

Bits
0

20

40

60

30

15
9

37

45

18

34

15
12

38

49

24

44

11
16

39

55

3231

14
11

34

45

22

38

14 15

36

52

30

L
in

ea
r

co
m

pl
ex

ity
le

ve
l

L k
(x

i) XOR32

LUT-FF

TT800

PCG32

XOR64*

Fig. 3: Jump computation before TestU01 of 200 linear com-
plexity Level: a) Perfect Jump = [0 < L(k)− L(k− 1) ≤ 2],
b) other Jump =[L(k)− L(k− 1) > 2], c) Unstable Jump=
[L(k)−L(k− 1) 6= L(k)], d) stable jump= [L(k)−L(k− 1) =
L(k−1)], e) Useful bits=[L(k)−L(k−1) = 1]

Let us now consider the XOR64∗ generators, which also
use 64-bit multiplications. Their linear complexity is close to
the perfect one. The key difference here is the permutation
function used for multiplication. In LCG family, this is the
main function applied to perform an uniform scrambling
operation, whereas in XOR64∗, they are deployed to inject
bias in randomness.

On the other hand, we can notice the uniform distribution
of Mersenne Twister, with an unique maximum perfect jump.
But it has the largest stable jumps, that will finally be stable
once and for all. This indicates the limitation of tempering
unit (similar to XOR32 or LFSR) in terms of performance of
transition unit.

At this point, the issue that may be worth mentioning is
that most of the chaotic PRNGs reviewed in this paper are not
answering the targeted question. That is, how can we inject
disorder in a deterministic digital system, in order to respect
on such finite state machines the mathematical definitions of
chaos provided by Devaney [8] and Li-Yorke [9]? Indeed,
passing the NIST, which is the most usual way to evaluate
a PRNG, can be put into default: some generators of pour
quality can successfully pass these tests.

To solve this issue, we will see in Section VI-B the
usefulness of chaotic iterations as a post-processing replacing
this tempering unit (see CIPRNG-MCMD).

D. Experimental Results
The aforementioned PRNGs have been implemented in our

Zynq platform (Fig. 4). Both categories (linear and chaotic
PRNGs) are analyzed in terms of hardware resources and
throughput/latency. The analysis is based on Xilinx Vivado
v16.3 tools with the default configuration and without any
optimization. Additionally, the FPGA target was Zybo Zynq-
7000 ARM/FPGA SoC Trainer Board from digilent (125Mhz).

Hardware resources: The size and performance of the
PRNG depend on both the word length (addressing the LUT
increases the table exponentially) and their binary representa-
tions, regarding dynamic range (DR) and precision (DRfxpt =

rn − 1 where r is in binary format (Radix-2) and n is the
number of digits in fixed-point precision). The aforementioned
PRNGs in this section have a fixed DR and internal space of
32 or 64 bits.

Reviewing Table I, LUT-SR, Taus88, and XOR64 require
the lowest amount of area resource. Conversely, combined
PRNGs like KISS124 and MRG32, LCG, and TGFSR families
have large area consumption due to their implementation of
arithmetic multiplication with complex logic as DSP. let us
take for instance the KISS127 of DR = 264 as an example,
which is implemented with DA (KISS-DA) or DSP blocks
(KISS-DSP). It is clear from Table I that disabling DSP
will induce a huge area extension and a drop in frequency
while presenting the same latency (even though DSP blocks
can be a convenient alternative and an additionnal resource
for ASIC applications). To sum up, chaotic PRNGs have
approximately the same use of hardware resources than linear
PRNGs (logistic map implementations have proven to be the
lowest among them).

Throughput and Latency: Let us recall two proprieties
based on the frequency, which are namely the latency and the
throughput. Latency is the number of iterations required to
compute a new output from a given input. The throughput,
for its part, is the number of iterations needed to produce new
output or to consume a new input. Note that the throughput
delay can be equal to the latency, which lead us to use
the throughput/latency value to estimate the real throughput
of the PRNG. In the other hand, the HLS flow schedules
automatically cycle-by-cycle the algorithms as a finite state
machine. Therefore, the synthesis tool adds one cycle to
process the input and a second one to generate the final output.

Latency and throughput in the RTL and HLS flows can be
formalized as follows.

Design Latency : [Delay from Input to Output]

Out putLatency : [Delay for each Output]

T hroughput :
[

Output Size
Output Latency

] (5)

On the one hand, for 32 bit linear generators (resp. for 64
bits ones), Taus88 and LUT-SR with LFSR113 (resp. XOR64
and LFSR258) have the largest throughput performance, while
for chaotic PRNGs, Bernoulli [43] and logistic map using
DSP [42] with CPRNG based timing reseeding [45] have the
larger throughput. On the other hand, two implementations
of Mersenne Twister generators have been designed with
and without the seed, respectively denoted as MT WS and
MT NS. We have remarked that, when considering the seed
as a function, frequency is reduced to less than 200MHz
compared to the case where it is not present. Therefore, to
increase performances, most PRNGs do not include the seed
internally (and a software is used).

To put it in a nutshell, if we take the ratio of area/throughput
as main criterion, we are balancing between high performance
as XOR64, LFSR113 for linear PRNG (resp., Bernoulli [43]
and logistic map [42] for chaotic PRNG) and the ability
to pass statistical tests (PCG32 and XOR64∗), which is not
surprising. Another result is that combining PRNGs leads to

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 6

a performance decrease in hardware level. Such combinations
do not take into account the Chaotic Iterations post-processing,
which appears as promising [21]. Indeed, chaotic PRNGs
outperform the linear ones in terms of throughput performance,
but they are not able to pass the TestU01 statistical battery
(see Table II). This lack is the reason to be of this contri-
bution: we propose a hardware chaos-based post-processing
module to improve the randomness of linear PRNGs. By doing
so, and conversely to the other chaotic PRNG, these post-
processed generators behave chaotically while succeeding in
passing the TestU01 test. Effects of such a post-processing on
performances at hardware level are detailed in the following
sections.

IV. CHAOTIC ITERATIONS: THE THEORY

The generators (or, more exactly, the post-treatment over
existing generators) we propose in this document are theo-
retically formalized by the so-called chaotic iterations (CIs),
and their performances are directly related to the topological
properties of these CIs. The latter are investigated in this
section, while the relations with our generators are detailed
in the next one.

Let f be a map from BN to itself, and let us introduce the
following functions:
• σ : P (J1,NK)N −→ P (J1,NK)N ,(St)t∈N 7→ (St+1)t∈N.
• the initial function, defined by i : P (J1,NK)N −→

P (J1,NK) ,(St)t∈N 7→ S0

• and Ff : P (J1;NK)×{0,1}N −→ {0,1}N,

(P,E) 7−→
(

E j.δ(j,P)+ f (E) j.δ(j,P)
)

j∈J1;NK

where B= {0,1}, P (X) is the set of subsets of X , XN is the
set of sequences whose elements belong to X , and δ(j,P) = 1
if j ∈ P, else δ(j,P) = 0. For N ∈ N∗, let X = P

(
J1;NKN

)
×

{0,1}N, with the distance between two points X = (S,E),Y =
(Š, Ě) as follows:

d(X ,Y) = de(E, Ě)+ds(S, Š), (6)

where
de(E, Ě) =

N

∑
k=1

δ(Ek, Ěk) is the Hamming distance,

ds(S, Š) =
9
N

∞

∑
k=1

|Sk∆Sk|
10k .

(7)
where |X | is the cardinality of a set X and A∆B is for the
symmetric difference, defined for sets A, B as A∆B = (A \
B)∪ (B\A).

Consider G f (S,E) = (σ(S),Ff (i(S),E)) . Chaotic iterations
are defined by the following discrete dynamical system [51]:{

X0 = (S,x0) ∈ X ,

∀t ∈N,X t+1 = G f (X t).
(8)

The asynchronous iteration graph associated with f is the
directed graph Γ(f) defined by: the set of vertices is BN; for
all x∈BN and i⊂ J1;NK, the graph Γ(f) contains an arc from
x to Ff (i,x) labeled by subset i. We have previously established
that [52], [53]:

Proposition 1 If Γ(f) is strongly connected, then G f is
strongly transitive: for any couple (x,y) ∈ X and for all
neighborhood V of x, there is z ∈ V and n ∈ N such that
f n(z) = y.

Thus it is chaotic according to Devaney [8], i.e., it is
1) Transitive: For each couple of open sets A,B⊂ X , there

exists k ∈ N such that f (k)(A)∩B 6=∅.
2) Regular: Periodic points are dense in X .
3) Sensible to the initial conditions: ∃ε > 0, ∀x ∈

X , ∃y ∈ X , ∃n > 0 ∈ N, such that d(x,y) <
ε and d(f (n)(x), f (n)(y))> ε.

We start to further investigate the disordered behavior of
chaotic iterations, on which our generator is based, with the
following result:

Proposition 2 Let us consider f such that the graph Γ(f) is
strongly connected. Then, for all open ball B of X , we can
find an iteration n ∈ N such that Gn

f (B) = X .

PROOF Given x ∈ X and r > 0, let us recall that the open
ball B(x,r) is the set {y ∈ X | d(x,y) < r}. For these x and
r, we intend to show that ∃N0 ∈ N such that GN0

f (B(x,r)) =
X . Without limitation, we can assume that r < 1, because if
r′ < min(1,r) satisfies ∃N0 ∈N s.t. GN0

f (B(x,r′)) = X , then as
B(x,r′)⊂B(x,r), we can a fortiori deduce that GN0

f (B(x,r))=
X .

Consider the point y(0) = (({1},{1},{1}, . . .),(0, . . . ,0)) of
X . As the iteration graph is strongly connected, then G f is
strongly transitive. So there is a point x(0) in the neighborhood
B(x,r) of x and an integer n(0) such that Gn(0)

f (x(0))= y(0). This
point x(0) is necessarily of the following form:
• Being inside B(x,r) with r < 1, its second coordinate

(the Boolean vector) must be the same than x, due to the
Hamming distance in d. In other words, x(0)2 = x2.

• Let n0 =−blog10(r)c. Having regard to the definition of
d and as x(0) ∈ B(x,r), we necessarily have an equality
between the n0 first terms of the sequence x1 and the n0

first terms of the sequence x(0)1 .
• As Gn(0)

f

(
x(0)

)
= y(0), it is a necessity that after n(0)

shifts of the sequence of x(0), we obtain the sequence
({1},{1},{1}, . . .) of y(0).

• Finally, terms of the sequence of x(0) between positions
n0 +1 and n(0) are the ones required for f to transform
the Boolean vector of x(0) to the one of y(0) (this is the
path to follow in Γ f , to reach y(0)2 starting from x(0)2).

Let us now consider a point Y (0) of the form:
• its Boolean vector Y (0)

2 is equal to y(0)2 ;
• its sequence Y (0)

1 is of any kind.
Then the point X (0) defined by:

1) X (0)
2 = x(0)2 : same Boolean vector than x(0);

2) ∀k ∈ J0,n0K,X (0)
1,k = x(0)1,k : the n0 + 1 first terms of subset

sequences of X (0) and x(0) are equal;
3) ∀k ∈ Jn0 + 1,n(0)K,X (0)

1,k = x(0)1,k : idem for the n(0) − n0
following ones;

4) ∀k > n(0),X (0)
1,k = Y (0)

1,k−n(0)
: the last terms in sequence of

X (0) are the whole terms of sequence of Y (0);

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 7

TABLE I: FPGA implementation of linear PRNG in term of: Area, Speed, and Statistical tests

Linear PRNG
Familly LFSR xorshift TGFRS LCG
PRNG LFSR113 Taus88 LFSR258 LUT-SR XOR128 XOR64 XOR128+ XOR64∗ MT WSb MT NSc Well512 TT800 KISS-DA KISS-DSP MRGa PCG32a

A
R

E
A

Output Rang (n) 32 32 64 32 32 64 64 64 32 32 32 32 64 64 64 32
LUT 79 68 171 64 36 55 131 298 523 184 94 184 271 2038 1055 345
FF 162 130 386 64 194 130 194 390 120 179 108 483 746 1277 1359 418
RAM 0 0 0 0 0 0 0 10 2 2 0 6 0 0 0 10
DSP 0 0 0 0 0 0 0 4 3 0 2 2 7 0 8 0
Total Area (LUT+FF)*8 2072 1584 4456 576 1840 1480 2600 5504 5144 3272 1616 5336 8136 26520 19312 6104

SP
E

E
D

Frequences (Mhz) 443,26 448,63 396,98 609 429,36 457,45 250,81 231 118 462 213 169 154 112 175 179
Design Latency 2 2 2 2 2 2 2 21 3 2 5 4 9 9 14 20
Output Latency 1 1 1 1 1 1 1 21 1 1 5 4 9 9 14 20
Throughput/Latency (Gbps) 14,18 14,35 12,70 19.5 13,73 14,63 8,02 0.7 3.8 13.2 1.3 1.3 1.1 0.8 0.8 0,286

T
E

ST
S NIST (16 Tests) PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS NO PASS PASS PASS PASS

TestU01 (319 Tests) NO NO NO NO NO NO NO PASS NO NO NO NO NO NO PASS PASS
a HLS Implementation, b MT WS: Mersenne Twister with Seed, c MT NS: Mersenne Twister without Seed.

TABLE II: FPGA implementation of chaotic PRNG in term of: Area, Speed, and Statistical tests

Chaotic PRNG
[41] [38] [42] [45] [46] [34] [43]

PRNG Logistic Logistic-Hénon-FNDRd Logistic Timing Reseeding Timing Reseeding LRZf - Chen - ELWd Bc- CHf - Tg

A
R

E
A

Output Rang (n) 32 32 32 32 32 32 32
LUT 66 48-539-208 313 *** e *** e 287-284-265 *** e

FF 32 32-32-96 842 *** e *** e 96-97-97 *** e

DSP 4 *** e 16 *** e *** e 8-0-0 0
Total Area (LUT+FF)*8 784 640-4568-4568 9240 *** e 11903 3064-13968 *** e

SP
E

E
D

Frequency (Mhz) 76.1 151.1-58.2-183 233 200 200 53.53-122-126.7 265.9-118.7-111.8
Design Latency *** e *** e 8 to 16 *** e *** e *** e *** e

Output Latency 1 1 1 1 1 1 1
Throughput/Latency (Gbps) 2.435 4.835-1.862-5.856 7.5 6.4 6.4 1.71-3.9-4.06 8.5-3.798-3.577

T
E

ST
S NIST (16 Tests) PASS PASS PASS PASS PASS NO PASS

TestU01 (312 Tests) NO NO NO NO NO NO NO
a ***: No Information, b FNDR: Frequency Dependent Negative Resistors. c LRZ: Lörenz. d EWL: Elwakil. e B: Bernoulli, f CH: Chebychev, g T: Tent.

is such that:

• X (0) ∈ B(x,r), due to the two first items above;
• the Boolean vector of Gn(0)

f

(
X (0)

)
is the one of Y (0), due

to the third item;
• the sequence of Gn(0)

f

(
X (0)

)
, which is the one of X (0)

after n(0) shifts, is too the sequence of Y (0), due to the
forth item.

In other words, for each Y (0) in X that has (0,0, . . . ,0) as
Boolean vector, we have found a point X (0) in B(x,r) and
n(0) ∈ N such that Gn(0)

f

(
X (0)

)
= Y (0).

We now proceed similarly for points having (0, . . . ,0,1)
as Boolean vector. Consider now the point y(1) =
(({1},{1},{1}, . . .),(0, . . . ,0,1)) ∈ X . For the same reasons
than previously, there exists a point x(1) of B(x,r) and an
integer n(1) such that Gn(1)

f (x(1)) = y(1). Let us now consider a
point Y (1) of the form:

• its Boolean vector Y (1)
2 is equal to y(1)2 ;

• its sequence Y (1)
1 is of any kind.

Then the point X (1) defined by:

1) X (1)
2 = x(1)2 ;

2) ∀k ∈ J0,n1K,X (1)
1,k = x(1)1,k ;

3) ∀k ∈ Jn1 +1,n(1)K,X (1)
1,k = x(1)1,k ;

4) ∀k > n(1),X (1)
1,k = Y (1)

1,k−n(1)
;

is such that X (1) ∈ B(x,r) and Gn(1)
f

(
X (1)

)
= Y (1): any point

of X having (0, . . . ,0,1) as Boolean vector can be reached
from B(x,r) with n(1) iterations of G f .

This process can be extended accordingly until the point
y(2

N−1) = (({1},{1},{1}, . . .),(1, . . . ,1,1)), which leads to the
definition of n(2

N−1), of x(2
N−1), of Y (2N−1), and finally of

X (2N−1).
At this stage, we can claim that, for all y of X , it is possible

to find x′ ∈B(x,r) and a certain integer N ∈ {n(0), . . . ,n(2N−1)}
such that GN

f (x
′)= y. The last issue to solve is that the iteration

number N depends on the Boolean vector y2, which should not
be the case.

Let us consider N0 = max({n(k),k = 0, ..,2N− 1}). In each
sequence of subsets X (k)

1 ,k ∈ J0,2N − 1K, it is possible to
incorporate N0−k times the empty set ∅ between terms X (k)

1,n(k)

and X (k)
1,N0

, in such a way that:

Y (k) = Gn(k)
f

(
X (k)

)
= Gn(k)+1

f

(
X (k)

)
= . . .= GN0

f

(
X (k)

)
,

which is equivalent to be on a treadmill once reaching the
target Y (k) and until having iterated N0 times. Thanks to that,
for all y ∈ X , it is possible to find x′ ∈ B(x,r) such that
GN0

f (x′) = y, which is the expected result.

Therefore, however small the starting open ball, we finish
to reach the whole X space by iterating G f . Using this result,
we can deduce the following proposition related to chaos.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 8

Proposition 3 General chaotic iterations G f are topologi-
cally mixing: for all couple of nonempty open sets U and
V , there is n0 ∈ N such that ∀n > n0, Gn

f (U)∩V 6=∅.

PROOF Let us consider U and V , two disjoint nonempty open
sets of X . U being a nonempty open set, we can find x ∈ X
and r > 0 such that B(x,r)⊂U . Due to Proposition 2, ∃n0 s.t.
Gn0

f (B(x,r)) = X . As B(x,r)⊂U , we have too Gn0
f (U) = X ,

and so Gn0
f (U)∩V 6= ∅. Let us consider Y ∈ Gn0

f (U)∩V . It
exists X (0) ∈U such that Gn0

f (X
(0))=Y . The point X (1) defined

by:
• X (1)

2 = X (0)
2 ;

• ∀k 6 n0,X (1)
1,k = X (0)

1,k : the two sequences start by the same
terms;

• X (1)
1,n0+1 =∅: we insert an empty set at position n0 +1 in

sequence X (1)
1 ;

• ∀k > n0,X (1)
1,k = X (0)

1,k−1;

is such that Gn0+1
f (X (1)) = Y , and so Gn0+1

f (U) ∩V 6= ∅.
Similarly, by incorporating l empty sets between positions
n0 + 1 and n0 + l inside the sequence of X (0), we are able
to define a point X (l), which is such that Gn0+l

f (X (l)) = Y ,
proving so Gn0+l

f (U)∩V 6=∅. This inequality being valid for
all l > 0, we can deduce the topological mixing of G f .

Proposition 4 When considering the vectorial negation for f ,
the general chaotic iterations satisfy the Knudsen’s definition
of chaos [54]: they are sensible to the initial condition and
they have a dense orbit.

PROOF The sensibility to the initial condition of G f has
already been stated in [52]. We are then left to construct a
point x ∈ X such that the set {Gn

f (x) | n ∈ B} is dense in X :
iterations of Gn

f (x) must be as close as possible to any point
y ∈ X .

Let us denote by s0,s1, . . . ,s2N−1 the list of each subset of
J1,NK: s0 = ∅, s1 = {N}, s2 = {N− 1}, s3 = {N− 1,N}, ...,
s2N−1 = {1,2, ...,N}. Let us now consider a point y ∈ X . Its
Boolean vector y2 can be associated to a given sk, namely
the subset of J1,NK that contains the coordinates of 1’s in y2.
The first term y1,0 of sequence y1, for its part, is a given sk′ ,
while the second term y1,1 is too a given sk′′ , with k,k′,k′′ ∈
J0,2N−1K.

Let us now remark that, when iterating G f on the point
((sk,sk′ ,sk′ ,sk, ...),(0,0, . . . ,0)), with f the vectorial negation:
• We start on the Boolean vector (0,0, . . . ,0);
• As sk indicates the 1’s in vector y and we use the vectorial

negation, we thus have, after one iteration of G f :
– the Boolean vector (0,0, . . . ,0) is changed in y2;
– the sequence is shifted of one position, so it now starts

by (sk′ ,sk′ ,sk, ...).
Having the same Boolean vector and the same first term
in the sequence, we are thus at a distance lower than 10−1

to y after one iterate.
• Iterating G f another time switches the binary digits in

positions sk′ in the Boolean vector, while shifting the
sequence so that it becomes (sk′ ,sk, ...).

• Iterating twice G f will operate a second time the negation
on Boolean digits at position sk′ and sk,

and so the Boolean state is (0,0, . . . ,0) again after these
4 iterations. To sum up, iterating four times starting from
((sk,sk′ ,sk′ ,sk, ...),(0,0, . . . ,0)) will first move the system at a
distance 10−1 to y, and then come back to (0,0, . . . ,0) after
shifting 4 times the sequence.

Let us now consider the point:

((s0,s0,s0,s0, s0,s1,s1,s0, . . . ,
s0,s2N−1 ,s2N−1 ,s0, s1,s0,s0,s1, s1,s1,s1,s1, . . . ,
s1,s2N−1 ,s2N−1 ,s1, . . . ,s2N−1 ,s2N−1 ,s2N−1 ,s2N−1 , . . .),
(0,0, . . . ,0))

By iterating G f on it, we will be at one time at 10−1 of any
point of X , while recovering the null Boolean vector at each
4 iterates. Continuing the process with patterns of length 6,
8, 10, etc., will define a unique point x whose iterates are as
close as possible to any point of X , leading to a dense orbit.

V. CHAOTIC ITERATIONS AS PRNGS POST-PROCESSING

A. CIPRNG Multi-Cycle

As described in the previous section, the general chaotic
iterations receives an integer sequence as input (and the first
internal state, a binary vector), and it produces a sequence
of binary vectors. In other words, chaotic iterations translate
a sequence in another sequence. This is a way to obtain a
new pseudorandom number generator from a former one. Both
the kind of inputted generator and the iteration function f
are parameters of this post-treatment, while the first vector
x0 and the first term S0 act as seeds. As the latter are the
initial condition of the discrete dynamical system of Eq. (8), to
choose f such that this dynamical system behaves chaotically
seems to be interesting in a pseudorandom generation context.
In other words, we hope that chaos bring by the iteration
function will lead to a more disordered output (xt)t∈N than
the input (St)t∈N. Even if there is, stricto sensu, no theoretical
relation between randomness and chaos (similarly, there is no
relation between security and chaos), numerous simulations
have illustrated [53] that, due to chaos, the output sequence is
in general more random than the input one, according to the
number of statistical tests they can pass.

Such chaotic iterations based post-treatment over existing
PRNGs can be designed as follows. As we need to generate
a sequence (St)t∈N of subsets of J1,NK, we can consider two
input generators, both producing numbers in J1,NK. The aim
of the first generator is to provide, at each iterate t, the size of
the subset St , while the second generator produces the content
of St . This way to post-operate over the input generators is
what we called CIPRNG Multi-Cycles.

The basic design procedure of this latter is summarized in
Algorithm 1. The internal state is x, the output state is r. The
internal values a and b are computed by the two input PRNGs.
Lastly, the value g1(a) is an integer defined as in Eq. (9). To
do so, a sequence ds (= (d1,d2, . . . ,dN) ∈ {0,1}N) called a
irregular decimation is provided for the second generator b,
which insures that we do not have two successive permutations
of the same bit within a given iteration. This latter will update
the i-th bit of b at iteration mt , and by using the strategy, if and
only if dbi 6= 1, otherwise it is discarded. For instance, let us

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 9

consider the input x = {x1,x2,x3,x4}, the number of iterations
mt = {4,3,4,1}, and b = {2,3,1,1,4,4,3,1,2,3,2,2,4,4,1,2}.
Due to the first value of mt , we have to iterate 4 times
b, and then 3 and 4 times. We then have to operate the
decimation on b so that we will not modify twice a same
component in a given iteration: this leads to the strategy
S = {{2,3,1,4}{4,3,1}{2,3,2,4} . . .} extracted from b. As
can be seen, the duplicated entry 2,2,4,4 has been decimated
to 2,4, while it is not the case for the first 4,4, as according to
m0 this duplication falls between two iterates. This constraint
explains the general form of mt provided in Eq. (9).

mt = g(yt) =

0 if 0 6 yt <C0
32,

1 if C0
32 6 yt < ∑

1
i=0 Ci

32,

2 if ∑
1
i=0 Ci

32 6 yt < ∑
2
i=0 Ci

32,
...

...

N if ∑
N−1
i=0 Ci

32 6 yt < 1.

(9)

Algorithm 1 CIPRNG-MC proposal. At each iteration,
only the St -th component of state xt is updated, as follows:
xt+1

i = xt
i if i 6= St , else xt+1

i = xt
i .

Input: the internal state x (32 bits) Output: a state r of 32 bits
1: procedure CIPRNG-MC(x,r)
2: for i = 0,. . . ,N do
3: di← 0
4: a← PRNG1()
5: m← g(a)
6: while i = 0, . . . ,m do
7: b← PRNG2() mod N
8: S← b
9: if dS = 0 then

10: xS← xS
11: dS← 1
12: else
13: m← m+1
14: return (r← x)

Such CIPRNG-MC, which is a sub-category of our CIPRNG
post-treatment, can be summarized as follows [52]. x0 is
the initial Boolean vector of size N, and (St)t∈N is the
sequence resulted from the irregular decimation of (m,b), as
described previously. We suppose that this latter produces
numbers belonging into J0,2N − 1K. Operating G f with the
vectorial negation on such sequences can be directly rewritten
as follows [52]:

xt+1 = xt ⊗St , (10)

where St is expressed in the base-2 numeral system as a
binary vector of size N, while ⊗ is the bitwise XOR operation
over binary vectors. In other words, CIPRNG-MC is equal
to the chaotic iterations with the vectorial negation and the
decimation S of the two inputted generators m and b. Note
that, most of the time, we need to iterate the second generator
more than the cardinality of St , as we can obtain twice the
same number. This weakness in the decimation process is at
the origin of our second proposal, namely the CIPRNG-XOR.

B. CIPRNG-XOR

Conversely to CIPRNG Multi-Cycles, this CIPRNG-XOR
only needs one inputted generator. It operates on it using the
vectorial negation. We have established in [55] that G f satisfies
various properties of chaos with such iteration function, one of
them being the notion of chaos according to Devaney, which
is studied in this article. Another interesting property proven
in the aforementioned article is that, if the inputted generator
is cryptographically secure, then the resulted CIPRNG-XOR
generator, obtained after post-processing, still present this
property. Once again, such CIPRNG-XOR is a sub-category
of our CIPRNG post-treatment. If we consider again that
x0 is the initial Boolean vector of size N, and (St)t∈N is
the sequence generated by the inputted generator (producing
numbers belonging into J0,2N− 1K), then operating G f with
the vectorial negation on such sequences can obviously be
rewritten as Eq. (10) [52]. We found again a direct equivalence
between chaotic iterations using the vectorial negation and
this CIPRNG-XOR. The main requirement is to prevent the
machine from working in silos, by taking at each iterate a
new input from the outside world (an entropy source like a
physical white noise or some digits in the CPU temperature,
can be considered for instance). By doing so, the finite state
machine does not necessarily enter into a loop: a same state
can be visited twice, but with two completely different future
evolution, depending on the inputs the machine receives.

Algorithm 2 presents details of this approach where 3
PRNGs are embedded to compute the strategy. In the updated
version we implemented, two inputted PRNGs of 64 bits
denoted by xi and yi are used for defining the chaotic strategy
S. Furthermore, we added a third inputted set generator zi
of 32 bits for more complexity. The zi generator will pick
randomly a subset of the inputs at each iteration as described
in Equation 10, in which only the log(log(n)) least significant
bits (in this case, 3 bits) are used.

Algorithm 2 CIPRNG-XOR proposal: it randomly picks
a subset of the inputs at each iteration, whose index is
contained in the first term of the strategy
Input: the internal state x (32 bits) Output: a state r of 32 bits

1: procedure CIPRNG-MC(x,r)
2: ui← PRNG1,
3: yi← PRNG2,
4: zi← PRNG3
5: if (zi & 1) 6= 0 then
6: x← x⊗ (ui & 0x0FFFFFFFF)

7: if (zi & 2) 6= 0 then
8: x← x⊗ (ui� 32)
9: if (zi & 4) 6= 0 then

10: x← x⊗ (yi & 0x0FFFFFFFF)

11: r← x⊗ (yi� 32)
12: return r

VI. FPGA IMPLEMENTATION BASED ON ZYNQ PLATFORM

A. General Presentation

Xilinx Zynq-7000 Extensible Processing Platform
(EPP) [15] is a silicon system on chip (SoC) for FPGAs,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 10

which has been proposed by Xilinx. This SoC deploys the
latest technologies of ARM processors with a large set
of peripherals (DDR, PCI, etc.). This latter is defined as
Peripheral System (PS), which is a sub-system with ARM.
The full FPGA is the Programmable Logic (PL) that is
connected with PS through an AXI bus interface.

Fig. 4 shows the detailed hardware architecture of our
system used to integrate and test CIPRNGs. The AXI-PRNG
interconnect can handle many PRNGs/CIPRNGs at the same
time and it activates the one that is currently tested. This
interconnect component is re-configurable using the firmware,
which deploys two GPIO IPs for this task. GPIO-0 is used to
select one PRNG at a time, and GPIO-1 is used for the data
burst size of the PRNG. For instance, all PRNGs implemented
in HLS or RTL, including the AXI-PRNG interconnect, are
AXI Stream Interface, while the CPU is Memory-Mapped
Interface. Additionally to CPU, the AXI-DMA engines, which
oversee the data transaction between the slave and master IPs,
deploy the receiver channel Slave to Memory Map (S2MM)
connected to a slave port, and the transmitter channel Memory-
Map to Slave (MM2S) connected with the master. Final
outputs are displayed in an external terminal via the UART
protocol.

We have used the Zybo board (XC7Z010−1CLG400C) as a
prototype kit for experiments such that the clock is configured
at 125Mhz. The total space of the logic part (PL) on Zybo
board is: 2,982 LUT (19%), 4,071 FF (11%), 7 DSPs, and 3
memories respectively.

Fig. 4: PRNG platform based on Zynq FPGA

B. Global Comparison

As stated previously, the objective is to determine the
performance of CIPRNG implementation in terms of area
(space) and throughput (speed). The Xilinx tool calculates
all resources used in FPGA as logic gates, LUT, Flip-Flop
(register), additionally to DSP and memory blocks. Despite
the fact that Xilinx calculates the area by counting slices (1
Slice = 4× LUT + 2× FF+interconnection), it uses the same
LUT of 6-inputs for all its technologies (Virtex5, Virtex6,
Virtex7, and Zynq). Hence, for our area comparison, we only
calculated LUT and FF as [(LUT +FF)×8], since DSPs and
RAM memories are hard blocks that can mostly affect time

performances. The brute throughput and the rate throughput
over the latency are calculated as in Equation (5). This second
scalar value is a complementary indicator that provides an
accurate speed information about the generators.

Regarding CIs based post-processing, we tested more than
275 versions of CIPRNG-XOR on our Mésocentre supercom-
puter facilities (170 were able to pass TestU01) and 169
of CIPRNG-MC/MCMD (93 pass the TestU01). Only are
recalled hereafter those who pass the recommended statistical
TestU01 battery. To reach a fair comparison, we disabled
the use of DSP blocs for linear PRNGs. Additionally, hav-
ing the ASIC implementations in mind, we excluded each
CIPRNG combination that deploys BRAM or DSP macros
(MT, TT800), to be independent from the technology.

Results concerning CIPRNG-XOR and CIPRNG-MC (re-
spectively CIPRNG-MCMD) are summarized in Table III and
Table IV (resp. in Table V). In the former table, we specify
which combination has been studied. In examples contained
in these tables, A is for XOR64, B means XOR128+, and
C is LFSR258. Values 1,2,3, and 4 correspond to Taus88,
LFSR113, XOR128, and XOR32 generators respectively.

CIPRNG Multi-Cycle: As recalled previously, this particu-
lar version of chaotic iterations post-treatment is based on two
inputted PRNGs. For FPGA implementation, 7 CIPRNG com-
binations have been selected for their hardware performance.
According to results presented in Table IV, throughput of
CIPRNG Multi-Cycle is larger than those of almost all linear
PRNGs that pass TestU01 (PCG, MRG32, and XOR64*).
Additionally, the consumed area is globally small, even if 2
PRNGs are embedded and without inferring any blocks (DSPs
and BRAM). Regarding statistical evaluation, all the selected
combinations succeeded the TestU01, contrary to all other
chaotic PRNGs based on Hénon [38], Lörenz & Chen [34],
and Tent [43] maps.

CIPRNG-XOR: In this last version, 7 other combinations
of CIPRNG-XOR generators have been selected for their hard-
ware performance, when compared with linear PRNGs (see
Table III). The results illustrate a throughput to generate 32 bits
2.5 times larger for CIPRNG-XOR than for almost all linear
PRNGs that can pass TestU01. Furthermore, if we consider the
Thoughput/Latency ratio, CIPRNG is respectively 12 times, 30
times, and finally 7 times faster than XOR64∗, PCG32, and
combined PNRGs (MRG32 and KISS124). Additionally, when
DSPs blocks are disabled on use, CIPRNG-XOR is 25 times,
44 times, and finally 35 times faster than XOR64∗ (0.34Gbps),
PCG32 (0.2Gbps), and combined MRG32 (0.25Gbps). The
same statement holds for area: CIPRNG-XOR deploys 3
PRNGs, but it is 5 times more efficient than any other
linear PRNGs. Compared to all other aforementioned chaotic
PRNGs, all configurations of CIPRNG-XOR are more efficient
in throughput, area, and ability to face statistical tests. There-
fore, for FPGA application, all combinations can contribute in
hardware performance and statistical tests compared to linear
PRNGs. Finally, compared to CIPRNG-MC, the CIPRNG-
XOR is less compact in area resources, but largely more
efficient in terms of throughput.

CIPRNG Multi-Cycle Multi-Dimension: This is a final
extended version of CIPRNG-MC, in which we apply our

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 11

TABLE III: FPGA Implementation of CIPRNG-XOR post-processing using different linear PRNG as strategy

CIPRNG (32Bits) CIPRNG-XOR [PRNG-64bits, PRNG-64Bits, Strategy-32Bits] Best Chaotic PRNG Best Linear PRNG

PRNG [A,B,2] [A,B,3] [B,B,1] [B,B,2] [B,B,3] [B,C,2] [B,A,2] FNDRd[38] LGe[42] TRf [45] Bc[43] XOR64* MRG PCG32

A
R

E
A

LUT 364 357 237 222 226 502 345 208 313 *** *** 298 1055 345

FF 582 586 454 424 458 838 582 96 842 *** *** 390 1359 418

DSP 0 0 0 0 0 0 0 *** 16 *** 0 10 0 10

RAM 0 0 0 0 0 0 0 *** *** *** *** 4 8 0

Total Area (LUT+FF)*8 7568 7544 5528 5168 5472 10720 7416 4568 9240 11903 *** 5504 19312 6104

SP
E

E
D

Frequency (Mhz) 257.7 250 250.9 251.8 250 266 257.5 183 233 200 265.9 231 175 179

Design Latency 3 3 3 3 3 3 3 *** 8 to 16 *** *** 21 14 20

Output Latency 1 1 1 1 1 1 1 1 1 1 1 21 14 20

Throughput/Latency (Gbps) 8.246 8.0 8.028 8.057 8.0 8.512 8.24 5.86 7.5 6.4 8.5 0.7 0.8 0.286

T
E

ST NIST PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS

TestU01 PASS PASS PASS PASS PASS PASS PASS NO NO NO NO PASS PASS PASS
a *** No Information, b A is for XOR64, c B means XOR128+, d C is LFSR258, e Values 1,2, and 3 correspond to Taus88, LFSR113, XOR128.

f B: Bernoulli, g FNDR: Frequency Dependent Negative Resistors. h LG: Logistic Map. i TR: Timing Reseeding.

TABLE IV: FPGA Implementation of CIPRNG Mult-Cycle post-processing using different linear PRNG as strategy

CIPRNG (32Bits) CIPRNG Mult-Cycle [PRNG-32bits, Strategy-32Bits] Best Chaotic PRNG Best Linear PRNG

PRNG [1-2] [1,3] [2,1] [2-3] [3-1] [4-1] [1,1] [2,2] [3,3] FNDRd[38] LGe[42] TRf [45] Bc[43] XOR64* MRG PCG32

A
R

E
A

LUT 194 201 187 194 175 119 197 211 175 208 313 *** *** 298 1055 345

FF 386 386 388 418 373 252 356 418 403 96 842 *** *** 390 1359 418

DSP 0 0 0 0 0 0 0 0 0 *** 16 *** 0 10 0 10

RAM 0 0 0 0 0 0 0 0 0 *** *** *** *** 4 8 0

Total Area (LUT+FF)*8 4640 4696 4600 4896 4384 2968 4424 5032 4744 4568 9240 11903 *** 5504 19312 6104

SP
E

E
D

Frequency (Mhz) 304 322 327 307 312 326 300 330 288 183 233 200 265.9 231 175 179

Design Latency 3/330 3/330 3/330 3/330 3/330 3/330 3/330 3/330 3/330 *** 8 to 16 *** *** 21 14 20

Output Latency 3/330 3/330 3/330 3/330 3/330 3/330 3/330 3/330 3/330 1 1 1 1 21 14 20

Throughput/Latency (Gbps) 3.2/0.03 3.4/0.03 3.5/0.03 3.3/0.03 3.3/0.03 3.478/0.03 3.196/0.03 3.523/0.03 3.069/0.03 5.86 7.5 6.4 8.5 0.7 0.8 0.286

T
E

ST NIST PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS

TestU01 PASS PASS PASS PASS PASS PASS PASS PASS PASS NO NO NO NO PASS PASS PASS
a *** No Information, b Values 1,2,3, and 4 correspond to Taus88, LFSR113, XOR128, and XOR32. c B: Bernoulli, d FNDR: Frequency Dependent

Negative Resistors. e LG: Logistic Map. f TR: Timing Reseeding.

post-processing (Algorithms 1) on TGFSR family (Mersenne
twister and TT800) and when tempering function is dis-
abled. This latter offers to us a well-uniform and multi-
dimensional distribution. As can be seen in Table V, this
new post-processing provides the same hardware performance
as the original TGFSR PRNGs. Additionally, this new post-
processing improves generators, in such a way that they are
able to pass the statistical TestU01 battery, while providing
improved performances with almost all chaotic PRNGs, as
the ones of [34], [38], [43]. Due to such qualities, these new
types of CIPRNGs can thus contribute to parallel processing
and computation applications, like in Monte-Carlo simulation.

VII. ASIC IMPLEMENTATION

A. General Presentation
Compared to FPGA flow, the ASIC one consists of im-

plementing our design in a specific process technology at
transistor level. In our case, UMC-65nm LL represents the
process technology node, where the Cadence tools v14 are
the main software for the implementation purpose.

Table VI summarizes the ASIC implementation, which uses
two global flows: the synthesis flow using Cadence RTL
Compiler, and physical place and route (P&R) flow in a second
step, with Cadence Encounter Digital Implementation. Both
flows include Switching Activity Interchange information gen-
erated from simulation process for timing and dynamic power

TABLE V: FPGA implementation of Multi-Cycle Multi-
Dimension chaotic iteration post-processing based for MT and
TT800

Mersenne Twister TT800

Strategy Taus88 XOR128 Taus88 LFRS113

LUT 434 447 358 357

FF 676 672 830 853

DSP 3 3 6 6

RAM 2 2 2 2

Area (LUT+FF)*8 8880 8952 9504 9680

Design Latency 3 3 3 3

Output Latency 1 1 1 1

Throughput/Latency 4.8 4.8 5.2 5.3

estimation (1 million samples). In addition, signoff verification
flow is used to close timing and power requirements. The
condition operation mode for the technologies deployed in
each flow is as follows: the synthesis is based on one mode
using the Worst Case library (WC=108◦C and 1.08 Volt), while
Multi Mode Multi Corner is applied for P&R flow including
both worst and best case library (BC=−40◦C and 1.32 Volt).

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 12

TABLE VI: 65nm ASIC Implementation of two chaotic iteration post-processing using different linear PRNG as strategy

CIPRNG (32Bits) CIPRNG Multi Cycle [PRNG-32bits, Strategy-32Bits] CIPRNG-XOR [PRNG-64bits, PRNG-64Bits, Strategy-32Bits]

PRNG [1,2] [1,3] [2,1] [2,3] [3,1] [4,1] [1,1] [2,2] [3,3] [A,B,2] [A,B,3] [B,B,1] [B,C,2] [B,A,2] [B,B,3] [B,B,2]

A
re

a

Standard Cells Area µm2 4718 4739 4791 5267 4437 3229 4372 5136 4831 9070 9165 11240 12579 9104 11867 11168

Gate Elements (GE µm2) 3276 3291 3327 3658 3081 2242 3036 3567 3355 6299 6465 7806 8735 6322 8240 7756

Transistor Area (TE µm2) 13104 13164 13308 14632 12324 8968 12144 14268 13420 25196 25860 31224 34940 25288 32960 31024

Sp
ee

d Frequency (Mhz) 492 427 478 594 473 380 489 427 454 276 340 273 275 281 248 270

Output Latency 3/330 3/330 3/330 3/330 3/330 3/330 3/330 3/330 3/330 1 1 1 1 1 1 1

Throughput /Latency (Gbps) 5.2/0.03 4.6/0.04 5/0.05 6/0.6 5/0.05 4/0.04 5.2/0.05 4,5/0.04 4.8/0.04 8.8 10.9 8.7 8.8 9 7.9 8.6

Po
w

er

Internal Power (mW) 1.08 1.03 1.05 1.16 0.98 0.72 1 1.11 1.07 1.72 1.9 2.023 2.45 1.74 2.27 1.83

Switching Power (mW) 0.37 0.37 0.39 0.5 0.34 0.25 0.36 0.41 0.38 0.83 0.94 0.98 1.2 0.86 1.15 0.93

Total Power (mW) 1.46 1.4 1.45 1.66 1.32 0.97 1.36 1.52 1.45 2.56 2.73 3.02 3.67 2.61 3.44 2.77
a A is for XOR64, b B means XOR128+, c C is LFSR258, d Values 1,2,3, and 4 correspond to Taus88, LFSR113, XOR128, and XOR32.

B. ASIC Comparison

The result analyzes of the various ASIC implementation of
CIPRNG can be summarized as follow.

Area Analysis: When dealing with ASIC implementations,
two measures can be considered to evaluate area consumption:
either the Gate Equivalent (GE = Area / (AND gate area for
65nm = 1.44µm2)) or the number of transistors (TE = GE×4,
where AND has 4 transistors). This latter is independent from
the technology estimation of the area of the circuit. It is
obvious that CIPRNG-XOR needs twice the area of CIPRNG-
MC, due to the use of three generators. For CIPRNG-MC,
[1,3], [2,1], and [4,1] have the lowest area, which uses Taus88
(1) as a strategy. In the case of CIPRNG-XOR, [A,B,2],
[A,B,3], and [B,A,2] are selected as best candidates for the
lowest area consumption in chaotic iterations based PRNGs.

Static Timing Analysis: Physical implementation flow intro-
duces a large amount of changes when compared with RTL
design (i.e., datapath transformation). Following Table VI,
the CIPRNG-MC throughput is twice better than CIPRNG-
XOR, and similarly for the area. However, due to the la-
tency problem, this latter drops the throughput and balance
CIPRNG-XOR up to 200 times the ones of CIPRNG-MC
and other linear PRNGs who pass TestU01. Finally, combina-
tions [A,B,3], [B,A,2], and [A,B,2] are candidates of chaotic
iterations PRNGs who pass TestU01 and with good time
performances.

Power Analysis: Concerning power analysis, we estimated
both static and dynamic power, which compute leakage and
switching&internal power of the design. The leakage power
measures each cell (logic) in various states, while dynamic
power depends on the initial state of cells, the toggling input,
the transition rate, and the output capacitive load. In Table VI,
various dynamic power analyzes illustrate a low power con-
sumption of both CIPRNG-MC and CIPRNG-XOR. It is clear
from Table VI that, when we propagate the clock (switching),
the switching power of the CIPRNGs is lower than the
internal power consumed by the internal cell of CIPRNGs.
This is confirmed by the area of both CIPRNG family. Despite
such results, CIPRNG-XOR consumes twice the power of
CIPRNG-MC, which is balanced by frequency and throughput.
We can finally select the combinations [B,A,2], [A,B,2], and
[B,B,2] as candidates of chaotic iterations based PRNGs who

can pass TestU01 and with power performances.

VIII. STATISTICAL TESTS

During experiments, the test batteries are run in Z-book Intel
Core i7−4800MQCPU@2.70GHz×8, working with Ubuntu
16.4 (64bits) and GCC 5.4.0. For NIST, 100 sequences of 106

bits are generated and tested. The results confirm that all the
chaotic iterations post-processings for linear PRNGs can pass
the NIST, where the minimum passing rate for each statistical
test is approximately 96 for a sample size of 100 binary
sequences. In the TestU01 case, all CIPRNG configurations
for both proposals (MC and XOR) can successfully pass this
battery, which is failed when considering the other chaotic
PRNGs evoked in this article.

IX. CONCLUSION

In this paper, which is an extension of [16], we have
presented a new family of post-processing PRNGs based on
chaotic iterations for FPGA and ASIC. This work has studied
the performance of various linear PRNGs implementations
in FPGA regarding the linear complexity, seed size, arith-
metic operations, and throughput/latency. In order to investi-
gate these parameters, a SoC based on Zynq EPP platform
(hardware and firmware) has been developed to accelerate
the implementation and tests of various PRNGs on FPGA.
The results are used as sources of information in the design
of an hardware post-processing treatment based on chaotic
iterations. This latter has been considered to improve the
statistical profile of flawed generators. The conclusion that can
be outlined is that chaotic iterations post-processing provides
an alternative implementation of combined PRNGs without
any supplemental cost, which is 2.5 times faster and 5 times
more efficient than almost all the linear PRNGs that can pass
TestU01.

REFERENCES

[1] A. Vassilev and T. A. Hall, “The importance of entropy to information
security,” Computer, vol. 47, no. 2, pp. 78–81, Feb. 2014. [Online].
Available: http://dx.doi.org/10.1109/MC.2014.47

[2] A. Vassilev and R. Staples, “Entropy as a service: Unlocking cryptogra-
phy’s full potential,” Computer, vol. 49, no. 9, pp. 98–102, Sept 2016.

[3] P. L’Ecuyer, “Uniform random number generation,” Annals of Opera-
tions Research, vol. 53, no. 1, pp. 77–120, 1994.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 13

[4] L. Kocarev, J. Szczepanski, J. M. Amigo, and I. Tomovski, “Discrete
chaos-i: Theory,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 53, no. 6, pp. 1300–1309, June 2006.

[5] X. Fang, B. Wetzel, J. M. Merolla, J. M. Dudley, L. Larger, C. Guyeux,
and J. M. Bahi, “Noise and chaos contributions in fast random bit
sequence generated from broadband optoelectronic entropy sources,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61,
no. 3, pp. 888–901, March 2014.

[6] T. Addabbo, A. Fort, L. Kocarev, S. Rocchi, and V. Vignoli, “Pseudo-
chaotic lossy compressors for true random number generation,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 8,
pp. 1897–1909, 2011.

[7] P. Z. Wieczorek and K. Goofit, “Dual-metastability time-competitive true
random number generator,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 61, no. 1, pp. 134–145, Jan 2014.

[8] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd
Edition. Westview Pr., March 2003.

[9] T. Y. Li and J. A. Yorke, “Period three implies chaos,” Amer. Math.
Monthly, vol. 82, no. 10, pp. 985–992, 1975.

[10] T. Stojanovski and L. Kocarev, “Chaos-based random number
generators-part i: analysis [cryptography],” IEEE Transactions on Cir-
cuits and Systems I: Fundamental Theory and Applications, vol. 48,
no. 3, pp. 281–288, Mar 2001.

[11] F. Pareschi, G. Setti, and R. Rovatti, “Implementation and testing of
high-speed cmos true random number generators based on chaotic
systems,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 57, no. 12, pp. 3124–3137, Dec 2010.

[12] Y. Wu, Y. Zhou, and L. Bao, “Discrete wheel-switching chaotic system
and applications,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 61, no. 12, pp. 3469–3477, Dec 2014.

[13] Y. Liu, R. C. C. Cheung, and H. Wong, “A bias-bounded digital true
random number generator architecture,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 64, no. 1, pp. 133–144, Jan 2017.

[14] J. Choi, J. Jung, and I. C. Park, “Area-efficient approach for generating
quantized gaussian noise,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 63, no. 7, pp. 1005–1013, July 2016.

[15] V. Rajagopalan, V. Boppana, S. Dutta, B. Taylor, and R. Wittig, “Xilinx
zynq-7000 epp–an extensible processing platform family,” in 23rd Hot
Chips Symposium, 2011, pp. 1352–1357.

[16] M. Bakiri, J.-F. Couchot, and C. Guyeux, “Fpga implementation of
f2-linear pseudorandom number generators based on zynq mpsoc: A
chaotic iterations post processing case study,” in Proceedings of the 13th
International Joint Conference on e-Business and Telecommunications
- Volume 4: SECRYPT,, 2016, pp. 302–309.

[17] A. Canteaut, “Berlekamp–massey algorithm,” in Encyclopedia of Cryp-
tography and Security. Springer, 2011, pp. 80–80.

[18] R. M. May et al., “Simple mathematical models with very complicated
dynamics,” Nature, vol. 261, no. 5560, pp. 459–467, 1976.

[19] J. Černák, “Digital generators of chaos,” Physics letters A, vol. 214,
no. 3, pp. 151–160, 1996.

[20] O. Rssler, “An equation for continuous chaos,” Physics Letters A, vol. 57,
no. 5, pp. 397 – 398, 1976.

[21] J. M. Bahi, X. Fang, C. Guyeux, and L. Larger, “Fpga design for pseudo-
random number generator based on chaotic iteration used in information
hiding application,” Appl. Math, vol. 7, no. 6, pp. 2175–2188, 2013.

[22] P. LEcuyer, “Tables of maximally equidistributed combined lfsr gen-
erators,” Mathematics of Computation of the American Mathematical
Society, vol. 68, no. 225, pp. 261–269, 1999.

[23] P. Lecuyer, “Maximally equidistributed combined tausworthe gener-
ators,” Mathematics of Computation of the American Mathematical
Society, vol. 65, no. 213, pp. 203–213, 1996.

[24] D. B. Thomas and W. Luk, “The lut-sr family of uniform random number
generators for fpga architectures,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 21, no. 4, pp. 761–770, April
2013.

[25] M. E. ONeill, “PCG: A family of simple fast space-efficient statistically
good algorithms for random number generation,” ACM Trans. Math.
Softw.(submitted), pp. 1–46, 1988.

[26] P. L’ecuyer, “Good parameters and implementations for combined multi-
ple recursive random number generators,” Operations Research, vol. 47,
no. 1, pp. 159–164, 1999.

[27] G. Marsaglia, “Random number generators,” Journal of Modern Applied
Statistical Methods, vol. 2, no. 2, 2003.

[28] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

[29] F. Panneton, P. L’ecuyer, and M. Matsumoto, “Improved long-period
generators based on linear recurrences modulo 2,” ACM Transactions
on Mathematical Software (TOMS), vol. 32, no. 1, pp. 1–16, 2006.

[30] M. Matsumoto and Y. Kurita, “Twisted gfsr generators ii,” ACM Trans-
actions on Modeling and Computer Simulation (TOMACS), vol. 4, no. 3,
pp. 254–266, 1994.

[31] G. Marsaglia et al., “Xorshift rngs,” Journal of Statistical Software,
vol. 8, no. 14, pp. 1–6, 2003.

[32] S. Vigna, “An experimental exploration of marsaglia’s xorshift genera-
tors, scrambled,” arXiv preprint arXiv:1402.6246, 2014.

[33] ——, “Further scramblings of marsaglias xorshift generators,” Journal of
Computational and Applied Mathematics, vol. 315, pp. 175–181, 2017.

[34] M. A. Zidan, A. G. Radwan, and K. N. Salama, “The effect of numerical
techniques on differential equation based chaotic generators,” in ICM
2011 Proceeding, Dec 2011, pp. 1–4.

[35] G. Chen and J. Lü, “Dynamics of the lorenz system family: analysis,
control and synchronization,” SciencePress, Beijing, 2003.

[36] A. S. Elwakil and M. P. Kennedy, “Construction of classes of circuit-
independent chaotic oscillators using passive-only nonlinear devices,”
IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 48, no. 3, pp. 289–307, Mar 2001.

[37] M. A. Zidan, A. G. Radwan, and K. N. Salama, “Random number
generation based on digital differential chaos,” in Circuits and Systems
(MWSCAS), 2011 IEEE 54th International Midwest Symposium on.
IEEE, 2011, pp. 1–4.

[38] P. Dabal and R. Pelka, “Fpga implementation of chaotic pseudo-random
bit generators,” in Proceedings of the 19th International Conference
Mixed Design of Integrated Circuits and Systems - MIXDES 2012, May
2012, pp. 260–264.

[39] A. Elwakil and M. Kennedy, “Chaotic oscillator configuration using a
frequency dependent negative resistor,” International journal of circuit
theory and applications, vol. 28, no. 1, pp. 69–76, 2000.

[40] M. Hénon, “A two-dimensional mapping with a strange attractor,”
Communications in Mathematical Physics, vol. 50, no. 1, pp. 69–77,
1976.

[41] P. Dabal and R. Pelka, “A chaos-based pseudo-random bit generator
implemented in fpga device,” in 14th IEEE International Symposium on
Design and Diagnostics of Electronic Circuits and Systems, April 2011,
pp. 151–154.

[42] ——, “A study on fast pipelined pseudo-random number generator based
on chaotic logistic map,” in 17th International Symposium on Design and
Diagnostics of Electronic Circuits Systems, April 2014, pp. 195–200.

[43] P. Giard, G. Kaddoum, F. Gagnon, and C. Thibeault, “Fpga implemen-
tation and evaluation of discrete-time chaotic generators circuits,” in
IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics
Society, Oct 2012, pp. 3221–3224.

[44] T. Geisel and V. Fairen, “Statistical properties of chaos in chebyshev
maps,” Physics Letters A, vol. 105, no. 6, pp. 263–266, 1984.

[45] C.-Y. Li, J.-S. Chen, and T.-Y. Chang, “A chaos-based pseudo random
number generator using timing-based reseeding method,” in 2006 IEEE
International Symposium on Circuits and Systems, May 2006, pp. 4
pp.–3280.

[46] C. Y. Li, Y. H. Chen, T. Y. Chang, L. Y. Deng, and K. To, “Period ex-
tension and randomness enhancement using high-throughput reseeding-
mixing prng,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 20, no. 2, pp. 385–389, Feb 2012.

[47] E. Barker and A. Roginsky, “Draft NIST special publication 800-131
recommendation for the transitioning of cryptographic algorithms and
key sizes,” 2010.

[48] P. L’Ecuyer and R. Simard, “Testu01: Ac library for empirical testing
of random number generators,” ACM Transactions on Mathematical
Software (TOMS), vol. 33, no. 4, p. 22, 2007.

[49] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for fpgas: From prototyping to deployment,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, no. 4, pp. 473–491, April 2011.

[50] R. A. Rueppel, “Linear complexity and random sequences,” in Advances
in CryptologyEUROCRYPT85. Springer, 1985, pp. 167–188.

[51] Q. Wang, S. Yu, C. Li, J. L, X. Fang, C. Guyeux, and J. M. Bahi, “The-
oretical design and fpga-based implementation of higher-dimensional
digital chaotic systems,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 63, no. 3, pp. 401–412, March 2016.

[52] J. Bahi, R. Couturier, C. Guyeux, and P.-C. Héam, “Efficient and
cryptographically secure generation of chaotic pseudorandom numbers
on gpu,” The journal of Supercomputing, vol. 71, no. 10, pp. 3877–3903,
oct 2015.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 14

[53] S. Contassot-Vivier, J.-F. Couchot, C. Guyeux, and P.-C. Heam, “Ran-
dom walk in a n-cube without hamiltonian cycle to chaotic pseudo-
random number generation: Theoretical and practical considerations,”
International Journal of Bifurcation and Chaos, vol. *, p. *, 2016.

[54] Knudsen, “Chaos without nonperiodicity,” Amer. Math. Monthly, vol.
101, 1994.

[55] C. Guyeux and J. Bahi, “An improved watermarking algorithm for inter-
net applications,” in INTERNET’2010. The 2nd Int. Conf. on Evolving
Internet, Valencia, Spain, sep 2010, pp. 119 – 124.

Mohammed Bakiri received his B.S. degree in
electrical engineering from Saad Dahleb University,
in 2009, and then Master degree from Amar Thelidji
University, in 2011, Algeria. He is currently Ph.D
student in Informatics in the Femto-ST Institute,
Bourgogne Franche-Comté University, France. He
joined the Centre de Développement des Technolo-
gie Avancées, CDTA, Algiers, in 2010, as research
engineer in Microelectronics. He is presently work-
ing on new chaotic algorithms for pseudorandom
number generators dedicated to FPGA/ASIC.

Jean-François Couchot is an Associate Professor
in the Department of Computer Science (DISC) of
the FEMTO-ST institute, Bourgogne Franche-Comté
University. He received a Ph.D. in Computer Science
in 2006 in the FEMTO-ST institute. He has applied
for a postdoctoral position at INRIA Saclay Ile de
France in 2006. His research focuses on discrete dy-
namic systems (data hiding, pseudorandom number
generators, hash function) and on bioinformatics, es-
pecially in gene evolution prediction. He has written
more than 25 scientific articles in these areas.

Christophe guyeux The research interests of Pr.
Guyeux are in the areas of interdisciplinary sciences
and complex systems. He applies techniques from
mathematics and/or computer science to solve sci-
entific questions raised in biology, environment, or
computer science fields. Current areas of application
in computer science include chaos study of discrete
dynamical systems applied to information security,
wireless sensor networks, and biology.

