
Squeeze Film Damping and Stiffening in Circular CMUT with Air-Filled Cavity: 

Influence of the lateral venting boundary conditions and the bias voltage 

The present paper deals with the analysis of the squeeze film effects in circular capacitive micromachined 

ultrasound transducers (CMUT) operating in air, with emphasis on improved bandwidth. Firstly, a 1D analytical 

approach based on parallel plate approximation is recalled. The opposing influences of the electrostatic softening 

and the squeeze film stiffening make the resonant frequency dependent on the bias voltage with respect to air 

spring constant to mechanical spring constant ratio. In a second part, FEM models using COMSOL Multiphysics® 

are built to analyze the influences of the plate flexibility and the lateral venting boundary conditions on the squeeze 

film effects. The associated numerical results show that viscous losses are involved in sealed air-filled cavities. 

Moreover, the dimensionless elastic and viscous damping forces do not depend on the lateral venting boundary 

conditions for high squeeze number range, usual for CMUT operation. Finally, 2D full coupled simulations of 

flexible CMUT are compared with experimental data. Thus, the squeeze film damping increases bandwidth of air-

coupled CMUTs with both sealed and laterally vented cavities. 
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1. Introduction 

 

Typical capacitive micromachined ultrasound transducers (CMUT) consist of a 

metallized membrane suspended over an evacuated or air-filled cavity, the height of which 

corresponds to main contribution to the electrostatic gap (Fig. 1). When the top of the membrane 

is loaded by a fluid or a gas, the membrane vibration can be used for ultrasound waves 

transmitting or receiving in immersion [1–3] and air-coupled [4–9] applications.  

Air-coupled sensing applications like flow metering [10], ultrasound imaging [11] and 

acoustic emission detection in solids [12] require high values of two key figures of merit, the 

sensitivity and the bandwidth. The sensitivity of CMUTs is mainly related to the DC bias 

voltage decreasing the electrostatic gap and thus increasing the capacitance variation [13]. The 

bandwidth of air-coupled CMUTs with evacuated cavity is very narrow. It is limited by the low 

acoustic impedance of air. Several approaches were proposed in the literature for bandwidth 

extension. One can fabricate a device with membranes of different radii [14] or use selective 

networks to electronically manipulate the resonant behavior [15]. 

The most promising way for bandwidth extension is to use CMUTs with air-filled 

cavities [4,5,8]. The bandwidth of such CMUT increases due to squeeze film effects in the 

cavity and the resistance to the air flow through the venting holes. In order to study the effects 

of the squeeze film only, non-perforated circular CMUTs with lateral channels for the bottom 

electrode connection are fabricated using a wafer bonding technology process [16]. Within this 

context, the present work aims at providing a contribution to the analysis of the squeeze film 

effects in circular CMUTs by considering the influence of the DC bias voltage and the real 

lateral venting boundary conditions at the periphery of the CMUT cavity; i.e. quasi-sealed 

conditions for CMUTs only vented by narrow channels. The squeeze film effects are driven by 

both stiffening and damping mechanisms. 

The stiffening effect of the air film in the back cavity increases the resonant frequency 

of a vented [4,5] and sealed [17] CMUT. The pure spring force assumption [17,18] allows us 

to consider the squeeze film effect simply as an additional stiffness of uniform air gap (Fig. 1.a) 

in the existing lumped parameter models of CMUT [9,19,20]. However, the DC bias voltage 



causes the static deflection of the membrane, making the cavity non-uniform. The models based 

on finite difference plate equation discretization take into account this effect [21–25]. 

Therefore, the air stiffness of non-uniform circular cavity (Fig. 1.b) have to be determined to 

extend the scope of the elastic spring force assumption. 

The damping mechanisms have been investigated for a gas film trapped between two 

movable parallel plates. The behavior of the gas film can be defined as a solution of the 

Reynolds equation for compressible gas [26]. In this case, the viscous damping force occurs 

only for open vented lateral boundary conditions (BC), and is induced by the gas flow in and 

out of the cavity [17,18]. However, such models are not consistent with the behavior of 

elastically deformable CMUTs membranes. Furthermore, the models taking into account a 

flexible membrane lead to contradictory conclusions. In [27], the flexibility of the vibrating 

plate has been demonstrated to cause viscous damping for a sealed structure. On the other hand, 

Ahmad et al. [28] have showed that the resulting air flow inside a completely sealed circular 

CMUT cavity produces an air spring force with no dissipation. In order to clarify this 

contradiction, elastic and damping forces due to the squeeze films effects have to be assessed 

according to realistic geometry and boundary conditions. 

In the first part of this paper, a simple 1D analytical approach allows to describe the 

evolution of the resonant frequency as a function of the DC bias voltage related to the stiffness 

ratio between the air film and the piston. The combination of air stiffening effect in the back 

cavity and the electrostatic softening effect lead to opposing influences on the resonant 

frequency. Regarding the influence of the DC bias voltage on the geometry cavity, an 

"effective" gap constant is introduced as a parameter which allows to define the air stiffness of 

a non-uniform circular cavity as a function of the maximum displacement of the plate. 

In a second part, we propose a numerical approach based on the FEM Multiphysics 

COMSOL® software to define the dimensionless elastic and viscous damping forces in circular 

CMUT with flexible plate. For high squeeze number, typical for CMUT operation, air spring 

constants for piston and flexible membrane are similar. However, a viscous damping force for 

flexible membranes is present for both sealed and vented lateral boundary conditions (BC) and 

does not depend on venting BC. This loss is caused by air motion inside the cavity. Thus, the 

viscous damping characteristic of such CMUTs provides the possibility to increase the 

bandwidth for air-coupled applications. Finally, the experimental results are compared with the 

results of analytical calculation of resonant frequency as well as with the results of FEM 

simulations of resonant frequency and bandwidth. Both calculation approaches show a good 

agreement with experimental data. 

 

2. 1D electromechanical piston-like model of a circular CMUT with air-filled cavity 

 

In this section, the CMUT is considered as a rigid circular piston of radius 𝑎, thickness 

𝑡 and relative permittivity 𝜀𝑡. The piston is suspended above an air-filled cavity with the same 

radius and a thickness 𝑔0 (Fig.1.a). The top of the piston is metallized, but the electrode 

thickness is neglected in the following. The bottom electrode is covered by an insulation layer 



of thickness 𝑖 and relative permittivity 𝜀𝑖. The mass 𝑚 and the spring constant of the piston 𝑘𝑠 

are equivalent parameters representing respectively the mass and the stiffness of the CMUT 

membrane. The mass of the piston 𝑚 equals 𝜌𝑡𝑆, where 𝜌 is the piston’s material density, and 

𝑆 = 𝜋𝑎2 is the area of the circular piston. 

2.1. Electromechanical behavior of the piston-like CMUT 

A 1D parallel plate transducer model for evacuated CMUT is developed successfully in 

[13]. When the DC bias voltage 𝑉𝐷𝐶 is applied between the top and the bottom electrode, the 

electrostatic attraction is:  

𝐹𝑒 =
𝜀0𝑆𝑉𝐷𝐶

2

2(𝑑𝑒𝑓𝑓−𝑥)
2 ,      (1) 

where 𝜀0 is the permittivity constant of vacuum and 𝑑𝑒𝑓𝑓 = 𝑔0 + 𝑡/𝜀𝑡 + 𝑖/𝜀𝑖 is the effective 

electrostatic gap distance. This force causes a static displacement 𝑥 of the piston that is defined 

by the following equilibrium equation related to the restoring force of the piston equivalent 

spring 𝑘𝑠:  

𝜀0𝑆𝑉𝐷𝐶
2

2(𝑑𝑒𝑓𝑓−𝑥)
2 = 𝑘𝑠𝑥.      (2) 

The displacement at the collapse point is one-third of the effective electrostatic gap and the 

collapse voltage is given by: 

𝑉𝑐𝑜𝑙 = √
8𝑘s𝑑𝑒𝑓𝑓

3

27𝑆𝜀0
.      (3) 

2.2. Squeeze film elastic and viscous damping forces acting on a piston-like CMUT 

The superposition of a DC voltage 𝑉𝐷𝐶 and a small signal 𝑉𝐴𝐶 voltage applied between 

the CMUT electrodes leads to the piston vibration at the frequency of the AC excitation. The 

behavior of a trapped gas film between two parallel vibrating plates could be found as a solution 

of the linearized Reynolds equation for compressible gas [18]. This equation neglects the fluid 

inertia and uses the isothermal condition. A solution for vented circular plates in parallel motion 

is given by Crandall [29]. He uses simplified boundary conditions and vanished acoustical 

pressure at the edges of the moving plates. The dimensionless viscous 𝑓𝑑(𝜎) and elastic 𝑓𝑒(𝜎) 

damping forces are respectively: 

𝑓𝑑(𝜎) = (√
2

𝜎

𝑏𝑒𝑟√𝜎(𝑏𝑒𝑟1√𝜎+𝑏𝑒𝑖1√𝜎)+𝑏𝑒𝑖√𝜎(𝑏𝑒𝑖1√𝜎−𝑏𝑒𝑟1√𝜎)

(𝑏𝑒𝑟√𝜎)
2
+(𝑏𝑒𝑖√𝜎)

2 ),   (4) 

𝑓𝑒(𝜎) = (1 − √
2

𝜎

𝑏𝑒𝑟√𝜎(𝑏𝑒𝑖1√𝜎−𝑏𝑒𝑟1√𝜎)−𝑏𝑒𝑖√𝜎(𝑏𝑒𝑟1√𝜎+𝑏𝑒𝑖1√𝜎)

(𝑏𝑒𝑟√𝜎)
2
+(𝑏𝑒𝑖√𝜎)

2 ),  (5) 

𝜎 =
12𝜇𝜔𝑎2

𝑃𝑎𝑔0
2 ,       (6) 

where 𝜎 is called the squeeze number (6), 𝜇 is the dynamic viscosity of air, 𝜔 is the angular 

frequency of the vibration, 𝑃𝑎 is the ambient pressure, 𝑏𝑒𝑟, 𝑏𝑒𝑟1, 𝑏𝑒𝑖 and 𝑏𝑒𝑖1 are the Kelvin-

Bessel functions of order 0 and 1.  



In the case of low frequency oscillation and consequently low squeeze number, the plate 

moves slowly and the gas has time to "leak" out from the gap. In this case, the viscous damping 

force dominates. At the opposite, for high frequency oscillation, the gas film is mainly 

compressed and has no time to "leak" out. In this case, the elastic force dominates and the air 

film acts as a spring [18]. 

For sealed cavity and parallel plate motion, Darling et al. [30] demonstrated a pure 

spring force with no viscous damping for vibrating parallel rectangular plates. In this approach, 

we assume the same behavior for the sealed circular plate, i.e. 𝑓𝑑(𝜎) = 0 and 𝑓𝑒(𝜎) = 1. The 

comparison of solutions for vented and sealed air-filled cavities is presented in Fig. 2. The 

coefficient of viscous damping force 𝑐𝑑 and the air spring constant 𝑘𝑒 could be found as: 

𝑐𝑑 =
𝑃𝑎𝑆

𝜔𝑔0
𝑓𝑑(𝜎),      (7) 

𝑘𝑒 =
𝑃𝑎𝑆

𝑔0
𝑓𝑒(𝜎).      (8) 

In CMUTs, the typical distance 𝑔0 between the electrodes is in the micrometer range or 

lower. Thus, the mean free path length of the air 𝜆 = 65 nm [31] becomes not negligible 

compared with the air-filled gap size. Veijola et al. [32] presented a simple approximate 

equation which takes into account the rarefaction effect via an effective viscosity defined as: 

𝜇𝑒𝑓𝑓 =
𝜇

1+9.638·𝐾𝑛1.159
 ,     (9)  

where 𝐾𝑛 = 𝜆/𝑔0 is the Knudsen number. For 𝐾𝑛 < 0.01 the Navier-Stokes and Reynolds 

continuum equations could be used without any modifications. If 0.01 < 𝐾𝑛 < 0.1, the 

viscosity constant in the squeeze number expression (6) needs to be replaced by relation (9). 

2.3. Electrostatic softening against squeeze film stiffening 

The dynamic behavior of the parallel plate circular transducer with an air-filled cavity 

is described by the following differential equation of motion: 

𝑚�̈� + 𝑐𝑑�̇� + (𝑘𝑠 + 𝑘𝑒)𝑥 = 𝐹0𝑠𝑖𝑛(𝜔𝑡),   (10) 

where 𝐹0 is the amplitude of the small signal harmonic excitation. In this equation, we assume 

that the movable piston is not loaded by any medium at the top. 

For standard CMUTs dimensions and operating frequencies, the squeeze number is high 

and the pure air-film spring assumption for the CMUT with vented cavity can be considered: 

𝑘𝑒 ≅ 𝑃𝑎𝑆/𝑔0, 𝑐𝑑 ≅ 0 [17,18]. With this assumption, the air spring constant is a function of the 

gap size, and, consequently, the DC bias voltage level. Applied DC bias voltage causes both 

the stiffening effect of the squeeze air film in the back cavity and the electrostatic softening 

effect. The total stiffness 𝑘 as a function of the membrane displacement 𝑥 for CMUT with 

vented cavity becomes: 

𝑘 = 𝑘𝑠(1 −
2𝑥

𝑑𝑒𝑓𝑓−𝑥
) + 𝑘𝑒(1 +

𝑥

𝑔0−𝑥
).    (11) 

For relatively thin insulation and membrane layers 𝑔0 ≫ 𝑡/𝜀𝑡 + 𝑖/𝜀𝑖 and equation (11) can be 

simplified as: 



𝑘 = 𝑘𝑠 + 𝑘𝑒 + (𝑘𝑒 − 2𝑘𝑠)
𝑥

𝑔0−𝑥
.    (12) 

Eq. (11)–(12) could be also used for the case of sealed CMUT considering a stable pressure 

assumption inside the cavity. 

The natural resonant frequency 𝜔𝑛 and bandwidth ∆𝜔 for both open-vented (high 

squeeze number) and sealed boundary conditions are given respectively by: 

𝜔𝑛 = √
𝑘

𝑚
 ,       (13) 

   ∆𝜔 =
𝑐𝑑

𝑚
≅ 0.       (14) 

The dependence of the normalized frequency 𝜔𝑛/𝜔0 on the normalized DC bias voltage 

𝑉𝐷𝐶/𝑉𝑐𝑜𝑙 for different 𝑘𝑒/𝑘𝑠 ratio is presented in Fig. 3, where 𝜔0 = √𝑘𝑠/𝑚 is the pure 

mechanical eigenfrequency with an evacuated cavity. The curves are calculated from Eq. (2) 

and (12). The analysis of results shows that for 𝑘𝑒/𝑘𝑠 = 2 the natural eigenfrequency of piston 

vibration does not depend on applied DC bias voltage and equals to √3𝜔0. The resonant 

frequency of CMUT cell with air-filled cavity in the vicinity of collapse point is mainly defined 

by the air spring constant and tends to √3𝑘𝑒/(2𝑚).  

Experimental characterizations of the resonant frequency are performed on a 167µm 

radius plate at three pressure levels in a rough vacuum chamber: 50 Pa, 18.5 kPa, 31.5 kPa and 

at the atmospheric pressure, i.e. around 101 kPa. The corresponding ratios ke/ks are respectively 

about 0 (50Pa), 1.2 (18.5 kPa), 2.0 (31.5 kPa) and 6.4 (101 kPa). The Fig. 4 shows a reasonably 

good correlation between the experimental data and the 1D model predictions. The influence 

of the squeeze film damping on the resonant frequency at low DC bias voltage (increasing of 

the resonant frequency with the surrounding pressure) and the competition between the 

electrostatic softening and the squeeze film stiffening (depending on whether the ratio ke/ks is 

higher or lower than approximately 2) are properly estimated validating the interest of the 1D 

model at the pre-sizing phase. 

 

3. Squeeze film effects from 2D FEM simulations in the mechanics-thermoacoustics 

domains 

 

In this part, the CMUT is considered in a more realistic way as a clamped circular 

flexible plate. In the following, 2D FEM simulations from COMSOL Multiphysics® software 

allows to discriminate some trends about the influence of the plate flexibility on the squeeze 

film effect. Further we define air spring constant of non-uniform cavity caused by a DC bias 

voltage, by a pressure difference or by a stress release. An "effective" gap constant is introduced 

as parameter which allows to define the air spring constant as function of the maximum 

displacement of the clamped circular plate.  

3.1. Elastic and viscous damping forces under open-vented and sealed boundary 

conditions 



A 2D axisymmetric model of the circular plate over a uniform thin air gap is firstly 

implemented to discriminate the influence of the plate flexibility. No surrounding medium is 

taken into account above the top of the plate to focus on squeeze film effects. Navier-Stokes 

equations within the COMSOL Thermoacoustics module are used to model the squeeze film 

effects in the air-filled cavity. Both open-vented and sealed boundary conditions are considered 

in the simulations in order to clarify their respective impact. For both cases, the pressure in 

cavity 𝑃𝑎 is assumed to be stable and equals to one atmosphere (101.3kPa). We assume no 

pressure difference between cavity and ambient environment. The membrane is made of silicon 

and is 2.3µm thick. The air-filled gap thickness (𝑔0) is varied from 1µm to 40μm, and the 

rarefaction effect is ignored. Table 1 reports the material properties of silicon (isotropic 

assumption with averaged values) and aluminum. The excitation signal is a uniform pressure 

applied to the top of the plate and the displacement response of the system is calculated 

according to a harmonic analysis.  

Table 1. Material parameters of Silicon and Aluminum 

Mechanical material properties 

 Young's modulus  

(GPa) 

Poisson's ratio Density 

(kg/m3) 

Si (100) 148.8 0.176 2329 

Al 70 0.35 2700 

 

Without any DC bias voltage, the total system stiffness is a sum of mechanical and air 

stiffness, i.e. 𝑘 = 𝑘𝑠 + 𝑘𝑒. In other words, the difference between the resonant frequency of the 

flexible plate vibrating over a uniform thin air gap 𝜔𝑑 and the resonant frequency of the same 

plate in vacuum 𝜔0 is defined by the air-spring constant. By neglecting the difference between 

damped and natural resonant frequency, the air-spring constant can be calculated as:  

𝑘𝑒 = 𝑚(𝜔𝑑
2 − 𝜔0

2),      (15) 

where 𝑚 is the equivalent mass of the plate which is assumed to be the real mass of the silicon 

membrane. This assumption will be discussed in the following section. Thus, the dimensionless 

elastic damping force is expressed from Eq. (8) and (15) and equals: 

𝑓𝑒(𝜎) =
𝑚(𝜔𝑑

2−𝜔0
2)

𝑃𝑎𝑆/𝑔0
.      (16) 

As the top of the moving membrane is not loaded by any fluid or gas, the bandwidth of this 

system is completely determined by the squeeze film damping. Thus, the dimensionless viscous 

damping force 𝑓𝑑(𝜎) can be defined from Eq. (7) and (15) as: 

𝑓𝑑(𝜎) =
∆𝜔

𝜔𝑑
∙
𝑚𝜔𝑑

2

𝑃𝑎𝑆/𝑔0
.      (17) 

The extraction of the dimensionless elastic and viscous damping force constants according to 

equations (16) and (17) is performed. Fig. 5 shows the results for a 150µm radius plate and both 

open-vented and sealed boundary conditions. Fig. 6 represents the results for 50µm, 75µm and 

150µm radius plates and sealed boundary conditions. 

3.2. Discussion and significant outcomes 



For high squeeze numbers and any radius and boundary condition (cf. Fig. 5 and 6), the 

dimensionless elastic damping force tends to 1. Consequently, the air-spring constant is equal 

to: 𝑘𝑒 = 𝑃𝑎𝑆/𝑔0. Thus, the air-spring constant of a given flexible plate is equivalent to that of 

a piston with the same mass and radius. Additionally, this justifies the choice of the real mass 

used to identify the dimensionless elastic and viscous damping forces in equations (16) and 

(17). For low squeeze number, the numerical simulations do not predict accurately the 

dimensionless elastic and viscous damping forces by equations (16) and (17). This is 

highlighted by a shaded area in the low squeeze number region in Fig. 5 and 6. It will be noted 

that the dimensionless elastic and viscous damping forces are derived from the solution of 

linearized Reynolds equation neglecting fluid/gas inertia. However, the numerical simulations 

based on the Navier-Stokes equations solution take into account the inertia effects of air. For 

low squeeze number, air-spring constant decreases dramatically due to the gap increase. On the 

other hand, the added mass of air becomes not negligible and decreases the resonant frequency 

of the plate. Thus, it contradicts our assumption that the difference of the resonant frequencies 

is mainly governed by the air-spring constant. 

The comparison of the results for the dimensionless viscous damping force clearly 

shows the difference between the fluid/gas behavior under a flexible plate and a piston for both 

open-vented and sealed boundary conditions. For the piston parallel motion, the pressure 

difference between the squeeze air film and the boundary of open cavity causes the air to flow 

inside and outside the cavity. Obviously, this air motion induces viscous losses. In the case of 

sealed cavity, there is no pressure difference, no air motion and, consequently, no viscous loss 

(Fig. 2). For the flexible plate, due to the non-uniform profile of the vibration velocity, the 

pressure is non-uniform and it reaches its maximum at the center of the cavity. This pressure 

difference causes an air flow inside the sealed cavity, and, consequently, viscous loss. For high 

squeeze numbers, typical for CMUT operation, the viscous damping force is similar for both 

open-vented and sealed boundary conditions (cf. Fig. 5). This can be related to the lateral 

velocity profile, that is the same inside the cavity for both type of vented boundary conditions 

(cf. Fig. 7.a). The velocity profile along the center of open and sealed cavity for a 150µm radius 

membrane is identified in the vicinity of the resonant frequency for two gap size 1µm and 10µm, 

corresponding to two squeeze number values, 239 and 1.3 respectively. The velocity profile in 

Fig. 7.a demonstrates that the gas in cavity with open boundary has no time to "leak" from 

external border. This shows that the velocity profile is not sensitive to the type of vented 

boundary condition. When the gap increases or when the squeeze number decreases, the air 

flow in and out of open cavity rises (Fig. 7.b). Thus, the results of FEM simulations demonstrate 

that flexible plate and piston under squeeze film effect have completely different loss behaviors. 

Additionally, it can be noticed that the dimensionless elastic and viscous damping forces 

are not stable with the plate radius for a given boundary condition (cf. Fig. 6). However, as 

mentioned above, their respective values are similar for high squeeze number with the following 

trends: 𝑓𝑒(𝜎)~1 and 𝑓𝑑(𝜎)~𝜎
−0.89. 

Because typical CMUT operations involve squeeze number usually higher than 50, the 

following outcomes can be deduced: 

- The dimensionless elastic damping force can be considered close to 1, 



- The dimensionless elastic and viscous damping forces do not depend on the lateral vented 

boundary conditions. 

In further bandwidth and frequency spectrum calculations, the last outcome allows to 

implement a 2D axisymmetric model. It is less time-consuming than a 3D CMUT model with 

non-axisymmetric vented conditions like lateral vented channels. 

3.3. Influence of DC voltage: introduction of an "effective" gap 

The previous developments allow us to determine the dimensionless elastic and viscous 

damping forces in the case of uniform air gap. The CMUT operation usually requires a high 

DC bias voltage, which creates a non-uniform air gap (Fig. 1.b). Therefore, an accurate 

implementation of the squeeze film effects in existing analytical and numerical CMUTs models 

as described in [21–25, 33] requires the characterization of the stiffness of non-uniform air-

filled gap. The problem is handled only for large squeeze number, typical for CMUT operation. 

The non-uniform air gap is directly introduced at the geometrical level, i.e. only the change of 

the air stiffness affects the resonant frequency.  

The gap non-uniformity is considered according to a deflection profile corresponding to 

a uniform pressure loading as [33]: 

𝑔(𝑟) = 𝑔0 − 𝑤𝑚𝑎𝑥 (1 − (
𝑟

𝑎
)
2

)
2

,    (18) 

with −𝑔0/2 ≤ 𝑤𝑚𝑎𝑥 ≤ 𝑔0/2. It can be noticed that both sign of 𝑤𝑚𝑎𝑥 are investigated to allow 

initial deflection from different causes to be addressed. The initial air gap thickness is 𝑔0 = 

0.75μm, and two plate radius are simulated: 50µm and 150µm. The rarefaction effect is not 

taken into account. 

From previous calculation, the air-filled gap is supposed to operate in the elastic regime. 

In this case, it is assumed that the air film stays in the same regime after the introduction of the 

gap non-uniformity by eq. (18). The non-uniform gap changes the air-spring constant, which 

can be calculated from (15). A uniform "effective" gap 𝑔𝑒𝑓𝑓 with the same air spring constant 

is then introduced as: 

𝑔𝑒𝑓𝑓 = 𝑔0 + 𝛾𝑤𝑚𝑎𝑥,      (19) 

where 𝛾 is the "effective" gap constant. The value of this constant is calculated from equation 

(20) for the above mentioned range of maximal deflection values according to the FEM 

identification of the resonant frequency. 

𝛾 =
𝑔0

𝑤𝑚𝑎𝑥
[

𝑃𝑎𝑆 𝑔0⁄

𝑚(𝜔𝑑
2−𝜔0

2)
− 1].     (20) 

The results reported on Fig. 8 show an average value of the "effective" gap constant for 

both radius around 0.73. Once the "effective" gap constant is calculated, we can determine the 

non-uniform air-filled cavity stiffness as a function of the maximum plate displacement from 

eq. (21): 

 𝑘𝑒 =
𝑃𝑎𝑆

𝑔0+0.73𝑤𝑚𝑎𝑥
.      (21) 



Thus, the knowledge of the "effective" gap constant and the maximal center deflection 

enables us to define the air spring constant. Fig. 9 shows the air spring constant based results 

and experimental data about the evolution of the resonant frequency with respect to the DC bias 

voltage for 67µm and 167µm radius plates. This acceptable comparison supports the air spring 

constant assumption of non-uniform gap to reflect the squeeze film stiffening in different 

modeling strategies. 

 

4. 2D full coupled FEM simulations of a flexible plate CMUT with air-filled cavity 

 

2D FEM simulations in the mechanics-thermoacoustics domains illustrate the non-

dependence of the squeeze film effects to the vented boundary conditions. This justifies the 

validity of 2D axisymmetric models to model actual 3D architecture of CMUTs, especially 

related to non-axisymmetric vented boundary conditions. Therefore, in this part, 2D full 

coupled FEM simulations of CMUT including mechanics, electrostatics, and thermoacoustics 

domains are performed and compared to experimental data. 

4.1. Experimental characterization 

In previous work [16], a fabrication process of CMUTs based on the anodic bonding of 

a SOI wafer on a borosilicate glass wafer with lateral channels for the bottom electrode 

connection has been presented. In this process, the SOI device layer defines the membrane 

thickness. In the present work, single CMUT cells are fabricated with four different radii: 67µm, 

87µm, 117µm and 167μm. The silicon plate thickness and the resistivity are respectively 2.3μm 

and 1-30Ω·cm. The aluminum top electrode covering the silicon membrane and the 

gold/chromium bottom electrode are 0.22μm and 0.25µm thick, respectively. The initial air-

filled gap between the silicon plate and the bottom electrode is equal to 0.75μm. Table 2a 

summarizes the main experimental results in terms of static deflection, collapse voltage, 

resonant frequency of the first bending mode and the corresponding bandwidth. For 

comparison, expected resonant frequencies from the 1D model (cf. § 2.3) are reported in Table 

2b in the case of experimental ambient pressure configurations reported in Table 2a (i.e., 1atm 

or 101 kPa and 50 Pa). Besides, the simple and fast 1D model is run in order to simulate 

intermediate ambient pressure configurations and illustrate the influence of environment on the 

resonant frequencies. 

 

Table 2a. Experimental results 

Radius 

(μm) 

Bottom 

electrode 

radius (μm) 

Static 

deflection 

(nm) 

Pull-In 

voltage (V) 

Frequency 

(kHz),  

Pa = 1 atm 

Frequency 

(kHz), 

Pa = 50 Pa 

Bandwidth 

(kHz), 

Pa = 1 atm 

67 40 80 132 2 125 2 012 36.5 

87 56 160 83 1 375 1 154 43 

117 80 277 34 982 657 44.4 

167 120 80 16 824 326 40.6 

 



Table 2b. Expected resonant frequencies from the 1D model (cf. § 2.3) 

Radius 

(μm) 

Frequency 

(kHz),  

Pa = 101 kPa 

Frequency 

(kHz),  

Pa = 80 kPa 

Frequency 

(kHz),  

Pa = 60 kPa 

Frequency 

(kHz),  

Pa = 40 kPa 

Frequency 

(kHz), 

Pa = 20 kPa 

Frequency 

(kHz),  

Pa = 50 Pa 

67 2 109 2 078 2 047 2 016 1 985 1 953 

87 1 406 1 359 1 311 1 262 1 211  1 158 

117 1 023 956 888 814 732 641 

167 858 777 691 592 474 315 

 

About the Table 2a, the static deflection represents the center deflection of the 

membrane measured after the fabrication process. It results from the relaxation of the residual 

stress in the Si device layer. This residual stress may be induced by three main sources: the 

fabrication process of the SOI wafer, the bonding process, which occurs at a temperature of 

400°C or the aluminum deposition step on the top of the plate. The quite low values of the static 

deflection reported in table 2 indicate that the silicon plates are practically free from residual 

stresses. 

The displacement response is measured using a Polytec laser vibrometer with a 

vibrometer sensor head OFV-534 and a OFV-5000 controller. The resonance frequency and the 

corresponding bandwidth in the ambient air are collected as a function of the bias voltage. The 

values at a low DC bias voltage (VDC = 1V) are reported in table 2 and all the results are plotted 

in Fig. 10.  

Fig. 10 shows that the evolution of the resonance frequency as a function of the DC bias 

voltage is strongly dependent on the membrane radius. It decreases for the radii 67µm and 

87µm. It is constant for the radius 117µm and it increases for the radius 167µm. This perfectly 

illustrates the competition between the electrostatic softening and the squeeze film stiffening 

(cf. §2.3 and equation (12)). As the air-filled gap is constant for all the radius configuration, the 

squeeze film stiffening becomes dominant for the larger plate radius. In other words, from lower 

to higher radii, the configuration shifts from a mechanical spring to an air-spring dominated 

field. The ratio between the ambient air (experimental) and vacuum resonant (theoretical) 

frequencies for the configuration showing no influence of the DC bias voltage on the resonance 

frequency (117µm radius) is around 1.5, a value quite close to √3 given by the simple 

equivalent analytical approach (cf. §2.3). 

The corresponding bandwidths as a function of the DC bias voltage globally show 

opposite trends, i.e.: an increasing in the case of the mechanical spring dominated area (67µm 

and 87μm radii), a constant value in the case of the intermediate area (117μm radius), and a 

slight decreasing in the case of the air-spring dominated area (167μm radius). For the 67µm 

radius CMUT, it can be noticed that the collected bandwidth as a function of the DC bias voltage 

raises from 36.5kHz (VDC = 1V) to 100.2kHz (VDC = 125V ≈ 0.95 VCOL). This results 

demonstrate the relevance of designing CMUT with sealed air-filled cavities for air-coupled 

applications. Besides, the DC bias voltage variation provides a way to control the bandwidth. 

4.2. 2D full coupled FEM simulations and discussion 



In this part, a 2D axisymmetric full coupled model is developed in COMSOL 

Multiphysics® software combining Thermoacoustics and Electromechanics interfaces. The 

objective is to calculate the dynamic response of a CMUT cell taking into account the 

electromechanical behavior in relation with the DC bias voltage, the squeeze film effects 

occurring in the air-filled back cavity, and the radiation losses in the surrounding medium. As 

discussed above, the real lateral venting channels are neglected by considering completely 

sealed cavities. This assumption is validated according to the squeeze number range from 230 

to 545 for the four radii tested configurations.  

The radiation losses in the surrounding air are introduced by considering the air loading 

on the top of the plate. The perfectly matched layer (PML) is added to simulate an open and 

non-reflecting infinite domain. For the accurate radiation loss calculation, we used at least 10 

elements per wavelength. 

The combined COMSOL Thermoacoustics and Electromechanics interfaces are 

implemented using two succesive steps: a stationary study and a perturbation study in the 

frequency domain. The stationary study provides the static deflection of the plate due to the 

residual stress (chosen according to the static deflection) and especially to the DC bias voltage. 

In the second step (Frequency Domain, Perturbation Study), a small electrostatic excitation 

signal is applied and the respective resonant frequency and bandwidth are obtained. 

The geometric and physical parameters of the circular plate are the same than in the 

fabricated devices mentioned above. The viscosity constant is replaced by eq. (9), in which the 

initial gap size of 0.75μm is used. The silicon membrane has a relatively high conductivity (1-

30Ω·cm), therefore the effective top electrode is located at the bottom side of the plate. 

The FEM calculated evolutions of the resonance frequency as a function of the bias 

voltage and the corresponding bandwidth are reported in Fig. 10 for comparison with the 

experimental data. The FEM simulations accurately fit the pull-in voltage and the resonant 

frequency as a function of the DC bias voltage. Moreover, the bandwidth for low DC bias 

voltage is also perfectly predicted. The good correlation between numerical and experimental 

data validates the proposed approach of replacing the real CMUT architecture with non-

axisymmetric lateral venting channels to axisymmetric sealed cavity geometries. 

However, the FEM model does not accurately estimate the corresponding bandwidth for 

high bias voltage level, especially for the lowest value of the radius (67µm). It is assumed that 

this discrepancy is connected to an incorrect accounting of the effective viscosity. Firstly, 

Veijola et al. [32] approximation is used for a parallel plate motion with a uniform gap, which 

is not adapted to the deflected plate for a high DC bias voltage. Finally, the gap reduction for a 

high DC bias voltage leads to a non-continuous regime of the fluid flow as the Knudsen number 

becomes higher than 0.1. For this regime, the Navier-Stokes equations become less appropriate 

to describe the behavior of the gas. A specific analysis of the fluid flow in the molecular regime 

would be required to describe such a rarefied fluid flow should, for example by implementing 

the Molecular flow module or Microfluidics module of the COMSOL® package. 

 

 



5. Conclusion 

 

The present work focuses on the characterization of the squeeze film effects in CMUTs 

with air-filled cavities and more particularly on the effects of the DC bias voltage. First, a 1D 

analytical equivalent approach, based on a rigid piston model, demonstrates the competition 

between the electrostatic softening related to the DC bias voltage and the squeeze film stiffening 

due to gap reduction of the air-filled back cavity. Mechanical spring and air-spring dominated 

areas are highlighted and a stiffness ratio between air spring and mechanical spring involves a 

resonant frequency stability with regard to the DC bias voltage. Furthermore, numerical 

simulations with the COMSOL Multiphysics® software are undertaken in order to quantify the 

squeeze film effects in flexible CMUTs for different laterally vented boundary conditions and 

plate radii. For high squeeze numbers, the dimensionless elastic and viscous damping forces do 

not depend on the laterally vented boundary conditions. The elastic component of squeeze film 

in flexible plates for sealed and open-vented boundary conditions is similar to the value found 

for the sealed piston. However, a viscous damping component in flexible membranes is present 

due to the non-uniform pressure distribution and air motion inside the air-filled back cavity. 

Thus, the viscous damping characteristic of sealed or laterally vented CMUTs provides a way 

to increase the bandwidth for air-coupled applications. Finally, 2D full coupled simulations of 

flexible CMUT fit accurately the experimental data. As a consequence, the squeeze film effects 

resulting from the air-filled cavities are effective design parameters that have to be taken into 

account in the evaluation of the mechanical stiffness of the CMUT membrane. A relevant 

combination of both mechanical and air springs can be used to make the resonant frequency 

insensitive to the DC bias voltage. Simultaneously, the DC bias voltage could be considered as 

a control parameter of the bandwidth in some cases. 
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Fig. 1. Cross sectional view of CMUT models with applied bias voltage:  

(a) rigid piston transducer; (b) flexible plate transducer. 
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Fig. 2. Dimensionless elastic and viscous damping forces according to the squeeze number for 

circular piston with open and sealed cavities. 
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Fig. 3. Normalized resonant frequency as a function of  normalized bias voltage for different 

air spring constant to mechanical spring constant ratio. 
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Fig. 4. Normalized resonant frequency according to normalized bias voltage for different 

pressure for CMUT with 167 μm radius 

(Analytically calculated results: lines, experimental data: dots). 



 

 

Fig. 5. 2D FEM dimensionless viscous and elastic damping forces according to the squeeze 

number for open and sealed cavity (a = 150 μm, t = 2.3 μm).  

 

 
Fig. 6. 2D FEM dimensionless viscous and elastic damping forces according to the squeeze 

number for different circular CMUT radii with sealed cavity (t = 2.3 μm). 

 

 
Fig 7. Lateral velocity profile from the center to the periphery of open and sealed cavity in the 

vicinity of the resonant frequency: (a) g0 = 1 μm, a = 150 μm; (b) g0 = 10 μm, a = 150 μm. 
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Fig. 8. "Effective" gap constant (γ) for different maximum plate displacement 
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Fig. 9. Resonant frequency according to the DC bias voltage  

(Analytical air spring constant model: dash/dash dot line, experimental data: dots) 

 

 



  

Fig. 10. Resonant frequency and bandwidth according to the DC bias voltage  

(FEM calculated: solid line, experimental data: dots) 

  

 


