
Two Under-Approximation Techniques for 3-Modal
Abstraction Coverage of Event Systems: Joint Effort? ∗

J. Julliand, O. Kouchnarenko, P.-A. Masson, G. Voiron
FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS

16, route de Gray F-25030 Besançon Cedex France
{jacques.julliand, olga.kouchnarenko, pierre-alain.masson, guillaume.voiron}@femto-st.fr

Abstract

Model-based testing of event systems can take advantage of considering abstrac-
tions rather than explicit models, for controlling their size. A test is then a connected
and reachable event sequence. This paper reports on experiments made when adapting
for event systems two known under-approximation techniques of predicate tri-modal
(may, must+, must-) abstractions. We first instantiate all the abstract may transi-
tions, preferably as reachable instances. Second, we complete this under-approximation
with instantiations of Ball chains, i.e. sequences in the shape of must-*.may.must+*
transitions, as such sequences are guaranteed to have connected instantiations. We
present a backward symbolic instantiation algorithm for connecting these two under-
approximations. We experimentally address the question of their complementarity.
Surprisingly, our results show that Ball chains have not enhanced the coverage already
achieved by the first step of may-transitions instantiation. However, it has enhanced
the number of test steps by prolonging the already existing tests.

Keywords. Predicate abstraction; under-approximation; event systems; may/must
transitions; test generation

1 Introduction
Abstracting a program or its specification allows to control the size of its state space de-
scription, at the price of a loss in accuracy. That facilitates their algorithmic exploitation,
otherwise limited by the huge if not infinite number of concrete states. The general idea of
abstraction is to gather states that share common properties into super-states. In predicate
abstraction [GS97] the concrete states are mapped onto a finite set of abstract ones, by
means of a set of predicates that characterizes each abstract state. We are interested in
generating model-based tests from a predicate abstraction of a system formally specified
as an event system [Abr10], which is a special kind of action system [Dij75, Dij76]. Such
tests will be computed as concrete instantiations of abstract transition sequences, which
raises the two issues: to be used as model-based tests, these instantiations have to be 1)
connected, and 2) reachable.

Concerning connectivity, an abstract transition links two abstract states when it has at
least one concrete instantiation. Such transitions are called may [GJ03], meaning that they
may be instantiated. But two consecutive may instantiations might be disconnected since
the concrete transitions may not end and begin on the same concrete state. Reachability is
also an issue with event systems: an event specifies state variable modifications by means
of a guarded action. The actions are activated whenever their guard becomes true, so that
contrarily to programs, there is no natural control flow that one could follow to guarantee

∗in TASE 2017, 11th Int. Symposium on Theoretical Aspects of Software Engineering, IEEE, sep. 2017

1

reachability. Hence we seek to under-approximate the abstraction by computing connected
and reachable concrete instances of the abstract event sequences.

To this end, two under-approximations approaches from literature have been retained.
The first one is by M. Veanes and R. Yavorsky [VY03] for under-approximating an Abstract
State Machine specification by a Finite State Machine. It gradually explores the abstraction
by widening a frontier of the visited states, while exhibiting concrete instances whose reach-
ability is either guaranteed when possible, or uncertain otherwise. We call this approach
concrete exploration (CXP). The second one is by T. Ball [Bal04], intended to predicate
testing of C programs. It associates the abstract transitions with three possible modalities:
may, must+ and must− for exploiting a structural property that the abstract sequences of
the form (must−)∗.may.(must+)∗ are guaranteed to be connectedly instantiable. We call
such sequences “Ball chains”. In the context of event systems, we still have to seek for their
reachability.

We have recently adapted and applied these methods to event systems, but separately.
Indeed, [JKMV17] provides an algorithm that adapts and applies the concrete exploration
to event systems. In [BJM15, BJM16] forward symbolic exploration from the initial states
to reach the Ball chains has been used. In this paper we build the bridge for combining the
two methods, which allows us to implement and experiment with case studies. The main
idea is to connect the Ball chains instantiations to the concrete reachable paths à la Veanes
and Yavorsky, for ensuring their reachability. We present an algorithm that instantiates
the Ball chains, and proceeds to a backward symbolic exploration of the must− transitions
towards these reachable paths. Also, we experimentally investigate the complementarity of
the two methods w.r.t. various abstractions of four realistic case studies. Surprisingly, our
results show that the Ball chains do not provide additional coverage of the abstract states
and transitions than the concrete exploration does. Nevertheless, they prolong the already
existing concrete sequences, thus providing more test steps to explore the system.

The technical background of our paper regarding event systems, predicate abstraction
and tri-modal transition systems is given in Section 2. Section 3 presents a simple coffee
machine as an illustrative example. Our method, and in particular the algorithm for com-
puting and instantiating the Ball chains with backward symbolic exploration towards the
concrete exploration, is presented in Section 4. Our experimental results are presented in
Section 5. Section 6 describes related work, and Section 7 concludes the paper.

2 Background
In this paper systems are specified by event systems (ES) described using the B syn-
tax [Abr96, Abr10]1. Notice however that our proposals and results are applicable to all
models whose semantics is expressed by the concrete labelled transition systems.

In this section we first present the syntax and the semantics of the B event systems.
Then we present the concept of predicate abstraction and formalize the abstraction of ES
by means of Tri-modal Transition Systems (3MTS). Last, we present Ball’s universal under-
approximation based on 3MTS.

2.1 Model Syntax and Semantics
We start by introducing B event systems in Def. 1. Let a be a guarded action, E, F be
arithmetic expressions and P , P ′ be predicates, the events are defined by means of guarded
actions [Dij75] composing five primitive actions: skip an action with no effect, x, y := E,F
a multiple assignment, P ⇒ a a guarded action, a1[]a2 a non-deterministic choice between
a1 and a2, and @z.a an unbounded non-deterministic choice for all the values of z satisfying

1We could alternatively use a syntax with guarded commands [Dij75], such as Abstract State Ma-
chines [GKOT00, Gur00].

2

the guard of a. Notice that a1 || a2 as well as IF P THEN a END can be rewritten with
the five primitives actions as explained in [Abr96].

Definition 1 (Event System) Let Ev be a set of event names. A B event system is a
tuple 〈X, I, Init,EvDef〉 where X is a set of state variables, I is a state invariant, Init is
a guarded action that initializes the system, such that I holds in any initial state, EvDef is
a set of event definitions, each in the shape of e def

= a for any e ∈ Ev, where a is a guarded
action that preserves I.

Figure 2 depicts an example of an event system that illustrates Def. 1. Following [BC00],
Concrete labelled Transition System (CTS) describe the semantics of event systems.

The event systems have also an axiomatic semantics. An event e def
= a has a weakest

precondition [Dij76] w.r.t. a set of target states Q′ denoted as wp(a,Q′). wp(a,Q′) is the
largest set of states from which applying a always leads to a state of Q′. Let us now formally
define wp following [BJM16]. Basically, we directly consider the set of states Q and Q′ as
predicates of the same name. We define the wp w.r.t. the five primitive actions as:

• wp(skip,Q′) def
= Q′,

• wp(x := E,Q′)
def
= Q′[E/x] that is the usual substitution of x by E as in [Hoa69],

• wp(P ⇒ a,Q′)
def
= P ⇒ wp(a,Q′),

• wp(a1[]a2, Q
′)

def
= wp(a1, Q

′) ∧ wp(a2, Q
′),

• wp(@z.a,Q′) def
= ∀z.wp(a,Q′) where z is not free in Q′.

2.2 Predicate Abstraction and Tri-modal Transition Systems
Predicate abstraction [GS97] is a special instance in the framework of abstract interpreta-
tion [CC92] that maps the potentially infinite state space C of a CTS onto the finite state
space A of an abstract transition system via a set of n predicates P def

= {p1, p2, . . . , pn} over
the state variables. The set of abstract states A contains 2n states. Each state is a tuple
q

def
= (q1, q2, . . . , qn) with qi being equal either to pi or to ¬pi, and we also consider q as the

predicate
∧n
i=1 qi. We define a total abstraction function α : C → A such that α(c) is an

abstract state q where c satisfies qi for all i ∈ 1..n. By a misuse of language, we say that c
is in q, or q contains c, or that c is a state of q.

Let us now define the abstract transitions as may ones. Consider two abstract states q
and q′, and an event e. There exists a may transition from q to q′ by e, denoted by q e→ q′,
iff there exists at least one concrete transition c e→ c′ where c and c′ are concrete states with
α(c) = q and α(c′) = q′.

As in [Bal04], we define must+ and must− transitions in addition to may ones. The
must+ transitions aremay transitions that are triggerable from any concrete state of the ab-
stract source state. The must− transitions are may transitions that can reach any concrete
state of the abstract target state. The modalities are evaluated resolving SAT formulas.
As abstraction we define Tri-modal Transition Systems (3MTS) in Def. 2. They are transi-
tion systems with abstract states and abstract transitions characterized as may, must+ or
must−.

Definition 2 (Tri-modal Transition System) Let Ev be a finite set of event names and
P be a set of n predicates. Let A be a finite set of 2n abstract states. A 3MTS is a tuple 〈Q,
Q0,∆,∆

+,∆−〉 where Q(⊆ A) is a finite set of states, Q0(⊆ Q) is a set of abstract initial
states, ∆(⊆ Q × Ev × Q), ∆+(⊆ ∆) and ∆−(⊆ ∆) are respectively a may, must+ and
must− labelled transition relations.

3

e1(−) e2(−) e3 e4(+) e5(+)

Figure 1. A Concretization of a (must−)∗ · may · (must+)∗ Sequence of Abstract Transitions

The 3MTS definition above is inspired by the corresponding notion in [Bal04], in its
turn coming from the Modal Transition Systems defined in [LT88, GHJ01]. A 3MTS can
be associated with every event system (cf. [BJM16] for a formal definition).

An example of a 3MTS, whose ES is described in Fig. 2, is provided in Fig. 3. The four
abstract states, named q1 to q4, appear as circle boxes. The predicates p0, p1 and p2 from
which they are defined are given explicitly in Section 3. The abstract transitions of ∆ are
represented as arrows labelled with an event name, and the possible mentions + and/or −
indicating respectively when they are in ∆+ or ∆−.

2.3 Over-/Under-Approximations Based on 3MTS

We denote by q0
e0→ q1

e1→ . . . where qi
ei→ qi+1 ∈ ∆ for i ≥ 0 an abstract execution, and by

c0
e0→ c1

e1→ . . . a concrete execution. We say that q0
e0→ q1

e1→ . . . and c0
e0→ c1

e1→ . . . are
similar when for all i, ci is a state of qi.

An abstraction is an over-approximation of a model when, for every execution of the
model, there is a similar execution of the abstraction. In other words, the abstraction may
define more and/or longer executions than the model but not less. Any safety properties
that hold on such an abstraction also hold on the model, which allows for verifying any
safety properties on the abstraction rather than on the model. But for testing, since an
over-approximation may define more executions than the model, a test extracted as an
execution path of the abstraction may possibly not be instantiable as a model execution.

So testing can take advantage of considering under-approximations rather than over-
approximations. An abstraction is an under-approximation of a model when for every
execution of the abstraction, there is a similar execution of the model. In other words, the
abstraction may define less and/or shorter executions than the model but not more. Thus
every test extracted from such an abstraction is guaranteed to be instantiable on the model,
to give rise to a concrete test.

In [Bal04] the authors have defined a method to compute an under-approximation by
means of the ∆, ∆+ and ∆− abstract transition relations of a 3MTS.

In [Bal04] it is proven that a sequence ofmust− transitions, followed by at most one may
transition, followed by a sequence of must+ transitions, is guaranteed to be instantiable as
a connected sequence of concrete transitions. Indeed, as illustrated by the bold sequence in
Fig. 1, any concrete state of amust− target is reached from some concrete source state, while
whatever concrete state is reached by a must+ transition is possible to leave from. A may
transition in between joins a necessarily reached state to a necessarily left one. We call such
a sequence a Ball chain, and we denote it by a regular expression2 (must−)∗.may.(must+)∗.

3 Illustrative Example
Our illustrative example is a simple coffee vending machine (see the ES in Fig. 2). It
has a Balance, which can be augmented by putting coins of value either 50 or 100 (events

2Since a must transition is also may, we see the central may transition as mandatory.

4

X def
= {Balance, Pot, Status, CofLeft, AskCof,AskChange}

I def
= Pot ∈ 100..MAX_Pot+ 50 ∧ Balance ∈ 0..MAX_Bal ∧

CofLeft ∈ 0..MAX_Cof ∧ Pot mod 50 = 0 ∧ Balance mod 50 = 0 ∧
Status ∈ 0..2 ∧ AskCof ∈ 0..1 ∧ AskChange ∈ 0..1 ∧
AskChange = 1⇒ (Balance > 0 ∧ AskCof = 0) ∧
AskCof = 1⇒ (Balance ≥ 50 ∧ AskChange = 0) ∧
Balance = 0⇒ (AskCof = 0 ∧ AskChange = 0)

Init def
= Balance := 0 || Status := 0 || Pot := 100 ||

CofLeft := 10 || AskCof := 0 || AskChange := 0

insert50 def
= Status = 1 ∧ AskChange = 0 ∧ AskCof = 0 ∧

Balance+ 50 ≤MAX_Bal⇒ Balance := Balance+ 50

insert100 def
= Status = 1 ∧ AskChange = 0 ∧ AskCof = 0 ∧

Balance+ 100 ≤MAX_Bal⇒ Balance := Balance+ 100

powerUp def
= Status = 0 ∧ CofeLeft > 0 ∧ Pot > 0 ∧ Pot ≤MAX_Pot⇒

Status := 1 || Balance := 0 || AskCof := 0 || AskChange := 0

powerDown def
= (Status = 1 ∧ AskChange = 0 ∧ AskCof = 0 ∧ Balance = 0)

∨Status = 2⇒ Status := 0

autoOut def
= Status = 1⇒ Status := 2

takePot def
= Status = 0⇒ (Pot := 200 [] Pot := 100)

cofReq def
= Status = 1 ∧ Balance ≥ 50 ∧ AskCof = 0 ∧

AskChange = 0⇒ AskCof := 1

changeReq def
= Status = 1 ∧ Balance > 0 ∧ AskCof = 0 ∧

AskChange = 0⇒ AskChange := 1

addCof def
= ∃x.(x ∈ 1..MAX_Cof ∧ CofLeft+ x ≤MAX_Cof

∧Status = 0⇒ CofLeft := CofLeft+ x)

serveCof def
= Status = 1 ∧ Balance ≥ 50 ∧ AskCof = 1 ∧ CofLeft > 0 ∧

Pot ≤MAX_Pot⇒
AskCof := 0 || Balance := Balance− 50
|| CofLeft := CofLeft− 1 || Pot := Pot+ 50
|| (Pot+ 50 > MAX_Pot ∨ CofLeft = 1⇒ Status := 2

[] Pot+ 50 ≤MAX_Pot ∧ CofLeft 6= 1⇒ skip)
|| (Balance > 50⇒ AskChange := 1 [] Balance = 50⇒ skip)

backBalance def
= Status = 1 ∧ Balance > 0 ∧ AskChange = 1⇒

Balance := 0 || AskChange := 0

Figure 2. ES Specification of a Coffee Machine

insert50 and insert100 in Fig. 2). Balance may not exceed an arbitrary fixed constant named
MAX_Bal. There are also arbitrary constants for the maximal number of coffees stored
in the machine (MAX_Cof), and the maximal value (MAX_Pot) of the Pot (the money
kept by the machine). Notice that Balance and Pot are multiples of 50. The machine
has a Status which indicates if it is switched on (1) or off (0), or out of order (2). When
switched on, the machine can serve coffees, after a request by the user (event cofReq that
corresponds to pressing the “request coffee” button), at the price of 50 each (event serveCof):
this price is retrieved from the Balance and sent to the Pot. The number of available coffees
is modelled by the CofLeft variable. The user can ask for its change (event changeReq that
corresponds to pressing the “give change” button). The events changeReq and cofReq are
mutually exclusive. The user can then get its unused balance back (event backBalance).
When switched off, the machine can be refilled with coffee (event addCof), and its Pot
retrieved (event takePot). The events powerUp and powerDown are for switching the machine
respectively on or off. Finally, a special event (autoOut) sets the machine out of order: it
models the unexpected occurrence of a failure while the machine is in use. It also occurs
when either there is no more coffee, or the Pot is full (see serveCof). Figure 3 represents the
3MTS of the ES in Fig. 2 for the three following predicates p0

def
= Status = 0, p1

def
= Status =

1 and p2
def
= (Status = 1 ∧ AskChange = 0 ∧ AskCof = 0 ∧ Balance = 0) ∨ Status = 2

that are respectively the guards of the events takePot, autoOut and powerDown.

4 Ball Chains Computation and Instantiation
This section presents our method for computing both an abstraction that is a 3MTS, and
an under-approximation.

5

q1

takePot +,
addCof

powerUp

powerDown +

autoOut +

insert50 +

insert100 +

serveCof

backBalance −

powerDown +/−

serveCof

autoOut +

insert50,
insert100,
cofReq,

changeReq,
serveCof

q4 q3 q2

Figure 3. 3MTS of the Coffee Machine w.r.t. Predicates p0, p1 and p2.

4.1 Approximated Transition System ATS
The reunion of both the abstraction and its under-approximation we call an Approximated
Transition System (ATS), defined in Def. 3.

Definition 3 (Approximated Transition System) Let 〈Q,Q0,∆,∆
+,∆−〉 be an 3MTS.

A tuple 〈Q,Q0,∆,∆
+,∆−, C, C0,∆

c, α, κ, 〉 is an ATS whose 〈C,C0,∆
c, α, κ〉 is a con-

cretization of the 3MTS where:

• C,C0 are sets of respectively concrete states and concrete initial states,

• ∆c(⊆ C × Ev × C) is a concrete labelled transition relation.

• α is a total abstraction function from C to Q,

• κ is a total coloration function from C to {green, blue}.

The concrete part 〈C,C0,∆
c〉 is an under-approximation of the labelled transition system

that is the semantics of the event system from which the 3MTS is deduced. In the rest of
the paper, for the abstract states, we distinguish between the may-reachability and the
reachability. The former is the reachability by the abstract may transition relation ∆, and
the latter is the reachability by the concrete transition relation ∆c in the ATS. We say
that an abstract state q is reachable if there exists at least one concrete instance of q that
is reachable thanks to the transition relation ∆c. By extension, an abstract transition is
reachable if there exists at least one concrete instance in ∆c whose source state is reachable.
The concretization of the may transitions is performed on the fly during the computation
of the 3MTS. The algorithm for doing this is given in [JKMV17], and is summarized as
follows. It guarantees that every may transition between two abstract states is concretized.
A total abstraction function α maps each concrete state of C to an abstract state of Q.
Adapted from [VY03], a coloration function κ maps each concrete state of C to a colour:
green for the reachable states, and blue for those whose reachability is unknown. It allows
colouring the concrete transitions to reflect how they are known to be reachable: green for
certain reachability, blue for uncertain.

4.2 Ball Chains Instantiations
In this paper, we complete the under-approximation computed by the algorithm (summa-
rized above) of [JKMV17], with a concretization of the Ball chains defined by the must+
and must− transitions. We proceed separately with the must+ and the must− chains.
For the former we concretize forwardly, by simple DFS, any must+ chain of each must+
structure (see Fig. 4(c) and Fig. 4(a)). The DFS is launched from any must+ transition

6

without predecessor. If all must+ transitions have a predecessor, the DFS is launched
from a transition arbitrarily chosen in a strongly connected component. The algorithm is
straightforward and is not presented in this paper. In order to reconnect when possible the
(as yet) unreached transitions, it connects in priority a green instance of the source state
if available, to a blue instance of its target state. Exemplified with Fig. 4(a), it tries to
connect a green instance of state 1 to a blue instance of state 2. If no such blue target
instance is available, a green one is used instead. And if none of the source instances is
green, the transition is concretized in blue.

61 2 3

8

4

9

7

5

(a) A must+ structure with one entry point,
or a must- structure with no entry point

1
10

8

9

7

6

5

4 3 2

(b) A must- structure with one entry point, or
a must+ structure with no entry point

3

1 2 3 4 5 6 7

9
4

5

8

(c) A concretization of Fig. 4(a) seen as a
must+ structure

16

4

8

6

10

7

7

9 5 4 3 2

(d) A concretization of Fig. 4(b) seen as a
must- structure

Figure 4. Examples of Must Structures and their Concretizations

4.3 Concretization Algorithm of the must− Transitions
The concretization of the must− structure (see Fig. 4(d) and Fig. 4(b)) is performed as de-
scribed by Alg. 1. It proceeds in two steps. First, it explores–backwardly and symbolically–a
path of the must− structure from its final state (state 1 in Fig. 4(d) and Fig. 4(b)). So
it computes the weakest precondition wp_q of the initial state of the path (for example,
either state 4, 6 or 7 in Fig. 4(d)), that allow reaching the final state. Second, it chooses if
available a green state in wp_q, and executes–this time forwardly and concretely–the path
until the final state, which it colours in green in this case. If none of the states in wp_q is
green, the path is coloured in blue.

Algorithm 1 concretizesmust− structures that are either trees (see Fig. 4(d)) or strongly
connected components having possibly a tail (see Fig. 4(b)). The concretization is performed
from a “root” transition qr

e→ qr′: actually it is a transition with no successor, such as
transition 2→ 1 in Fig. 4(b), called root because the exploration is performed backwardly.
In a strongly connected component without tail, the root is chosen arbitrarily. The outer
while loop, in line 3, enumerates a set of paths spanning the must− structure. The paths
are computed backwardly from the root. A path in the algorithm is a sequence of must−
transitions, where each transition t = q

e→ q′ is stacked as a pair 〈t, wp_q〉 that associates
the transition itself with the weakest precondition w.r.t. q′ of the event e it applies. At
each transition branching, one of the transition is explored and added to the path, while
the other ones are backed up with the current state of the path into a stack pb, for a future
exploration (while loop, lines 4 to 14). This being done, the current path is recorded in the
stack p, ready for forward concretization, and the other paths are backed up in the stack
pb. Concretization starts in line 15 by choosing a state in the current wp_q (that of the
start of the path), possibly green if any and blue otherwise. Then the while loop in lines 16
to 21 concretizes forwardly the current path by pooping out from p the transitions one by
one, each time applying the event to the last obtained state instance, and propagating the
green or blue colour. Last, the conditional lines 22 to 28 backtrack to the nearest backed
up branch, for exploring the next path of the tree.

7

Algorithm 1: ATS Computation of Must- Ball Chains
Inputs : qr e→ qr′: the root transition of a Must- tree

〈X, I, Init,EvDef〉: an Event System where EvDef def
= {e def

= a | e ∈ Ev}

Input-Outputs : 〈Q,Q0,∆,∆
+,∆−, C, C0,∆

c, α, κ〉: an ATS
Variables : t: the current transition in the Must- tree q e→ q′

wp_q: wp(e, q′)
p: path traveled, stored as a stack, from the root
pb: stack of the branchings remaining to handle
B: set of the branches that reach the current state q
M−: ∆− transitions marking function (∆− → boolean)

1 pb := ∅; p := ∅; t := qr
e→ qr′; wp_q := wp(e, qr′) ∧ qr;

2 B := {qr e→ qr′}; M− := ∆− × {false}; push(p, 〈t, wp_q〉);
3 while B 6= ∅ do /* spanning path whose root is in B */
4 while B 6= ∅ do /* computation of the unmarked branches that reach q */

5 B := {s f→ q|∃(s, f).(s
f→ q ∈ ∆− ∧ ¬M−(s

f→ q)};
6 if B 6= ∅ then /* at least one branch is in B */
7 choose t in B; wp_q := wp(e, wp_q) ∧ q; push(p, 〈t, wp_q〉);
8 if B − {t} 6= ∅ then /* at least two branches are in B */
9 /* back up of the branches remaining to travel through */

10 push (pb, 〈B − {t}, p〉);
11 end
12

13 end
14 end
15 choose a concrete state c in wp_q, green if possible;
16 while ¬empty_stack?(p) do
17 〈(q, e, q′), wp_q〉 := pop(p);
18 c′ := e(c);α(c′) := q′; ∆c := ∆c ∪ {c e→ c′};
19 κ(c′) := κ(c);
20 c := c′;
21 end
22 if ¬empty_stack?(pb) then /* backtrack on the next path to explore */
23 〈B, p〉 := pop(pb); choose t in B; wp_q := wp(e, wp_q) ∧ q;
24 if B − {t} 6= ∅ then
25 push (pb, 〈B − {t}, p〉);
26 end
27 B := {t}; push(p, 〈t, wp_q〉);
28 end
29 end
30

Figure 5 shows the reachable (i.e. green) concrete part of the ATS of the 3MTS of
Fig. 3 that was obtained by our method. The full experimental results for this example
can be found in Table 1 in Section 5.2 on implementation and experiments: see the CM
case, line AP=2 (i.e. 2nd set of abstraction predicates). The 3MTS is constituted of 4
abstract states and 17 abstract transitions, amongst which 1 is both must− and must+, 1
is must− only, 6 are must+ only and 9 are may only. All the abstract states are covered
and 15 out of the 17 abstract transitions are covered (only the transitions q2

serveCof→ q1 and
q2

serveCof→ q3 are not covered). We obtain 18 reachable concrete transitions, 15 of which
coming from the concrete exploration (CXP) as performed by the algorithm of [JKMV17],
and 3 of which being added by the Ball chains instantiations (BCI, in bold in Fig. 5). These
3 concrete transitions are additional instances of abstract transitions already covered by
CXP. But contrarily to the CXP instances, they are connected: in Fig. 5 the bold sequence
q2

autoOut→ q1
powerDown→ q4

takePot→ q4 was not covered as a sequence by CXP.

5 Implementation and Experiments
This section introduces in Section 5.1 our proof-of-concept tool used to evaluate the impact
of must transitions concretization on the under-approximation. The experimental results

8

q1

takePot

takePot

addCof powerDown

insert100

backBalance

insert100

insert50

changeReq

cofReq

serveCof

autoOut

autoOut

powerDown

powerDown

insert50

powerUp

autoOut
q4

q3

q2

Figure 5. The Reachable Concrete Under-Approximation of the 3MTS of Fig. 3

are then provided in Table 1 in Section 5.2, with their analysis in Section5.3.

5.1 Tool Description
This section describes the general process of test generation using our proof-of-concept tool
combining both algorithms. The process is displayed in Fig. 6.

Figure 6. Tool Process

The model, expressed in the event-B language, and the set of abstraction predicates
are given as inputs to the tool. With the help of an SMT solver, the abstract transitions
modalities as well as a concrete instance of each may transition are computed. This gives a
first ATS (see ATS 1 in Fig. 6). Afterwards, again thanks to a solver, a concrete instance of
each must+ structure and each must− structure in the 3MTS is computed. This produces
a possibly enriched concretization which, together with the previously computed 3MTS,
constitutes an enhanced ATS (see ATS 2 in Fig. 6). The tests generation uses a JAVA
implementation of the Chinese Postman algorithm proposed in [Thi03]. The output of this
algorithm is the shortest path (a sequence of transitions) covering all reachable transitions
in the CTS at least once, therefore constituting instantiable tests whose steps are concrete
transitions.

Developed in JAVA version 8, the tool is designed as a multipurpose library for event
oriented systems analysis and simulation. Among other features, this library proposes pre-
implemented easy-to-use functions to compute the abstraction of a system along with its
transitions modalities (a 3MTS), compute concrete instances of abstract states or transi-
tions, compute the reachable states and transitions of a CTS, apply a substitution to a state,
etc. The library can also be used as a binding for SMT-Lib 2.0 standard compliant SMT
solvers (such as Z3 [dMB08]), since it allows building first order logic formulas, translating
them into a SMT-Lib 2.0 program, and checking for their satisfiability and looking for a
concrete model if applicable.

The complete source code can be downloaded at https://github.com/stratosphr/_StraTest_.
A complete tutorial about how to install and use the tool can be found at
https://github.com/stratosphr/_StraTest_/wiki.

9

Table 1. ATS Computation Results

Sys. #Ev AP #AP #AS #AT #M #M− #M+ Alg. #ASreach τAS(%) #ATreach τAT (%) #CT #CTreach #Steps Time (s)

EL 4

1 2 2 8 6 1 1 CXP 2 100 8 100 14 9 10 00.343
BCI 2 100 8 100 15 10 11 00.020

2 2 3 9 5 4 4 CXP 3 100 9 100 18 14 23 00.520
BCI 3 100 9 100 23 20 34 00.100

3 2 3 12 9 2 1 CXP 3 100 8 66.67 18 10 17 00.655
BCI 3 100 8 66.67 20 12 17 00.060

4 2 4 11 4 5 5 CXP 4 100 11 100 17 16 22 00.914
BCI 4 100 11 100 23 23 41 00.143

5 3 6 13 0 13 13 CXP 6 100 13 100 21 16 19 01.233
BCI 6 100 13 100 32 30 52 00.655

CA 20

1 2 3 23 22 0 1 CXP 3 100 17 73.91 38 19 22 01.579
BCI 3 100 17 73.91 38 19 22 00.011

2 6 8 31 28 1 2 CXP 8 100 25 80.65 50 26 41 14.712
BCI 8 100 25 80.65 52 28 49 00.033

3 9 9 30 18 7 11 CXP 9 100 28 93.33 52 29 42 25.759
BCI 9 100 28 93.33 58 35 51 00.201

CM 11

1 3 3 13 10 2 3 CXP 3 100 12 92.31 26 14 23 01.188
BCI 3 100 12 92.31 29 17 27 00.052

2 3 4 17 9 2 7 CXP 4 100 15 88.24 32 15 25 01.428
BCI 4 100 15 88.24 35 18 31 00.107

3 3 4 32 30 1 1 CXP 4 100 22 68.75 55 24 43 01.903
BCI 4 100 22 68.75 55 24 43 00.027

4 3 5 36 32 2 2 CXP 4 80 23 63.89 60 25 46 02.583
BCI 4 80 23 63.89 61 25 46 00.111

PH 4

1 3 3 12 3 8 3 CXP 3 100 12 100 22 21 37 00.452
BCI 3 100 12 100 30 29 59 00.144

2 3 5 19 2 16 15 CXP 5 100 18 94.74 31 29 62 00.930
BCI 5 100 19 100 45 45 114 00.327

3 4 7 33 2 30 29 CXP 7 100 32 96.97 54 52 129 01.698
BCI 7 100 33 100 81 81 202 01.019

4 6 8 62 1 58 44 CXP 8 100 62 100 88 88 164 02.827
BCI 8 100 62 100 112 112 198 28.641

5.2 Experimental Results
This section provides the experimental results obtained with the two approaches. We com-
pare the results on a set of four realistic event systems, with three to five different sets of
abstraction predicates for each of them. The set of examples is composed of an electrical
system (EL) taken from [BJM11], a car alarm system (CA) taken from [ABJK11], the
coffee machine system (CM) presented in Section 3, and a phone book system (PH) taken
from [UL06]. Note that the results for the set of abstraction predicates used for the CM
system in Section 3 are highlighted using a bold font in Table 1.

The description of the columns appearing in Table 1 is the following: Sys indicates the
system under test, #Ev is the number of events in the system, AP is the index of the set of
abstraction predicates, #AP is the number of abstraction predicates, #AS and #AT are
respectively the number of abstract states and transitions in the 3MTS, #M is the number
of may transitions having neither the must− nor the must+ modality, #M− and #M+

are respectively the number of must− and must+ transitions, Alg. is the algorithm used
(CXP for the concrete exploration method presented in [JKMV17] and BCI for the Ball
chains instantiation method presented in this paper, that completes CXP), #ASreach is
the number of abstract states covered by the tests, τAS is the abstract states coverage (in
%), i.e. #ASreach

#AS , #ATreach is the number of abstract transitions covered by the tests, τAT
is the abstract transitions coverage (in %), i.e. #ATreach

#AT , #CT is the number of concrete
transitions in the 3MTS, #CTreach is the number of concrete transitions appearing in the
tests, #Steps is the number of tests steps, Time is the ATS computation time (in seconds).

The main results reside in the τAS , τAT , #CT, #CTreach and #Steps columns of
Table 1. They show that the Ball chains concretization tends to concretize indeed reachable
concrete transitions and to increase the tests steps.

All experiments have been led using the Z3 SMT solver [dMB08] on an Intel(R) Core(TM)
i7-4710MQ CPU @ 2.50GHz, with 16GB of RAM.

5.3 Analysing the Results
This section analyses the results presented in Table 1.

Except for two cases (see the PH system with the second and third AP), the con-

10

cretization of must− and must+ transitions does not increase the abstraction coverage.
This result shows that either all computed must transitions were already covered by the
CXP method, because they also are may transitions, or that the Ball chains concretization
did not successfully connect the concretized transition to the reachable part of the first ATS.

While the abstract states and transitions coverage are not improved by the Ball chains
concretization, the number of reachable concrete transitions is increased for thirteen cases
out of sixteen by 28% on average. This means that, on average, 72% of the total number
of reachable transitions in the final CTS where concretized by the CXP algorithm. The
difference between the #CTreach row for the BCI method and the #CTreach row for the
CXP method gives the number of new reachable transitions brought by the BCI method.
Even if this number may seem low, the contribution brought by the BCI still results in an
increased number of test steps by 38.8% on average. Note that on some cases, the Ball
chains concretization allows to cover concrete transitions which were previously not reach-
able in the ATS obtained with the CXP method. This is the case for instance for the PH
system with the second set of abstraction predicates where twenty-nine concrete transitions
were reachable out of the thirty-one. With the Ball chains concretization, fourteen new
concrete transitions are computed, which results in sixteen transitions becoming reachable.
This means that two previously unreached transitions concretized by the CXP method are
reached thanks to the concretization of the Ball chains.

The BCI computation time is correlated with both the number of must transitions and
the number of branches in the must structures (see Fig. 4, Section 4). This correlation
clearly appears for the PH system with the fourth set of abstraction predicates, where
most of the sixty-two abstract transitions have at least one must modality, and most have
both themust− andmust+ modalities. In this case, themust concretization is much slower
than the CXP ATS computation. This is due to the complexity of the BCI algorithm, that
is time exponential in the number of branchings of the must− tree.

Finally, let us notice that the progression of reached concrete transitions brought by
BCI (i.e. the difference between two successive #CTreach rows) is roughly correlated to
the number of must− transitions (with about 1 or 2 units of difference). This might result
from the backward symbolic exploration over the must− transitions, that tends to create
new start states for the concrete sequences. By now, confirming this point would require
further experiments.

As a conclusion, these experimental results show that, although the BCI does not no-
ticeably improve the coverage of the states and transitions of the abstraction, it enhances
the concrete exploration of the system by adding new test steps.

6 Related Work
In [NK00] as well as in [PPV07], the set of abstraction predicates is iteratively refined in
order to compute a model bisimilar to the initial semantic model when it exists. None
of these two methods is guaranteed to terminate, because of the refinement step that
sometimes needs to be repeated endlessly. SYNERGY [GHK+06] and DASH [BNR+10]
combine under-approximation and over-approximation computations to check safety prop-
erties on programs. As we aim to provide an efficient method to build a reachable under-
approximation of a system that covers all abstract states and all abstract transitions w.r.t.
a specification and a set of predicates, our algorithm does not refine the approximation and,
consequently, it always terminates.

The closest methods to the algorithm of [JKMV17] are those that are proposed in [GGSV02]
and in [VY03]. For Alg. 1 we combine them with those proposed in [Bal04]. These ap-
proaches propose algorithms that compute an under approximated concretization of a pred-
icate abstraction covering its abstract states and transitions. Both these methods are ex-
ploited for generating tests. In this paper we are particularly concerned with the differences

11

between Alg. 1 and the method presented in [Bal04]. The main difference consists of the
fact that the reachability of the under-approximation is guaranteed in [Bal04] and applied
to C programs without abstracting the program counter. In contrast, with ES the control
flow can be abstracted being implicit and depending of many state variables. To address
this problem we propose an heuristics thanks to the coloration method inspired of the algo-
rithm in [VY03]. Our algorithm emphasizes the concretization of Ball’s chains from green
states, i.e. reached concrete states, computed by the first step (algorithm in [JKMV17]).
This heuristics is implemented thanks to an original backward symbolic execution of must−
chains.

Some other work compute under-approximations for generating tests from an abstrac-
tion. The tools Agatha [RGLG03], DART [GKS05], CUTE [SMA05], EXE [CGP+06] and
PEX [TdH08] also compute abstractions from models or programs, but only by means of
symbolic executions [PV09]. This data abstraction approach computes an execution graph.
Its set of abstract states is possibly infinite whereas it is finite with our method.

Our method can be applied to generate tests as the concolic execution of [SMA05]. The
concolic method allows the user to generate structural tests of systems covering partially
the control flow that must be elaborated. Our approach allows us to generate tests covering
the paths defined by the set of abstraction predicates for systems whose control flow is
implicitly defined.

7 Conclusion and Perspectives
We have presented a method that computes instantiated model-based tests from a tri-
modal abstraction of an event system. It proceeds by adapting to event systems two under-
approximation approaches issued from literature: the concrete exploration of [VY03] and
the instantiation of the Ball chains of [Bal04]. We have experimented with combining both
methods, and evaluated their complementarity. Our experimental results show that the
Ball chains instantiations do not improve the coverage of the abstract states and transi-
tions already achieved by the concrete exploration. But they explore more of the concrete
system by prolonging the tests sequences issued from the concrete exploration. The added
computing cost remains negligible, despite the must− instantiation’s complexity, as long as
the number of must transitions is reasonable.

This work opens up a number of perspectives. In particular, the coverage achieved by
the added test steps in other terms than abstract states and transitions coverage remains
to be evaluated. As presented in [BJM16], the abstraction predicates in our work originate
from a test purpose, i.e. a peculiar sequencing of some selected event applications. That
favours these events to apply as must+ or must− transitions, and thus appearing in the
Ball chains. As a result, the additional test steps by our method could cover those peculiar
event sequences as defined by the test purpose. This is illustrated by the example in Fig. 5,
where the three transitions added by the concretization of the Ball chains are applications
of the three events of the test purpose, the guards of which being the abstraction predicates.

More generally, by controlling the size of the abstractions, our method could aim at
using k-path coverage criteria for generating tests, rather than abstract state and transition
coverage. Finally, among all the Ball chains computed, only those that connected directly
to the concrete exploration have been kept in our under-approximation, the reachability of
the others being uncertain. Still, seeking for indirect connections towards those uncertain
chains could be a valuable effort, since this could provide bridges towards previously ignored
connected instance sequences. For example, for the CM example of Fig. 5, there are sev-
enteen unreached concrete transitions, and nine of which are in a connected structure (not
showed in the figure). Connecting this structure to the one that appears in Fig. 5 would
significantly improve the quality of the under-approximation.

12

References
[ABJK11] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, and Willibald Krenn.

UML in action: a two-layered interpretation for testing. ACM SIGSOFT Soft-
ware Engineering Notes, 36(1):1–8, 2011.

[Abr96] J.-R. Abrial. The B Book. Cambridge Univ. Press, 1996.

[Abr10] J.-R. Abrial. Modeling in Event-B: System and Software Design. Cambridge
Univ. Press, 2010.

[Bal04] T. Ball. A theory of predicate-complete test coverage and generation. In FMCO,
volume 3657 of LNCS, pages 1–22, 2004.

[BC00] Didier Bert and Francis Cave. Construction of finite labelled transition systems
from B abstract systems. In IFM, pages 235–254, 2000.

[BJM11] Pierre-Christophe Bué, Jacques Julliand, and Pierre-Alain Masson. Association
of under-approximation techniques for generating tests from models. In TAP,
volume 6706 of LNCS, pages 51–68. Springer, 2011.

[BJM15] Hadrien Bride, Jacques Julliand, and Pierre-Alain Masson. Tri-modal under-
approximation of event systems for test generation. In SAC 2015, 30th ACM
Symposium On Applied Computing, pages 1737–1744, Salamanca, Spain, April
2015.

[BJM16] Hadrien Bride, Jacques Julliand, and Pierre-Alain Masson. Tri-modal under-
approximation for test generation. Science of Computer Programming,
132(2):190–208, 2016.

[BNR+10] Nels E. Beckman, Aditya V. Nori, Sriram K. Rajamani, Robert J. Simmons,
SaiDeep Tetali, and Aditya V. Thakur. Proofs from tests. IEEE Trans. Software
Eng., 36(4):495–508, 2010.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. J. Log.
Comput., 2(4):511–547, 1992.

[CGP+06] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Daw-
son R. Engler. EXE: automatically generating inputs of death. In ACM Con-
ference on Computer and Communications Security, pages 322–335, 2006.

[Dij75] E.W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation of
programs. Com. of the ACM, 18(8):453–457, 1975.

[Dij76] E.W. Dijkstra. A Discpline of Programming. Prentice-Hall, 1976.

[dMB08] L. de Moura and N. Bjorner. An efficient SMT solver. In TACAS, volume 4963
of LNCS, pages 337–340, 2008.

[GGSV02] Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte, and Margus Veanes.
Generating finite state machines from abstract state machines. In ISSTA, pages
112–122, 2002.

[GHJ01] Patrice Godefroid, Michael Huth, and Radha Jagadeesan. Abstraction-based
model checking using modal transition systems. In CONCUR, pages 426–440,
2001.

13

[GHK+06] Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan, Aditya V. Nori,
and Sriram K. Rajamani. Synergy: a new algorithm for property checking. In
SIGSOFT FSE, pages 117–127, 2006.

[GJ03] P. Godefroid and R. Jagadeesan. On the expressiveness of 3-valued models. In
VMCAI, volume 2575 of LNCS, pages 206–222. Springer, 2003.

[GKOT00] Yuri Gurevich, Philipp W. Kutter, Martin Odersky, and Lothar Thiele. Ab-
stract State Machines, Theory and Applications, volume 1912 of Lecture Notes
in Computer Science. Springer, 2000.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated
random testing. In PLDI, pages 213–223, 2005.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV,
volume 1254 of LNCS, pages 72–83. Springer, 1997.

[Gur00] Yuri Gurevich. Sequential abstract-state machines capture sequential algo-
rithms. ACM Trans. Comput. Log., 1(1):77–111, 2000.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Com. of the
ACM, 12(10):576–580, 1969.

[JKMV17] Jacques Julliand, Olga Kouchnarenko, Pierre-Alain Masson, and Guillaume Vo-
iron. Approximating event system abstractions by covering their states and
transitions. In A.P. Ershov Informatics Conference (the PSI Conference Series,
11th edition), LNCS, Moscow, Russia, June 2017. To appear.

[LT88] Kim Guldstrand Larsen and Bent Thomsen. A modal process logic. In LICS,
pages 203–210, 1988.

[NK00] K. S. Namjoshi and R. P. Kurshan. Syntactic program transformations for
automatic abstraction. In CAV, volume 1855 of LNCS, pages 435–449, 2000.

[PPV07] Corina S. Păsăreanu, Radek Pelánek, and Willem Visser. Predicate abstraction
with under-approximation refinement. LMCS, 3(1:5):1–22, 2007.

[PV09] Corina S. Păsăreanu and Willem Visser. A survey of new trends in symbolic
execution for software testing and analysis. STTT, 11(4):339–353, 2009.

[RGLG03] N. Rapin, C. Gaston, A. Lapitre, and J.-P. Gallois. Behavioral unfolding of
formal specifications based on communicating extended automata. In ATVA,
page 10 pages, 2003.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing
engine for C. In ESEC/SIGSOFT FSE, pages 263–272, 2005.

[TdH08] Nikolai Tillmann and Jonathan de Halleux. Pex-white box test generation for
.net. In TAP, volume 4966 of LNCS, pages 134–153, 2008.

[Thi03] H.W. Thimbleby. The directed chinese postman problem. Software: Practice
and Experience, 33(11):1081–1096, 2003.

[UL06] M. Utting and B. Legeard. Practical Model-Based Testing. Morgan Kaufmann,
2006.

[VY03] Margus Veanes and Rostislav Yavorsky. Combined algorithm for approximating
a finite state abstraction of a large system. In ICSE 2003/Scenarios Workshop,
pages 86–91, 2003.

14

