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We report experimental confirmation of the universal emergence of the Peregrine soliton predicted
to occur during pulse propagation in the semi-classical limit of the focusing nonlinear Schrödinger
equation. Using an optical fiber based system, measurements of temporal focussing of high power
pulses reveal both intensity and phase signatures of the Peregrine soliton during the initial nonlinear
evolution stage. Experimental and numerical results are in very good agreement, and show that the
universal mechanism that yields the Peregrine soliton structure is highly robust and can be observed
over a broad range of parameters.

The nonlinear Schrödinger equation (NLSE) is a fun-
damental model of nonlinear science that describes the
physics of many different systems including water waves,
plasmas, nonlinear fiber optics and Bose-Einstein con-
densates [1]. The study of NLSE solutions is a subject of
much current research [2–7], with a topic of particular in-
terest being the properties of solutions known as solitons
on finite background, since their characteristics suggest
links with the emergence of rogue waves on the ocean
[8–10]. The prototype rogue wave structure of this kind
is the celebrated Peregrine soliton (PS), which was first
derived in the context of plane wave modulation insta-
bility [11]. Exciting the PS from modulation instability
in experiments requires careful choice of initial condi-
tions, but its dynamics have now been seen in a number
of careful studies in different systems - first in nonlinear
fiber optics [12], and then in hydrodynamic wave tanks
[13], plasmas [14] and recently in an irregular ocean sea
state [15]. This experimental work has motivated much
effort into studying the properties of the PS in more de-
tail [9, 16], and has also stimulated renewed interest in
the use of advanced mathematical approaches to obtain
insight into other NLSE solutions [17–19].

Significantly, although the PS solution is widely con-
sidered to be uniquely associated with modulation insta-
bility, recent mathematical studies have shown that the
PS in fact appears more generally during the nonlinear lo-
calisation of high power pulses in the semi-classical (zero
dispersion) limit of the focussing NLSE [20]. This work
(which is based on asymptotic analysis of the NLSE near
the gradient catastrophe that develops due to nonlinear
focussing) is a fundamental theoretical result that shows
how the PS structure bridges two seemingly-distinct ar-
eas of nonlinear propagation – plane wave modulation

instability and high power pulse propagation.

Some evidence for this PS universality has already been
seen in experiments studying partially coherent nonlinear
pulse propagation in optical fibers [21], but all other ex-
perimental studies of the PS have been restricted to the
regime of plane wave modulation instability [12–14, 22].
In a sense, this is surprising, because nonlinear pulse
propagation in optical fiber has been studied experimen-
tally for decades [23–26] but to our knowledge, any pos-
sible link between high power pulse evolution and the PS
has never been explored.

In this paper, we fill this gap and present a detailed
theoretical and experimental study that confirms the ap-
pearance of the universal PS structure in nonlinear pulse
evolution in an NLSE system. Although our experi-
ments focus on the propagation of higher-order solitons,
our results are in fact applicable to a wide range of ini-
tial conditions. We use two different fiber optic based
setups, and in one experiment where we use the tech-
nique of frequency-resolved optical gating (FROG), we
fully characterize intensity and phase of the pulse during
its propagation. These results are not only of funda-
mental interest in showing the universality of the PS in
cubic NLSE systems, but they also provide insight into
the physical characteristics of nonlinear pulse propaga-
tion in general. In particular, nonlinear compression is
well known to lead to a central temporally-localised peak
sitting upon an extended background [23], and we are
now able to physically interpret this behaviour in terms
of the properties of the PS. In a wider context, our results
also show clearly the physical relevance of the semiclas-
sical regime of the NLSE, and confirm the significance
of the associated mathematical techniques used to anal-
yse the regularisation of a gradient catastrophe in the
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neighbourhood of a nonlinear focus.
We begin by writing the focussing NLSE as follows:

i
∂ψ

∂ξ
+

1

2N

∂2ψ

∂τ2
+N |ψ|2ψ = 0. (1)

Here, the envelope ψ(τ, ξ) is a function of normalized
distance ξ and time τ , and the input pulse is such that
ψ(τ, 0) → 0 as τ → ±∞. Note that these initial con-
ditions are fundamentally different to the plane wave
used to excite the PS from modulation instability [27].
The parameter N > 0 (not necessarily integer) that sets
the dimensionless amplitude is well-known in optics as
the soliton number [26], but the associated parameter
ε = 1/N is also used in descriptions of NLSE dynamics,
particularly in the semi-classical analysis [20, 28, 29].

In terms of fiber parameters and physical distance z
and time t, we have ξ = z/

√
LNL LD where we de-

fine nonlinear length LNL = (γP0)−1, dispersive length
LD = T 2

0 /|β2|, and τ = t/T0. Here γ and β2 are the fiber
nonlinearity and dispersion respectively [26], and the in-
put pulse is characterized by timescale T0 and peak power
P0. The normalised envelope ψ = A/

√
P0 where A(t, z)

is the dimensional field (units of W1/2). The parame-

ter N =
√
LD/LNL =

√
γP0T 2

0 /|β2| couples the fiber
parameters and initial conditions. When N is an inte-
ger, the initial condition ψ(τ, 0) = sech(τ) represents an
exact N -soliton solution of the NLSE, which follows the
well-known periodic evolution [30].

Analysis proceeds by writing the ψ in terms of real vari-
ables (Madelung transform [31]) corresponding to inten-
sity ρ and instantaneous frequency (or chirp) u defined

through ψ(τ, ξ) =
√
ρ(τ, ξ) exp[iN

∫ τ
u(τ ′, ξ)dτ ′]. As-

suming a smooth (more precisely, analytic) initial pulse
shape and large N , we obtain a leading order approxi-
mation (nonlinear geometric optics) system:

ρξ + (ρu)τ = 0, uξ + uuτ − ρτ = 0 (2)

describing the initial evolution of the pulse as long the
derivative modulus |ρτ | is not too large [28, 29].

It is known from analytical solutions of (2) [32, 33]
and numerical studies of the full NLSE (1) [34] that
nonlinear pulse propagation at high power in the fo-
cussing NLSE typically leads to temporal self-focussing
of the intensity profile resulting, at some ξ = ξc, in a
gradient catastrophe, the point when the intensity pro-
file has infinite derivative |dρ/dτ | → ∞. In the vicin-
ity of this point the geometric optics approximation
(2) becomes invalid and the full NLSE must be used.
Since N is assumed to be large (equivalently, ε = 1/N
is small) one can take advantage of the semi-classical
analysis of the NLSE inverse scattering solution per-
formed in ref. [20]. One of the key results of ref. [20]
is that, when ε � 1 (i.e. N � 1) the dynamics near
the gradient catastrophe universally lead to the gener-
ation of the rational PS as a local asymptotic solution
of the NLSE, which at the point of maximum tempo-
ral localisation ξm = ξc + O(N−4/5) assumes the form

|ψPS|(τ, ξm) = a0[1 − 4/(1 + 4a20N
2τ2)](1 + O(N−1/5)),

with a0 =
√
ρ(0, ξc) [20]. For N-soliton initial data, as

shown in [29], a0 =
√

2 +O(N−1/5).

Significantly, the appearance of the PS as a univer-
sal nonlinear coherent structure locally regularising the
gradient catastrophe does not depend on global prop-
erties (i.e. on the Zakharov-Shabat spectrum [35]) of
the NLSE initial condition ψ(τ, 0) – it can have high
soliton content or even be completely solitonless, (e.g.√
ρ(τ, 0) = sech(τ), u(τ, 0) = −µ tanh τ , where µ ≥ 2,

[29]). Moreover, although this analysis is carried out in
the semi-classical (N → ∞) limit of the NLSE (which
coincides with the nonlinear geometric optics approxi-
mation (2) only for ξ < ξc), as we shall see below from
simulations and experiment, the appearance of the Pere-
grine soliton in the compressed pulse profile is extremely
robust and is seen over a very wide range of N .

We begin by showing numerical results in Fig. 1 solv-
ing Eq. 1 for different N with pulsed initial condition
ψ(τ, 0) = sech(τ). The nonlinear dynamics of high power
pulse propagation in the focussing NLSE are well known,
leading to a strongly-localised central peak surrounded
by a temporally-extended background pedestal at a com-
pression distance ξm. The solid black lines in Fig. 1 (a)
show the amplitude at ξm, with the black dashed line
showing the profile of the input pulse. The discussion
above leads us to expect that the profile of the localised
compressed peak will follow that of the PS, and indeed
the analytic PS (dashed red line) is an excellent fit to
simulation (solid black line) over the central region.

To further compare the properties of the compressed
pulse and PS, Fig. 1(b) shows the longitudinal evolution

FIG. 1. (a) For different N as shown, we compare pulse ampli-
tude profiles at the compression point ξ = ξm (black solid line)
with the intensity profile of a scaled PS (red dashed line). The
black dashed line shows the input pulse ψ(τ, 0) = sech(τ). (b)
For N = 6, we compare the longitudinal evolution of the am-
plitude of the evolving input pulse and the PS at the temporal
centre ψ(0, ξ) (Note that the distance scale for the N = 6 evo-
lution is offset by ξm). (c) Numerical simulations showing the
maximum amplitude |ψ|max of the pulse at the compression
point as a function of N . The asymptotic limit from theory
[20] (3

√
2 ≈ 4.24) is shown as the dashed line.
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with ξ of the amplitude ψ(0, ξ) at the temporal centres
of the compressed pulse and the PS. We note close agree-
ment especially in the growth stage, but we remark that
the decay stage of the pulsed evolution would be expected
to deviate from the PS case after the first compression
point, as the pulse undergoes temporal splitting that de-
creases the value of the amplitude at τ = 0. (Note that
this splitting is the intrinsic NLSE evolution of an N -
soliton that sees evolution into a multi-peaked structure
before recurrence back to its initial state.) The maximum
value of the pulse amplitude at the compression point de-
scribed in [20] is denoted |ψmax| = ψ(0, ξm), and simula-
tion results plotting |ψmax| as a function of N are plotted
in Fig. 1(c). Although the slow (as N−1/5) convergence
of the asymptotic expansion precludes the comparison of
these numerical results with an analytic scaling law for
|ψmax| as a function of N , we nonetheless see clear evo-
lution of the numerical results for large N towards the
asymptotic value of 3

√
2 [20].

To compare in more detail the compressed pulse char-
acteristics with the PS, Fig. 2(a) shows an expanded view
of the evolution from Fig. 1 in the vicinity of the compres-
sion point. Fig. 2(b) shows the corresponding results for
an ideal PS, and we see clearly the close similarity in the
both amplitude and phase evolution. The confirmation
of the expected π phase jump across the zero intensity
points separating the “wings” and the central lobe of the
PS is particularly striking.

These numerical studies show clearly how PS charac-
teristics appear locally during nonlinear compression of
a pulsed initial condition in an NLSE system. We stress
again how fundamentally different this is from the emer-
gence of the PS in plane wave modulation instability.

We have confirmed these results experimentally using
two different setups injecting high power pulses in opti-
cal fiber. Fig. 3 shows a schematic of two setups used.
In setup 1, near-Gaussian pulses of ∆τ = 5.3 ps dura-
tion (FWHM) at 1525 nm from a spectrally-filtered op-
tical parametric oscillator (Coherent Chameleon) were
injected into 400 m of polarization maintaining fiber

FIG. 2. Detailed view of amplitude and phase dynamics for
(a) compression of a higher order N = 6 soliton and (b) a
Peregrine soliton. For clarity in the comparison, the distance
scale in (a) is ξ − ξm offset relative to the compression point.

FIG. 3. Schematic Experimental setups. The pulsed light
source is either a fiber picosecond laser either a spectrally fil-
tered femtosecond OPO. The nonlinear propagation of pulses
is achieved in a HNLF or in a standard PMF fiber

(Fibercore PMF). The fiber parameters were β2 =
−16.5× 10−27 s2 m−1 and γ = 2.4× 10−3 W−1 m−1, and
with injected pulse peak power of P0 = 3.3 W, we es-
timate N ≈ 2.2 for the input pulse (ε = 1/N ≈ 0.45).
With the input pulse well-fitted by a Gaussian profile, the
parameter T0 = ∆τ/1.665 [26]. Simulations were used to
select the input power such that the fibre length corre-
sponded to close to the first compression distance, and
the pulse intensity profile was measured using a custom-
designed optical sampling oscilloscope (see [36] and Sup-
plementary Information). The results obtained in this
case are displayed in Fig. 4 where we show the input
pulse (green sampled points), the compressed pulse at
the fibre output (blue sampled points), numerical simu-
lation results (solid black line) and the ideal theoretical
PS (solid red line). Note that there are no free parame-
ters used in the simulations.

FIG. 4. Experimental and numerical simulations : tempo-
ral dynamics of the optical power (setup 1). Input pulse
(green points) corresponding to N = 1/ε ' 2.2. Output of
the 400 m-long PMF (blue circles). Numerical simulations of
NLSE (black line) and theoretical Peregrine soliton (red line).

These experiments provide clear confirmation that
nonlinear pulse compression in optical fiber yields inten-
sity characteristics in good agreement with the PS. To
examine the pulse properties in more detail, however, re-
quires complete characterisation of the compressed pulse
in both amplitude and phase, and to this end we devel-
oped a second experimental setup using second harmonic
generation FROG to characterise the nonlinear pulse evo-
lution [37, 38].

In these experiments, the input pulses from a picosec-
ond fibre laser (Pritel PPL) had duration ∆τ = 1.1 ps
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FIG. 5. Intensity (bottom) and phase (top) measurements of compressed pulse characteristics in optical fiber at the distances
indicated, comparing experiment (black line) with simulations (red line). For the results at 10.0 m and 10.6 m, we see clearly
a flip in the phase characteristics across the central intensity lobe. For these cases, we also plot the expected theoretical profile
of an ideal Peregrine soliton.

(FWHM) at 1550 nm. The pulses were injected with
input power P0 = 26.3 W into Ge-doped highly non-
linear optical fiber (HNLF) fiber with β2 = −5.23 ×
10−27 s2 m−1 and γ = 18.4 × 10−3 W m−1. The input
pulses here were was well-fitted by a sech profile such
that T0 = ∆τ/1.763 [26], giving N ≈ 6. Numerical sim-
ulations for these parameters determined the first point
of compression around z = 10.3 m. Note that our simu-
lations also included the effect of third order dispersion
(β3 = 4.27 × 10−41 s3 m−1), the Raman effect [26] and
input pulse asymmetry, but whilst including these effects
was found to improve quantitative agreement with ex-
periment (see below), the essential pulse dynamics up to
the first compression point remain very well described by
an ideal NLSE. Of course, the higher-order effects play a
major role beyond the compression point where they lead
to supercontinuum broadening that prevents observation
of recurrence to the initial state [34].

Experiments were first performed at a maximum fiber
length of 10.6 m, before the fiber was cut-back progres-
sively. At each fiber length, FROG measurements were
made to yield intensity and phase profiles. FROG acqui-
sition was performed on a 512× 512 grid and FROG re-
trieval errors were typically 2×10−3. Standard checks of
the retrieved pulse characteristics involving comparison
with independent spectral and autocorrelation measure-
ments were used to check measurement fidelity, and the
direction-of-time ambiguity was lifted by an additional
FROG measurement of propagation in a length of single
mode fiber [37].

The results of these experiments are shown in Fig. 5.
Here we plot the retrieved intensity (bottom) and phase
(top) at the fiber lengths indicated, comparing experi-
ment (black line) with simulations (red line). In all cases,
we see excellent agreement between experiment and sim-
ulation, and we clearly observe the compression of the
central region of the intensity profile and the development
of a broader intensity pedestal. The associated phase

evolution is dominated by nonlinearity (where the phase
profile follows the intensity profile) but as we approach
the compression point, we see the development of a cen-
tral region of phase with steepening edges upon a slower
phase variation associated with the intensity pedestal.

Indeed for the results at 10 m and 10.6 m, we also plot
the intensity and phase profile of an ideal PS solution,
and there is excellent agreement with experiment and
simulation across the pulse center. Of course, one dif-
ference is that the PS background extends to τ → ±∞
whereas the pedestal observed in experiments is limited
by the temporal width of the input pulse. This high-
lights how the emergence of the PS here is a local dy-
namical mechanism. The qualitative and quantitative
agreement is clear, and in particular, as observed in nu-
merical simulations of Fig. 2, the π phase jump occurring
at zero intensity between the central lobe and the back-
ground pedestal is a striking signature of the PS. Note
finally, that the change of the sign of the phase derivative
across the maximum compression point which is also a
characteristic of the analytic PS solution at the center of
the pulse, is clearly observed in the experiments between
10 m and 10.6 m in Fig. 5. Remarkably, this property of
the PS is also consistent with the generic change of sign
of the phase derivative across the gradient catastrophe
point [33].

These results are very significant from both basic and
applied viewpoints. From a fundamental perspective,
our simulations and experiments confirm the predictions
of Ref. [20] in showing how the regularization of the
gradient catastrophe in the semiclassical NLSE leads to
the emergence of the PS. Specifically, in addition to its
appearance in the development of plane wave modula-
tional instability, we have confirmed that the PS also
arises as a result of nonlinear temporal compression as-
sociated with high power pulse propagation in the NLSE.
Our results also reveal that this phenomenon arises over
a very broad range of parameters : we locally observe
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the PS in the nonlinear regime of propagation as long
as ε =

√
LD/LNL ≤ 0.5 (N > 2). This is striking evi-

dence of the physical relevance of the semi-classical limit
of the NLSE which we anticipate will open new perspec-
tives for the theoretical description of phenomena related
to rogue wave formation. We also anticipate application
of these results in broader studies of focussing dynamics
in other cubic-NLSE systems, noting particularly studies
of higher-order soliton propagation scenarios in hydro-
dynamics [39]. Moreover, our work provides a rigorous
mathematical framework to interpret the emergence of
certain classes of coherent structures in integrable turbu-
lence [40], where identifying the origins of nonlinear lo-
calisation remains a challenging problem [19, 21, 36, 41].
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