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Abstract

Failure prognostics requires an efficient prediction tool to be built. This task is as difficult as, in many cases, very few

knowledge or previous experiences on the degradation process are available. Following that, practitioners are used

to adopt a “trial and error” approach, and to make some assumptions when developing a prediction model: choice

of an architecture, initialization of parameters, learning algorithms... This is the problem addressed in this paper:

how to systematize the building of a prognostics system and reduce the influence of arbitrary human intervention?

The proposition is based on the use of a neuro-fuzzy predictor whose structure is partially determined, on one side,

thanks to its evolving capability, and on the other side, thanks to parsimony principle. The aim of the approach is

to automatically generate a suitable prediction system that reaches a compromise between complexity and accuracy

capability. The whole proposition is illustrated on a real-world prognostics problem concerning the prediction of an

engine health.
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1. Introduction

The high costs in maintaining complex equipments

make necessary to enhance maintenance support sys-

tems and traditional concepts like preventive and correc-

tive strategies are progressively completed by new ones

like predictive and proactive maintenance [1]. In this

context, prognostic reveals to be a very promising main-

tenance activity as it should permit to improve safety,

plan successful missions, schedule maintenance, reduce

maintenance costs and down time [2]. Also, industri-

als show a growing interest in this thematic which be-

comes a major research framework as mentioned in re-

cent papers dedicated to Condition-Based Maintenance

“CBM” [3, 4, 5].

A central problem can be pointed out: the accuracy

of a prognostics system is related to its ability to ap-

proximate and predict the degradation of equipment:

∗Corresponding author, Tel.: +33 (0)3 81 40 27 96, Fax.: +33 (0)3

81 40 28 09

starting from a “current situation”, a prognostics tool

must be able to forecast the “future possible situations”.

From the research point of view, a wide variety of ap-

proaches can be used for that purpose [5, 6, 7, 8].

However, choosing an efficient technique depends on

classical constraints that limit the applicability of the

tools: available data-knowledge-experiences, complex-

ity and dynamic of systems, available monitoring de-

vices, implementation requirements (precision, compu-

tation time...). Also, it can be difficult to provide ef-

fective models of dynamic systems including the inher-

ent uncertainty of prognostic. Following that and as-

suming that it can be very difficult even impossible to

provide a model of the system under study, data-driven

approaches are been increasingly applied to prognos-

tics (mainly techniques from artificial intelligence AI).

These approaches use real data (like on-line gathered

with sensors or operator measures) to approximate and

track features revealing the degradation of components

and to forecast the global behavior of a system. Indeed,

in many applications, measured input/output data is the
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major source for a deeper understanding of the sys-

tem degradation. Within these data-driven approaches,

neuro-fuzzy (NF) systems appear to be very promis-

ing prognostic tools: NFs learn from examples and

attempt to capture the underlying relationships among

data, even if they are unknown or hard to describe (by

a learning process). NFs are computationally effec-

tive techniques and are thereby well suited for practi-

cal problems, where it is easier to gather data than to

formalize the behavior of the system being studied. Ac-

tual developments confirm the interest of using NFs in

forecasting applications [9, 10, 11, 12].

Nevertheless and in spite of the capabilities of NFs

systems, building a NFs model for prediction is not a

trivial task: various fuzzy structures can be used, the

nature and quantity of inputs, as well as the form of

the membership’s functions have to be chosen, different

learning algorithms exist, a random initialization (or ex-

pert made) must be done... Moreover, these choices are

critical as they directly have an impact on both, the ac-

curacy of the predictions of the system, and on its com-

plexity. Following that, practitioners are used to adopt

a “trial and error” approach in order to obtain good pre-

dictions whereas avoiding over-parametrization of the

system, and there is no systematic way of building a

suitable prediction system.

In this context, the paper deals with the definition of a

NF prognostic system for which any assumption is nec-

essary, i.e. a system that enables to reduce the influence

of human intervention. The proposition is based on the

use of a neuro-fuzzy predictor whose structure is par-

tially determined, on one side, thanks to its evolving ca-

pability, and on the other side, thanks to parsimony prin-

ciple. The underlying idea of parsimony is that there is

a clear tradeoff between reducing the dimension of the

parameter space at the expense of increasing the resid-

ual error of prediction. Both are related to the structure

of the predictive model and the aim of the approach is

thereby to automatically generate a system that reaches

a compromise between complexity and accuracy of pre-

dictions.

The paper is organized in four main parts. First, the

concept of “prognostic” is clarified and replaced within

maintenance strategies. This part enables to point out

that the efficiency of a prognostic system is highly de-

pendent on its ability to perform “good” predictions. In

the second part, the use of Takagi-Sugeno neuro-fuzzy

systems for prognostic is justified and the ways of build-

ing such models are discussed as well as the learning

aspects that influence the prediction performances. An

evolving neuro-fuzzy system is pointed out and pre-

sented. This NF system is self-built and enables to

make predictions whose accuracy is independent from

the user. Following that, the next section is dedicated

to the proposition of a method to balance complexity

and generalization capability. The procedure is based

on the used of parsimony principle in order to define

the number of inputs of the predictor in an automatic

form. Various parsimony criteria are proposed and dis-

cussed thanks to experiments on an industrial prediction

benchmark. The proposition is also discussed by com-

paring the NF system with the classical Auto Regressive

eXogenous approach (ARX). In the last part, the whole

procedure is finally applied on a real-world prognostics

problem concerning the prediction of an engine health.

2. Background: prediction as a critical step of prog-

nostic

2.1. Prognostic and intelligent maintenance systems

Maintenance activity combines different methods

with tools and techniques to reduce costs while increas-

ing reliability, availability and security of equipments.

Thus, one usually speaks about fault detection, fail-

ures diagnosis, and response development (choice and

scheduling of preventive/corrective actions). Briefly,

these steps correspond to the need, firstly, of “perceiv-

ing” phenomena, secondly, of “understanding” them,

and finally, of “acting” consequently. However, rather

than understanding a phenomenon which has just ap-

peared like a failure (a posteriori comprehension), it

is convenient to “anticipate” its manifestation in order

to take adequate actions as soon as possible. This is

what can be defined as the “prognostic process”. The

relative positioning of “detection”, “diagnostic”, “prog-

nostic” and “decision / scheduling” in the IMS (Intelli-

gent Maintenance Systems) framework can be depicted

as proposed in Figure 1a. From the phenomenological

point of view, the complementarity of these processes

can be explained as follows Figure (1b):

• detection aims at identifying the operating mode

of the system, i.e. its current state, assuming that a

failure occurred,

• diagnostic permits to isolate and to identify the

component that has ceased to operate (past prop-

agation: from effects to causes),

• prognostic deals with the prediction of the future(s)

state(s) of the system (future propagation: from

causes to effects).

According to all this, it is obvious that prognostic

can not be seen as a single maintenance task. Also, the
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Figure 1: Prognostics within IMS

whole aspects of failure analysis and prediction must be

viewed as a set of activities that all must be performed.

This aspect is highlighted within the Condition-Based

Maintenance (CBM) concept. According to CBM prac-

titioners, various activities, ranging from data collec-

tion through the recommendation of specific mainte-

nance actions, must be carried out to perform predictive

maintenance (and thereby improve maintenance’s per-

formances). Generally, a CBM system is seen as the

integration of seven layers, one of them being that of

“prognostic” (see Figure 2 for a distributed CBM archi-

tecture [13]). A brief description of each layer is given

hereafter [14].

• Layer 1: Sensor Module. It provides the CBM ap-

plication with digitized sensor or transducer data.

• Layer 2: Signal Processing Module. It performs

signal transformations and feature extractions, re-

duction and selection.

• Layer 3: Condition Monitoring Module. It com-

pares on-line data with expected values of system’s

parameters.

• Layer 4: Health Assessment Module. It determines

if the system has degraded. It also generates a di-

agnostic record and suggests fault possibilities.

• Layer 5: Prognostic Module. It predicts the future

condition of the monitored system.

• Layer 6: Decision Support Module. It provides

recommended actions to fulfill the the mission.

• Layer 7: Presentation Module. It can be built into

a regular human-machine interface.

Although prognostic is recognized as a key process in

maintenance strategies, the CBM system analysis en-

ables to point out that prognostic is not sufficient in it-

self but must be seen as a part of a more global process.

Nevertheless, next parts of this paper are only dedicated

to prognostic.
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Figure 2: Architecture of Condition-Based Maintenance [13]

2.2. Concept of prognostic

Prognostic is traditionally related to fracture mechan-

ics and fatigue. It started to be brought up by the modal

analysis community as a field of interest [15]. In this

“meaning”, prognostic is called the prediction of a sys-

tem’s lifetime. Prognostic can also be defined as a prob-

ability measure: a way to quantify the chance that a ma-

chine operates without a fault or failure up to some fu-

ture time [16]. This “probabilistic prognostics value” is

all the more an interesting indication as the fault or fail-

ure can have catastrophic consequences (e.g. nuclear

power plant). Some authors introduce prognostic as a

process that allows the a priori reliability modeling and

thereby enables to estimate the remaining time to under-

pass a limit fixed by the practitioner or by past experi-

ences [17, 18]. Finally, although there are some diver-

gences in literature, prognostic can be defined as pro-

posed by the International Organization for Standard-
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ization: “prognostic is the estimation of time to fail-

ure and risk for one or more existing and future fail-

ure modes” [19]. In this acceptation, prognostic is also

called the “prediction of a system’s lifetime” as it is a

process whose objective is to predict the remaining use-

ful life (RUL) before a failure occurs given the current

machine condition and past operation profile [5].

Whatever the point of view of all the above cited au-

thors is, all acceptations of the “prognostic’s concept”

have as common point the predictive aspect of prognos-

tic: a future situation must be caught. This obviously

supposes that the current state of the system can be iden-

tified and assessed (practically, it is the synthesis of a

detection process and of a measured data of the system).

Moreover, definitions of prognostic are focused on the

failure notion (“termination of the ability to perform a

required function”), which implies that the “prognos-

tic activity” is associated with a degree of acceptability.

Following that and according to previous works, prog-

nostic should be based on assessment criteria, whose

limits depend on the system itself and on performance

objectives [20, 21]. Figure 3a can be used to illustrate

this assumption, where the predicted situation at time

“t+dt” can be considered as a critical one because of the

degradation limit. Thus, prognostic could be split into

2 sub-activities: a first one used to predict the evolution

of a situation at a given time, and a second one that al-

lows to assess this predicted situation with regards to an

evaluation referential. Let’s resume (Figure 3b):

• identification: a situation is captured by the detec-

tion process and additional current measures,

• prediction: the situation is forecasted in time,

• assessment: the situation is evaluated with perfor-

mance criteria,

• prognostic: the predicted situation is assessed.

In addition, a central problem appears: the accuracy

of a prognostic system is related to its ability to approx-

imate and to predict the degradation of equipment; thus

the prediction phase is a critical one. A look at prognos-

tic metrics enables to point out this aspect.

2.3. Prognostic metrics

There is no general agreement as to an appropri-

ate and acceptable set of metrics that can be employed

in prognostic applications, and researchers and main-

tenance practitioners are still working on this domain

[8, 22, 23]. However, various measures emerge from

literature and are presented hereafter.

-a-

-b-

time

degradation 

feature

Perf(t) > 0

situation(t)

Predicted(t+dt)

Perf(t+dt) < 0

t t+dt
RUL eval. criteria

- breakdown

eval. criteria

- perf. limit

prediction /

forecasting

performance 

assessment

evaluation 

referential

assessmentprediction

prognostics

Perf(t)
situation(t)

Predicted(t+dt)

Perf(t+dt)

Figure 3: Prognostics as a prediction and assessment process [20]

As for any industrial task, prognostic can be evalu-

ated at least in two ways.

1. The main objective of prognostic is to provide the

efficient information that enables the underlying

decision process, i.e., the choice of maintenance

actions. So, a first set of metrics are those that

quantify the risks incurred by the monitored sys-

tem. This kind of metrics can be called the prog-

nostic measures.

2. Assuming that prognostic is in essence an uncer-

tain process, it is useful to be able to judge from

its “quality” in order to imagine more suitable ac-

tions. In this way, prognostic system performance

measures can be constructed.

The main and the most used prognostic measure is the

predicted time to failure (TT F), also called the remain-

ing useful life (RUL). In addition, a confidence measure

can be built to indicate the degree of certitude of the fu-

ture predicted failure time. By extension, and consider-

ing that practitioners can be interested on assessing the

system with regard to any performance limit, RUL and

confidence can be generalized, as shown in Figure 4a.

On this latter, TTxx refers to the remaining time for the

component, sub-system or system to overpass the per-

formance limit Perf/xx, and Conf/xxT is the confidence

with which can be taken the asset TTxx > T.

The performance of any prognostic method can be

assessed through some measures, like timeliness, ac-

curacy and precision. The timeliness of the predicted
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time to failure is the relative position of the probabil-

ity density function (pdf) of the prediction model along

the time axis with respect to the occurrence of the fail-

ure event. This measure evolves as more data are avail-

able and reveals the expected time to perform preventive

actions. According to [24], one has to define two dif-

ferent boundaries for the maximum acceptable late and

early predictions (Figure 4b). The accuracy measures

the closeness of the predicted value to the actual one.

It has an exponential form and is as higher as the error

between the predicted value of TT F and the real one

is smaller. Precision reveals how close predictions are

clustered together and is a measure of the narrowness

of the interval in which the remaining life falls. Pre-

cision depends on the variance of the predicted results

for many experiments. The complementarity between

accuracy and precision is illustrated in Figure 4c. More

details on some practical issues regarding accuracy, pre-

cision and confidence of the RUL estimations can be

found in [25].
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0  
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Failure
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Figure 4: Some prognostic metrics

2.4. Perform good prediction: a critical issue

As stated before, prognostic is mostly assimilated to

a prediction process, and all prognostic metrics follow

from it. Thus, one has to pay a particular attention to

this issue and practitioners are used to adopt a “trial and

error” approach to built the most suitable prediction tool

as possible. This aspect is critical and can even impede

the development of real prognostic applications. Next

sections aim at reducing the influence of human choices

in order to improve the feasibility of prognostic.

3. The exTS: a suitable self-built prediction tool

3.1. First-order TS systems for prediction / forecasting

According to some authors, the methods presented in

this section are sometimes labeled as “prognostic tech-

niques”. However, most of them refer to what, in this

paper, is called “prediction / forecasting”.

Prognostic approaches are used to be distinguished,

in three main categories [13]: experience-based , evolu-

tionary or estimation-based and model-based prognos-

tics (Figure 5). Since this classification depends on

the nature of data and knowledge used in practice, one

uses to speak about experience-based, data-driven and

model-based prognostics. In a few words, experience-

based prognostic methods are used in statistical relia-

bility applications to predict the probability of a failure

at any time. Data-driven approaches relie on gauging

the drift and the rate of change of the current state of

the system with regard to a set of known performance

degradations. Model-based methods suppose that the

degradation process can be formalized in a mathemati-

cal and analytical form.
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Figure 5: Hierarchy of prognostic approaches [13]

Real systems are complex and their behavior is often

non linear, non stationary. This make harder a modeling

step, even impossible. Yet, a prediction tool must deal

with it. Moreover, monitoring systems have evolved and

it is now quite easy to online gather data. According to

all this, data-driven approaches have been increasingly

applied to prediction problems in general and to ma-

chine prognostics in particular, and works emphasize on

the interest of using hybrid systems for prediction pur-

pose. More precisely, first order Takagi-Sugeno (TS)

fuzzy models have shown improved performances over

conventional approaches [9, 11] and they appear to be

adequate to perform the degradation modeling step of

prognostics [17].
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3.2. First-order TS systems: principle

A first-order TS model can be seen as a multi-model

structure consisting of linear models that are not neces-

sarily independent [26]. It is based on the fuzzy decom-

position of the input space. For each part of the state

space, a fuzzy rule is formed, the global output been a

combination of the whole rules. A TS model is com-

posed of 5 layers. In Figure 6, the model has two inputs

variables. Two membership functions (antecedent fuzzy

sets) are assigned to each one of them. The TS model is

finally composed of two fuzzy rules. (That can be gen-

eralized to the case of n inputs and N rules). The rules

perform a linear approximation of inputs:

Ri : i f x1 is A1
i

and ... and xn is An
i

T HEN yi = ai0 + ai1.x1 + ... + ain.xn
(1)

where Ri is the ith fuzzy rule, N is the number of rules,

Xt = [x1, . . . , xn]T is the input vector, A
j

i
denotes the

antecedent fuzzy sets, j = [1, n], yi is the output of the

ith linear subsystem with parameters aiq, q = [1, n].

1
1A

1
2A

2
2

2
1 Π

Π

Ν

Ν

Σ y

x1

x2

R1

R2

x1 x2

x1 x2

1
1A

1
2A

2
2A

2
1A

L1 L2 L3 L4 L5

Figure 6: A First-order TS model

In layer 1, let assume Gaussian antecedent fuzzy sets

to define the regions of fuzzy rules in which the local

linear sub-models are valid:

µ
j

i
= exp

(

−4.

[

∥

∥

∥x − x∗i

∥

∥

∥

j
/

σ
j

i

]2
)

(2)

where σ
j

i
is the spread of the membership function, and

x∗
i

is the focal point (center) of the ith rule antecedent.

The firing level τi and the normalized firing level λi

of each rule are obtained as follows (layers 2 and 3):

τi = µ
1
i (x1) × ... × µn

i (xn), λi = τi

/

∑N

k=1
τk (3)

The model output is the weighted averaging of indi-

vidual rules’ contributions (layers 4 and 5):

y =
∑N

i=1
λiyi =

∑N

i=1
λix

T
e πi (4)

where πi = [ai0, ai1, . . . , ain] is the vector parameter of

the ith sub-model, and xe = [1 XT ]T (expanded vector).

A TS model has two types of parameters. The non-

linear parameters are those of the membership func-

tions (the center and the spread deviation for a Gaussian

membership). These kinds of parameter are referred to

as premise or antecedent parameters. The second types

of parameters are the linear ones that form the conse-

quent part of each rule (aiq in equation 1).

3.3. Fitting a neuro-fuzzy systems: critical steps

A TS model can approximate an input-output func-

tion. In practice, this kind of model must be tuned to

fit to the studied problem (prediction in our case). This

“identification problem” is defined as follows.

The output of a fuzzy inference system (FIS) at time

t is y(t), and its input X(t). Let note Zt the “data set” as:

Zt = {y(1), X(1), . . . , y(t), X(t)} (5)

A model (the FIS) can be constructed as a mapping from

past data Zt−1 to the next output y(t). This model is

known as the predictor model:

ŷ(t) = f (Zt−1) (6)

where ŷ(t) represents the estimated output. This prob-

lem is a parameterizable mapping:

ŷ(t, θ) = f (Zt−1, θ) (7)

where θ is the vector of parameters. Since Zt−1 is con-

tinuously increasing (with new data), the identification

problem is reformulated with a vector of fixed dimen-

sion (considering some past values of each variable):

ŷ(t, θ) = f (ϕ(t), θ) (8)

where ϕ is known as the regression vector.

Using this notations, the problem of “model identifi-

cation” of a FIS for prediction purpose implies at least

four complementary tasks to be performed.

1. Choice of input signals. This step aims at deter-

mining which variables are relevant to model the de-

sired input-output relation, i.e., to identify the exoge-

nous variables of the phenomenon. It can be expert-

made or result from processing techniques (feature ex-

traction and selection). This problem is not addressed

in this paper, but for subsequent explanations, let note

X = [x1, x2, . . . , xn] the vector of exogenous variables

that enables to estimate y, the endogenous variable.

2. Inputs definition. In order to make a prediction, one

has to select the set of regressors for modeling (ϕ) of

both the exogenous and endogenous variables. Accord-

ing to equation 8, and assuming h the horizon of predic-

tion, the prediction at time t + h is expressed as:

ŷ(t + h, θ) = f (ϕ(t + h), θ) (9)
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(10)

3. Design of the structure. This step aims at defin-

ing the form of the FIS f (., .). One has to choose the

number and type of membership functions for each in-

put (layer 1) and the number of rules which depends

on the numbers of connections in between layers 2 and

3. The design of a TS model is thereby quite flexible.

Nevertheless, choices made at this step directly influ-

ence the accuracy performance of the model as well as

its complexity (as more membership functions and rules

are chosen, as more parameters have to be tuned).

4. Fitting the parameters. The parameters of a TS

model must be tuned to fit to the studied problem. This

is the aim of the learning procedure and different ap-

proaches can be used. Most of the methods are based

on the optimization of a cost function to minimize the

“distance” between the predictions of the FIS and the

real output data. Given k input-output past data, the es-

timated vector of parameters θ̂ is obtained as follows:

θ̂k = argminθ

[

Vk(Zk, θ)
]

(11)

Vk(Zk, θ) =
1

k

k
∑

t=1

d (ε(t, θ)) (12)

where, Vk is a cost (or loss) function, ε(t, θ) is th error of

prediction, and d(.) is a distance measure. The classical

quadratic cost function is mainly used since it allows to

apply the least square procedure (see section 3.5):

Vk(Zk, θ) =
1

2k

k
∑

t=1

[

y(t) − ŷ(t, θ)
]2

(13)

3.4. Reducing human influence with the evolving exTS

Whereas the first of these four steps is not studied in

this paper, the second one is adressed in section 4. Fol-

lowings paragraphs enable to discuss the above points 3

and 4: choice of a structure and fit of parameters.

The simplest method to construct a TS fuzzy system

is the “mosaic scheme”: the user defines the architec-

ture of the model and the antecedent’s parameters val-

ues [27]. A prediction technique for prognostic purpose

should not be tuned by an expert as it can be too diffi-

cult to catch the behavior of the monitored equipment.

Thereby, this approach must be leaved aside to reduce

the influence of practitioner.

Gradient descent algorithms have been adapted to the

TS structure in order to calculate the antecedent param-

eters by the standard back-propagation procedure (see

for example the ANFIS system [28]). In the same way,

genetic algorithms can be used to compute the fitting

of antecedent parameters [29]. These approaches allow

updating parameters by a learning process but are based

on a fixed structure of the model: they require the user

to choose the number of membership’s functions, and to

initialize various algorithms parameters. Unfortunately,

the accuracy of predictions is fully dependent on this

and this type of approaches should also not be retained.

In opposition, clustering approaches (and some ge-

netic algorithms) require less a priori information: they

automatically generate the adequate structure of the

model (number of membership functions, and of rules)

[30, chap. 17]. However, in practical applications, the

learning process is effective only if sufficient data are

available and, when trained, such a TS model is fixed.

Thereby, if the behavior of input and/or output changes

significantly with regards to the learning phase (like in

a degradation process), predictions can suffer from the

lack of representative learning data.

In order to continuously integrate the dynamic of sig-

nals, evolving algorithms have finally been developed

[26, 31, 32]. These algorithms are based on cluster-

ing methods and therefore, do not require the user to

define the structure of the TS model. In opposition to

all previous approaches, they do not need a complete

learning data set to start the identification process of the

TS model. The structure is flexible and evolves with

the data gathered from the system (modification or ad-

dition of rules). This kind of self constructing predictors

are thereby very interesting for prognostics applications

where it is very difficult, even impossible, to formalize

the behavior of the system. A particular evolving TS

model is that one proposed by [26, 33]: the evolving

extended TS system (exTS).

3.5. Theoretical exTS backgrounds

The learning procedure of exTS is composed of two

phases: (1) an unsupervised data clustering technique is

used to adjust the antecedent parameters, (2) the super-

vised Recursive Least Squares (RLS) learning method

is used to update the consequent parameters.

a) Clustering phase: update of antecedent parameters

The exTS clustering phase processes on the global

input-output data space: z = [xT , yT ]T , z ∈ Rn+m,

n+m defines the dimensionality of the input/output data

space. Each one of the sub-model of exTS operates in

a sub-area of z. The procedure is based on the calculus

of a “potential” which is the capability of a data to form

a cluster (antecedent of a rule). The clustering proce-

dure starts from scratch and, as more data are available,

the model evolves by replacement or upgrade of rules.
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The coordinates of the first cluster center are those of

the first data point
(

z∗
1
← z1

)

. The potential of the first

data point is set to the ideal value (P1 (z1)← 1). Four

steps are then performed for each new data gathered.

Step 1. Starting from k = 2, the potential Pk of the

data point zk is recursively calculated at time k:

Pk(zk) = k−1

k−1+
∑ j=1

n+m

∑i=1
k−1‖zi−zk‖

j

2

(14)

Step 2. The potential of the cluster/rule centers is

recursively updated:

Pk(z∗) =
(k−1)Pk−1(z∗)

k−2+Pk(z∗)+Pk(z∗)
∑n+m

j=1 ‖z
∗−zk−1‖

2
j

(15)

Step 3. The potential of the data point (step 1) is

compared to boundaries issued from the potential of the

cluster centers (step 2):
(

P ≤ Pk(zk) ≤ P
)

(16)

where (P = maxN
i=1
{Pi (z∗)}) is the highest den-

sity/potential, (P = minN
i=1
{Pi (z∗)}) is the lowest den-

sity/potential and N is number of centers clusters (x∗
i
, i =

[1,N]) formed at time k.

Step 4. If, the new data point has a potential in

between the boundaries any modification of the rules is

necessary. Else, they are two possibilities:

• if the new data point is closed to an old center

(minN
i

∥

∥

∥xk − x∗
i

∥

∥

∥

j
<

σ
j

i

2
), then the new data point

(zk) replaces this center (z
∗ j

i
← zk),

• else, the new data point is added as a new center

and a new rule is formed (N = N + 1; x∗
N

).

Note that, the exTS learning algorithm presents an

adaptive calculation of the radius of the clusters (σ
j

i
).

See [33] for more details.

b) RLS phase: update of consequent parameters

At step k, equation 4 can be expressed as follows:

ŷk+1 =
∑N

i=1
λiyi =

∑N

i=1
λix

T
e πi = ψ

T
k θ̂k (17)

where ψT
k
= [λ1xT

e , ..., λnxT
n ]T

k
is a vector of the inputs,

weighted by normalized firing (λ) of the rules, and θ̂k =

[π̂T
1
, ..., π̂T

N
]T
k

are parameters of the sub-models.

The estimated parameters based on k data samples are

obtained by applying the following RLS procedure:

θ̂k = θ̂k−1 +Ckψk(yk+1 − ψ
T
k θ̂k−1) ; k = 2, 3, ... (18)

Ck = Ck−1 −Ck−1ψkψ
T
k Ck−1

/

1 + ψT
k Ck−1ψk (19)

with initial conditions θ1 = [πT
1
, ..., πT

N
]T
k
= 0, C1 = ΩI,

whereΩ is a large positive number,ΩI a R(n+1)×R(n+

1) co-variance matrix.

3.6. Brief synthesis

Thanks to its evolving capability, the exTS system

does not requires the user to define the structure of the

predictor and to initialize the parameters (critical steps

3 and 4 defined in section 3.3). It is thereby a useful

tool to tempt to reduce human influence when building

a prediction model.

4. Applying parsimony principle on an exTS

4.1. Problem statement

A TS model is a universal approximator, i.e., a model

that has the ability to approximate any function to an ar-

bitrary degree of accuracy. Following that, one can be

tempted to use the model that better fits the data. How-

ever, there is a point at which increasing the complexity

of the model marginally increases the fitting. More over,

a model that excessively fit to the learning data set can

have low generalization capability since it will only be

able to approximate data near from this set. Thus, it is

also useful to keep the model as simple as possible as

long as it fits reasonably well the data. Following that,

practitioners are faced up with the problem of balancing

the accuracy of the model built and its complexity.

Whereas the number of rules is automatically com-

puted in the clustering phase of the exTS learning pro-

cedure, the number of inputs must be set by the practi-

tioner: which is the right set of regressors (see the sec-

ond critical steps defined in 3.3)?. This implies a more

or less complex fuzzy structure and the prediction per-

formance follows from it. Thereby, the purpose of this

section is to propose a way to automatically generate an

accurate exTS prediction system that reaches a compro-

mise between complexity and generalization capability.

The approach is based on the use of parsimony crite-

ria, that implicate the complexity and the accuracy to be

defined.

4.2. Defining the complexity of an exTS system

The architecture of an exTS system is singular in that

the number of rules is equal to the number of member-

ship’s functions by input. Thereby and assuming that

exTS is a first-order TS model, the number of linear

parameters can be simply determined by the relation

nbl = N× (n+1), where, N is the number of rules and n,

the number of inputs. As being Gaussian, each member-

ship has 2 parameters to be tuned and the total amount

of non-linear parameters is expressed by nbnl = 2×n×N.

The total number of parameters of an exTS can be inter-

preted as an indicator of the complexity of the model:

p = dim(θ) = nbl + nbnl = N (3 × n + 1) (20)
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4.3. Defining parsimony criteria

Parsimony criteria provide a mathematical formula-

tion of the compromise in between complexity and qual-

ity of predictions of a model [34]. These criteria are

thereby based on two aspects: the number of adjusted

parameters (p), and a loss function that traduces the ac-

curacy of past estimations (likelihood function L). As-

suming S the number of data samples used when fitting

the model, the most commonly used likelihood function

is the mean square error:

L =
1

S

S
∑

i=1

(y − ŷ)2 (21)

Various parsimony criteria are proposed in literature:

the Akaike Information Criterion (AIC), the Rissanen’s

Minimum Description Lenght (MDL), the Final Predic-

tion Error (FPE) and the Bayesian Information Crite-

rion (BIC). These criteria are defined as follows.

AIC = S × log (L) + 2 × p

MDL =
(

1 +
[

p × log(L)
]/

S
)

× L

FPE =
[

(S + p)/(S − p)
]

× L

BIC = −2 × log (L) + p × log (S )

(22)

These criteria are designed in order to decrease as

long as the model significantly fits the data better, and to

increase when improvements are marginal. Following

that, various identification / prediction models can be

ranked according to their parsimony criteria, the more

suitable been that of the lowest ones (suitable in the

sense of “compromise in between accuracy and com-

plexity”). Consider Figure 7 for an illustration. Note

also that AIC, MDL, FPE and BIC criteria can be im-

plemented without the aid of subjective judgment.
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Figure 7: Evolution of parsimony criteria

4.4. Balancing complexity and accuracy of an exTS

As stated in equations 9 and 10, in order to build a

prediction model, one has to define the set of regressors

of both the exogenous and endogenous variables. Let

note O = {px1
, px2

, ..., qy} the order of the model con-

taining the number of past values used for prediction for

each input. Depending on this choice, many forecasting

systems can be constructed. In addition, and thanks to

equations 20 and 21, parsimony criteria (AIC, MDL,

FPE and BIC) of all these potential models can be eas-

ily computed during the learning phase. Following that,

one is able to determine which model presents the low-

est one and is thereby providing a compromise between

complexity and accuracy. This procedure is depicted in

Figure 8. In this paper, various parsimony criteria are

proposed for discussion purpose but a single one is suf-

ficient to select the number of inputs.
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Figure 8: Procedure to build a “suitable” exTS

4.5. Experiments and discussion

The procedure as been applied on a data set issued

from an hair dryer. It has been contributed by W. Fa-

voreel from the Kuleuven Unversity [35]. The aim of

predictions is to approximate the air temperature of a

dryer by learning real gathered data. That can be assim-

ilated to the prediction step of the prognostics process.

Data have inside one exogenous variable (x1) and one

endogenous variable (y):

• x1: voltage of the heating device,

• y: air temperature.

Experiments aim, on one side, to evaluate the abil-

ity of an exTS system to predict a non-linear function,

and on the other side, in order to evaluate the ability of

the input selection procedure based on parsimony crite-

ria to reach a compromise between generalization and

complexity. The Auto Regressive eXogenous approach
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(ARX) has been used for comparisons: this model is ex-

tensively employed in modeling and prediction of times

series. Given a set of inputs xi, an ARX prediction can

be expressed as follows.

A(w) . ŷ(t) =
n
∑

i=1

Bi(w) . xi(t)

A(w) = 1 + α1w−1 + · · · + αqy
w−qy

Bi(w) = βi
1
w−1 + · · · + βi

pxi
w−pxi

w−τ. x(t) = x(t − τ)

(23)

As for the exTS, let note O = {px1
, px2

, ..., qy} the or-

der of an ARX model, with total amount of parameters:

p = qy + px1
+ ... + pxn

(24)

The data set contains 1000 samples. The learning

phase was stopped after 500 data samples, and the re-

maining samples served to test the models at one step

ahead. The accuracy of learning was estimated with the

mean square error (MSEtrain) which is the most pop-

ular error measure, and prediction performance in test

was assessed by using the coefficient of determination

(R2test) which is a measure of how well future out-

comes are likely to be predicted by the model.

For both models (ARX and exTS), the procedure of

input selection based on parsimony criteria has been

applied in order to identify the a priori more suitable

structures, i.e., that ones that balance complexity and

accuracy (4 structures per type of model, let note them

ARXAIC , exTS MDL...). In order to extract more solid

conclusions from the tests and expand the compari-

son to a same model (and not from one to another),

the most simple structures (ARXpmin, exTS pmin) as well

as the most accurate models in training (ARXMS Etrain,

exTS MS Etrain) and in test (ARXR2test, exTS R2test) have

also been searched by scanning all the set of possible

inputs (thanks to the set of potential regressors ϕ). Re-

sults are shown in Table 1.

exTS versus ARX. According to accuracy perfor-

mance indicators, whatever the type of structure is con-

sidered (the most simple, the most accurate in learn-

ing...), the exTS system always overpass the ARX

model in term of prediction. An example is given in Fig-

ure 9 that depicts the prediction results for the two most

simple models ARXpmin and exTS pmin. Considering our

final applicative objective (prognostics of failures), this

is of good omen since the exTS not only appears to be a

suitable prediction tool, but also is able to evolve to take

into account the dynamic of real systems without prior

knowledge and human intervention.

Accuracy and complexity. Results enable to notice

that, whatever the model of prediction is, the accuracy
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Figure 9: Prediction results with the simplest models

globally grows as the complexity increases (Figure 10):

the more R2test is near from 1, the more parameters the

model has. This confirms that accuracy and complexity

are actually correlated and that there is no way to max-

imize the satisfaction on both criteria. More over, note

also that the most accurate model in training is not the

most accurate in test, and that the most accurate in test

is not necessarily the most complex model. That also

reinforces the importance of looking for a compromise.
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Figure 10: Some accuracy and complexity results

Interest of the procedure. The interest of using

the automatic input selection based on parsimony cri-

teria can be examined. Let take for example the re-

sults obtained with the AIC criterion. Whereas the most

accurate prediction model for both systems (ARXR2test,

exTS R2test) has much more parameters than this one ob-

tained by the input selection procedure (ARXAIC and
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ARX exTS

M   (ARXpmin, exTS pmin)

O = {px1
, qy} ; nb param. {1, 1} ; p = 2 {1, 1} ; 8 rules ; p = 56

MSEtrain 0,8200 0,1179

R2test 0,4354 0,9397

M    (ARXMS Etrain, exTS MS Etrain)

O = {px1
, qy} ; nb param. {4, 3} ; p = 7 {1, 5} ; 10 rules ; p = 190

MSEtrain 0,1540 0,0848

R2test 0,9782 0,9850

M    (ARXR2test, exTS R2test)

O = {px1
, qy} ; nb param. {85, 1} ; p = 86 {4, 3} ; 11 rules ; p = 242

MSEtrain 0,1603 0,1069

R2test 0,9894 0,9974

S    

AIC -918,6320 -972,5249

O = {px1
, qy} ; nb param. {4, 4} ; p = 8 {1, 2} ; 8 rules ; p = 80

MSEtrain 0,1542 0,1038

R2test 0,9784 0,9827

MDL 0,1669 0,2368

O = {px1
, qy} ; nb param. {4, 2} ; p = 6 {1, 4} ; 9 rules ; p = 144

MSEtrain 0,1553 0,0849

R2test 0,9717 0,9853

FPE 0,1584 -20,1606

O = {px1
, qy} ; nb param. {4, 3} ; p = 7 {2, 9} ; 15 rules ; p = 504

MSEtrain 0,1540 0,1996

R2test 0,9782 0,9795

BIC 12,8261 624,0720

O = {px1
, qy} ; nb param. {1, 1} ; p = 2 {2, 1} ; 10 rules ; p = 100

MSEtrain 0,8200 0,2710

R2test 0,4354 0,9495

Table 1: Air temperature - simulation results

exTS AIC), the accuracy of prediction are quite the same.

As for an example, consider Figure 11 that shows the

probability density function (pdf) of the percentage of

error of prediction for exTS R2test and exTS AIC mod-

els. Both pdf curves are much closed together, the main

difference being that the spread deviation of the “com-

promise structure” is slightly bigger that this one of the

“most accurate structure”. In other worlds, the proposed

approach really enables to balance complexity and gen-

eralization capability and allows to directly choose an

adequate prediction structure.

5. Illustration: prognostic of a real engine health

5.1. Object

The proposed data-driven procedure is illustrated by

using the challenge dataset of diagnostic and prognos-

tics of machine faults from the first International Con-

ference on Prognostics and Health Management (2008)

[36]. The dataset consists of multiple multivariate time

series (26 variables) with sensor noise. Each time se-

ries is from a different engine of the same fleet and each

engine starts with different degrees of initial wear and

manufacturing variation unknown to the user and con-

sidered normal. The engine is operating normally at the

start and develops a fault at some point. The fault grows

in magnitude until system failure.

The whole prognostic procedure applied is depicted

in Figure 12. It consists in three phases similar to that

one of layers 2 to 5 of CBM architecture (see section

2.1). Data were first processed (feature extraction, se-

lection and cleaning). It enabled to feed a prediction en-

gine which forecasted observations in time. These pre-

dictions were then analyzed by a classifier which pro-

vided the most probable state of the system. The re-

maining useful life was finally deduced thanks to the
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estimated time to reach the failure mode. The process-

ing, prediction and classification steps were supported

by three different tools that are respectively based on in-

formation theory, on the self-built exTS system and on

Dempster-Shafer theory. In this paper, only the predic-

tion aspect is illustrated. For more details on selection

and classification steps, refer to [37].
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Figure 12: Whole procedure applied to the real engine health

5.2. Prediction results and discussion

The prediction step has been deployed in a reduced

set of features: from the 26 variables of the row data

set, 8 of them were first selected and cleaned. Follow-

ing that, each feature has been estimated and predicted

thanks to the approach proposed in this paper (with AIC

criterion): with a self-built exTS prediction system at

t + 1 and by applying the input selection procedure.

In order to perform predictions at any time, a “cascade

model” of each system has been built: previous predic-

tions can be used as for the inputs for next predictions

(Figure 13). This type of architecture enables to per-

form multi-step ahead predictions (at any t + h) with-

out building various systems (and thereby with a single

learning phase). All predictions were made until time

t = 50, so that, for each data test set, the prediction

module provided the expected values of the considered

performance index from time t = 51 to the end of the

test series (around 250). For tests, 10 multivariate time

series where used for training, and 10 for testing.

exTS
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exTS

exTS

�x t 1+( )

x t( )

x t 1−( )

x t 2−( )

x t 3−( )

�x t h+( )

exTS

Figure 13: Cascade model for multi-step ahead prediction

Table 2 resumes the set of inputs variables that have

been obtained thanks to the input selection procedure

(the set of regressors). This result would have been pro-

hibitively long to obtain if human-made.

Feature Inputs

F1 t, x1(t), x1(t − 1)

F2 t, x2(t)

F3 t, x3(t)

F4 t, x4(t), x4(t − 1), x4(t − 2), x4(t − 3)

F5 t, x5(t), x5(t − 1), x5(t − 2)

F6 t, x6(t), x6(t − 1), x6(t − 2), x6(t − 3)

F7 t, x7(t), x7(t − 1)

F8 t, x8(t), x8(t − 1)

Table 2: Engine health - input selection

Figure 14 depicts the parsimony principle on the first

feature. Results are similar as those of the hair temper-

ature data set used in section 4.5: since the complex-

ity increases with the accuracy of prediction, one has to

look for a compromise.

Figure 15 shows an example of the evolution of the

performance index for the first feature, and the predic-

tion that can be obtained thanks to the prediction pro-

cedure. It is representative of the results that can be

obtained with the approach proposed in this paper: the

prediction system is suitable, even if self-built and with-

out prior knowledge on its structure and parameters.
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6. Conclusions

In maintenance field, prognostic is recognized as a

key feature as the prediction of the remaining useful life

of a system allows avoiding inopportune maintenance

spending. However, it can be a non trivial task to de-

velop and implement effective prognostics models in-

cluding the inherent uncertainty of prognostics.

The aim of this paper is to point out a suitable predic-

tion technique to perform the approximation and predic-

tion of the degradation of an equipment, and for which

any assumption or intervention of the practitioner is

necessary, i.e., to propose a way to go through self built

systems. That can be reached thanks to three aspects.

Firstly, the evolving exTS system is an accurate pre-

diction tool that outperforms classical approaches. In-

deed, this model has a high level of adaptation to the

environment and to the changing data, and is thereby

useful for complex modeling and prediction.

Secondly, the evolving capability of the exTS pro-

vides practitioners with a tool that does not need the

user to make assumptions on the structure or on initial

condition for model building. The learning phase of the

exTS starts from scratch and the predictor evolves as

data are gathered, with no human intervention.

Thirdly, the procedure for input selection derived

from the parsimony criteria enables to automatically

generate a suitable architecture that balance accuracy

and complexity, without human choices.
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