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Abstract—Wireless Body Sensor Networks (WBSNs) are a low-
cost solution allowing remote patient monitoring and continuous
health assessment, thus reducing healthcare expenditure. In such
networks, sensor nodes periodically collect vital signs and send
them to the coordinator for fusion. However, sensor nodes have
limited energy and processing resources and transmission is
the most power-hungry task. In this paper, we target data
reduction and energy consumption. We propose to locally adapt,
in real-time, the sampling rate of a sensor node according to
the variations in the vital sign being monitored and its risk.
We propose to dynamically evaluate, in real-time, the risk of
any vital sign given the information about the severity level
of the patient’s health condition and the severity level of the
vital sign itself. We have tested our proposed approach on real
health datasets in order to evaluate it. The results show that
the percentage of detected critical events and the mean-square
error (MSE) are both acceptable. In addition, the percentage of
data reduction is around 50% implying a reduction of the energy
consumption. Adjusting the risk of a vital sign, over time, ensures
the adaptation of the sampling rate according to the overall
health condition of the patient as well as the severity level of
the collected measurements.

Index Terms—Adaptive sampling, risk level evaluation, behav-
ior function, health assessment, wireless body sensor networks

I. INTRODUCTION

In the past decade, Wireless Body Sensor Networks (WB-
SNs) emerged as a low cost solution for remote and continuous
patient monitoring, thus reducing unnecessary hospitalization
as well as keeping doctors and the healthcare center up-to-date
with health-related matters [1]. Many populations can benefit
from such a technology: elderly in nursing homes, patients
at home after a surgical intervention, patients susceptible to
cancer or heart disease, athletes etc. Some of the most popular
applications in the literature include fall detection, stress
evaluation systems, gait analysis, monitoring of vital signs
and physilogical signals [2], [3], [4]. A WBSN is composed
of sensor nodes and a coordinator. The former are placed
on the body of the patient. They sense physiological signals,
extract vital signs and wirelessly send these measurements to
the coordinator for fusion in a periodic fashion. We suppose
that each sensor node monitors only one vital sign (e.g.
temperature, respiration rate, etc.). The coordinator usually is

the smartphone, PDA or any other portable device which is
carried by the patient. Many challenges exist in such a network
such as: the heterogeneity of the collected data (heart rate,
respiration rate, blood pressure etc.) and its huge amount, the
energy consumption due to periodic transmission as well as
privacy and security issues [1], [5], [7]. In this paper we ad-
dress the energy consumption and data reduction issues which
are directly related to one another. In [6], the authors have
classified energy-efficient mechanisms in Wireless Sensor Net-
works (WSNs) into five categories: data reduction approaches,
sleep/wakeup schemes, radio optimization techniques, energy-
efficient routing methods and battery repletion. These ap-
proaches can be split up into software and hardware strategies
[8]. In addition, some of these mechanisms are suitable for
large scale networks such as environmental monitoring, indus-
try, public safety or military systems applications. Thus, they
cannot be applied in WBSNs where the network characteristics
are different. For example, energy-efficient routing methods
as well as transmission power control and topology control
approaches cannot be directly used in WBSNs [9]. Many
existing approaches in WBSNs have proposed energy-efficient
data collection approaches. Some have used context-awareness
based on activity recognition to perform adaptive sampling or
adaptive sensing [8]. Some of them applied these approaches
only on WBSNs composed of inertial detection sensor nodes
such as accelerometers and gyroscopes [9]. Others suggested
adapting the transmission of sensor nodes according to the
relevance between symptoms and diseases [10]. Others have
used compressive sensing (CS) theory, which has emerged as
an energy-efficient approach for wireless communication, due
to the fact that biosignals such as the electrocardiogram (ECG)
are sparse [11], [12], [13], [14]. This technique reduces the
amount of wirelessly transmitted data by sampling the signal
of interest at a much lower rate than the traditional Shannon-
Nyquist theorem. Thus, it has the potential of dramatically
reducing the power consumption due to transmission. How-
ever, this technique has not been applied at the analog level
since it requires extensive work on the analog sensor read-out
electronics prior to the analog-to-digital converter (ADC). Its
application on the digital level needs processing and energy



resources and depends on the sensor’s microcontroller [11].
In addition, it requires the sparsity of the signals of interest,
thus in case of non-sparstity it does not perform as desired
[12]. In [15], the authors have proposed AdapDBN a self-
adaptively sepsis screening system allowing to shorten the time
of syndrome detection. In a previous work ([16]), a distributed
self-adaptive data collection approach has been proposed in the
context of WBSNs. An adaptive sampling rate scheme, having
a direct impact on the sensing, processing and especially the
transmission tasks of the biosensor node, has been proposed.
Using a Quadratic Bezier Curve as a BehaVior (BV) Function,
it takes into account two parameters : the evolution of the
monitored vital sign over time and its monitoring importance,
based on a medical judgment, regarding the patient’s health
condition. These parameters are, respectively, determined by
the Fisher Test and one-way Analysis of Variance (ANOVA)
which study the variances of the sensed measurements over
time and by a static risk level variable. However, the overall
health condition of a patient, being continuously and remotely
monitored on a long-term basis, changes over time. It is
subject to many health events which can be acute or even
chronic. Thus, it can vary from day to day as well as from
an improvement state into a deterioration state and vice versa
especially that acute disease go through many different stages.
As a consequence, the monitoring importance given for each
vital sign should be adapted with these changing conditions.
This matter, has a direct influence on the collection of data,
therefore on the energy consumption of the WBSN and the
early detection of critical events. In this paper, we propose to
dynamically adapt the risk level of a vital sign according to the
changing health condition of the patient. The remainder of the
paper is organized as follows. Section II presents our work’s
background. The risk level of the sensor node is defined and
its adaptation is explained in Section III. Experimental results
are shown and discussed in Section IV. Finally Section V
concludes the paper with some directions and future work.

II. BACKGROUND

In this section, a brief overview about early warning score
systems is given and the BehaVior (BV) function is extensively
explained by adapting its equations based on the requirements
of vital signs monitoring. The former is used to evaluate the
patient’s overall health condition as well as the severity of
each vital sign, whereas, the latter is used for the sampling
rate adaptation.

A. Early Warning Score Systems

An early warning score system (EWS) is a chart used by
emergency medical services staff in hospitals to evaluate pa-
tients’ heath status. The vital signs are weighed and aggregated
in order to allow an early recognition of patients who are
subject to an acute illness or those whose health condition
is deteriorating [17]. For each vital sign, a normal healthy
range is defined. Values outside of this range are allocated a
score according to the magnitude of the deviation from the
normal range. The score weighing reflects the severity of the

physiological disturbance. Such scoring systems can give the
biosensor node the ability to locally evaluate the severity level
of the vital sign being monitored and to assign to it a score.
We have used the National EWS (NEWS) in our work in
order to evaluate the severity level of each of the following
vital signs: temperature, heart rate, respiration rate, oxygen
saturation and systolic blood pressure. A score of 0 is assigned
to the measurement if it is in the normal range and a score
of 1, 2 or 3, according to its magnitude of deviation from the
normal range, where 3 indicates the highest level of criticality.
NEWS is standarized and employed in hospitals in the United
Kingdom (UK) for the assessment of accute-illeness [18].

B. Behavior Function

Bezier curves are flexible parametric curves allowing the
definition of shapes given the knowledge about some points
of interest [19]. The quadratic bezier curves, which curvature
is defined following three points of interest, are used in the
proposed sampling adaptation model. A quadratic bezier curve
is limited by the two points P0(lx; ly) and P2(hx;hy) and its
curvature is controlled by P1(bx; by). It can be written under
the following general form:

ax2 + bxy + cy2 + ux+ vy + w = 0 (1)

where the values of the coefficients depend on P0, P1 and P2.
In our approach, the x-axis represents the Fisher Test result

F and the y-axis represents the sampling rate SR. Thus,
the three points of the BV function are defined as follows:
P0(0; ly), P1(bx; by), P2(hx;hy) where P0 corresponds to
F = 0 and SR = SRmin, P1 is the behavior point and P2

corresponds to F = Ft and SR = SRmax. Ft(h,N − h)
corresponds to the critical value given by the Fisher Test
for N collected samples during h periods. The BV function
curve can be drawn using the quadratic bezier curve as follows:

BV (F ) =


hx+ly−2by

4b2x
F 2 +

hy−ly
hx

F + ly, hx = 2bx

(hy + ly − 2by)α(F )2+

2(by − ly)α(F ) + ly, otherwise

with α(F ) = −bx +

√
b2x−2bxF+hxF

hx−2bx , such as 0 ≤ bx ≤ hx,
0 ≤ F ≤ hx and hx > 0.

P1 moves on the diagonal [AB] of the behavior rectangle,
such as A(0;hy) and B(hx; ly). Thus, the coordinates bx and
by of P1 satisfy the equation of [AB] which is defined as
follows:

y =
ly − hy
hx

× x+ hy (2)

In our approach, the position of P1 should be determined
according to the value of the risk level r. The coordinates bx
and by of P1 are found using the following equation:



Br : [0; 1] 7−→ [0;hx]× [ly;hy]
r 7−→ (bx; by)

Thus, the following equations can be derived:

Br(r) =

{
bx = (1− r)× hx
by = ly + r × (hy − ly)

(3)

The closer the value of r is to 1 the more the vital sign
is judged to be critical and its monitoring importance is
increased. Figure 1 shows the BV function which is used
to adapt the sampling rate according to the Fisher test result
F and the risk level r of the vital sign given the patient’s
health condition. Having a maximum sampling rate SRmax

and a minimum sampling rate SRmin, depending on the
application’s requirements, and the critical value Ft given by
the Fisher Test, the BV function is defined as follows:

BV (SRmax, SRmin, r, F, Ft) = SR (4)

The closer F is to Ft, the more the collected measurements in
h periods present variations. Thus, the higher the sampling rate
is given to the sensor node in order not to miss any important
variations. Whereas, the closer F is to 0, the less the collected
measurements in h periods present variations. Thus, a lower
sampling rate is given to the sensor node in order to preserve
their energy level. A curve is associated for each risk level
value. The higher the risk level value, the greater the sampling
rate values. Indeed, for high risk levels the sampling rate of
the sensor node should be increased in order not to miss any
important changes and to keep track with the variations of the
corresponding vital sign.
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Fig. 1: Behavior Function: Quadratic Bezier Curves

As shown in Figure 2, for the same value of F , if the
vital sign has a low risk level r, the sensor’s measurement
sampling rate will take a lower value than if the vital sign
has a high risk level r. Thus, in the first case, the biosensor
node will preserve its energy and will sense data and process
measurements at a lower rate. However, in the latter case,
the biosensor node, which is monitoring a vital sign being
medically judged as essential regarding the patient’s health
condition, will be assigned a higher sampling rate in order
not to miss important measurements and events.

In the following section, we describe the risk level adapta-
tion of a given vital sign according to the dynamic change of

Fig. 2: Sampling rate adaptation according to the vital sign’s
risk level

the patient’s health condition over time. The sensor node will
be able to adapt its sampling rate based on the BV curve that
corresponds to its dynamically adapted risk level.

III. RISK LEVEL ADAPTATION

A. Scenario

Tom is an elderly person living in a nursing home. In order
to keep track of his health condition, he is being remotely
and continuously monitored by a WBSN. We suppose that the
WBSN is composed of n biosensor nodes, where each node
monitors one vital sign. At first, the monitoring importance
for each vital sign is medically judged by the medical team.
Accordingly, the risk levels r for all the vital sign are chosen.
Since Tom’s health condition can change with time, he can
become sick or be subject to dangerous health events. Thus,
the risk levels r should be adapted by the WBSN with Tom’s
changing health condition. Higher values should be given
to the nodes in order to increase their sampling rate and
capture important measurements and when the patient’s health
condition is at a lower risk and when it is normal, lower risk
values should be given to the nodes in order to preserve their
energy level. Next, we give a proper definition to the risk level
r and discuss its initial setup.

B. Definition of the risk level r

The variable r represents the monitoring importance given
to a specific vital sign. At first, healthcare experts chose the
values for all the monitored vital signs. r is assigned a low
value (< 0.5) if the following conditions are met:

• If the vital sign generally does not present many varia-
tions and is usually stable.

• If the medical expert thinks that a low sampling rate is
sufficient to capture any important variation.

• If the variations do not have a drastic impact on the
patient’s health.

For example, the temperature, the galvanic skin response and
the oxygen saturation meet these requirements.
r is assigned a high value (≥ 0.5) if the following conditions

are met:



• If the vital sign usually presents many variations.
• If the medical expert thinks that a high sampling rate is

essential to capture any important variation.
• If any variation can have a drastic impact on the patient’s

health.
For example, the heart rate, the blood pressure and the
respiration rate meet these requirements.

C. Risk Level Evaluation Function

We propose to adapt the risk level r of a vital sign,
throughout the life of the WBSN, according to the patient’s
changing health condition. Let rglobal represent the patient’s
overall health condition where rglobal ∈ [0; 1] and rglobal ∈ R.
rglobal is referred as the patient’s global risk level and it
indicates the severity level of his/her health condition. rglobal
is evaluated by the coordinator based on the multi-sensor
data fusion [20]. Let S̄ be the average score of the sensed
measurements for a given vital sign during one round R, such
as R = h×p where p is a time period and h ∈ N, and Smax be
the maximum score that a measurement can have according to
the used EWS (cf. Section II-A). Then, the risk level evaluation
function Eval : (rglobal, S̄) 7−→ [0; 1] is defined as follows:

Eval(rglobal, S̄) = α× rglobal + β × S̄

Smax
(5)

where α and β are weight coefficients such as : 0 ≤ α ≤ 1 and
0 ≤ β ≤ 1 and α+β = 1. The Score ratio S̄

Smax
is equal to the

mean score of the sensed measurements over the maximum
score that can be given to a measurement. It represents the
situation of a vital sign (its criticality) compared to the worst
case (highest criticality level). S̄ is calculated as follows:

S̄ =
1

m
×

m∑
i=1

si (6)

where m is the total number of sensed measurements and si
is the score of th ith measurement.

Figure 3 shows the output of the proposed risk level eval-
uation function for two different parameter setups. The blue
surface corresponds to a parameterization of α = β = 0.5,
whereas the pink surface corresponds to a parameterization of
α = 0.2 and β = 0.8. In the former case, both the score ratio
and the overall health condition of the patient are given equal
weights. Thus, both are equally important. In the latter case,
the score ratio is given a greater importance than the overall
health condition. For example, for both cases, the lower the
global risk and the higher the score ratio, then the higher the
risk level. However, in the latter case the risk level will have
higher values than the former case for the same global risk
value, since the impact of the score ratio is greater than the
impact of the global risk. The α and β values are to be judged
and parametrized by the healthcare experts, depending on
whether the overall health condition of the patient or the status
of the vital sign itself is more essential given the monitoring
needs. For instance, some viruses such as flu or infections
are accompanied by fever. Therefore, the temperature should
be given a higher monitoring importance given its impact on

the these types of sickeness and given that healthcare experts
are interested in monitoring its variations over time. Thus, β
better have a higher value than α in order to give a higher
importance to the score ratio of the temperature rather than
the overall health condition regrouping all the vital signs being
monitored.
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Fig. 3: Risk Level Evaluation Function

D. Adaptive sampling using risk level evaluation algorithm

Algorithm 1 Adaptive Sampling using Risk Level Evaluation
Require: h (1 round = h periods), SRmax, SRmin, r, α, β, αfisher

Ensure: SR, Number of samples N
1: SR← SRmax

2: while Energy > 0 do
3: for each round do
4: for each period do
5: Sample measurements at SR rate
6: end for
7: Receive Global Risk rglobal from coordinator
8: Compute Score ratio
9: Evaluate Risk Level r = Eval(Score ratio, rglobal) based

on α and β.
10: Perform Fisher Test: Compute within period variance, the

between period variance and F .
11: if N < h then
12: SR← SRmax

13: else
14: Find Ft based on αfisher , N and h
15: if F < Ft then
16: SR← BV (SRmax, SRmin, r, F, Ft).
17: else
18: SR← SRmax

19: end if
20: end if
21: end for
22: end while

In this section, the algorithm for adapting the sampling rate
in real-time is presented. The proposed algorithm is to be
locally performed on each sensor node of the WBSN. The
network is managed by one coordinator. Each sensor node
locally adapts its sampling rate after adapting its risk level
r using the proposed risk level evaluation function. On one
side, for each round, the coordinator sends the value of rglobal,
which is evaluated based on multisensor data fusion, to all the
sensor nodes. On the other side, for each round, each sensor



nodes computes the score ratio and evaluate its risk level based
on these two values. Then, the sampling rate adaption can be
made based on the result of Fisher test F and r using the
BV function. The sampling rate adaptation is performed each
round k such as Roundk =

∑h+k−1
i=k pi where k ∈ N,h ∈ N

and p is the time period. In other words, it is performed at
end of each period based on the measurements collected during
the last h periods. The global risk rglobal, which is sent by the
coordinator to the sensor nodes, is based on the data fusion
of the collected measurements during these last h periods.

IV. EXPERIMENTAL RESULTS

Experiments are conducted using a cutom-based Java sim-
ulator. In order to evaluate the performance of the proposed
approach, patient vital signs datasets are collected from Multi-
ple Intelligent Monitoring in Intensive Care (MIMIC) I and II
databases of PhysioNet [21]. We have tested our approach on
different patient records as well as different vital signs such as
the heart rate (HR), the respiration rate (RESP), the systolic
blood pressure (ABPsys), the blood temperature (BLOODT)
and the oxygen saturation (SpO2). We suppose that each vital
sign is monitored by only one sensor node: if N vital signs are
required to be monitored, then N sensors nodes are deployed
on the patient’s body. The proposed algorithm (cf. Algorithm
1) is implemented and tested at the level of each node. After
running multiple experiments, noting that a minimum of 30
samples is required for the Fisher Test and ANOVA, the
parameters settings are chosen as follows:

• Period p = 100 sec and Round R = 2× p.
• Minimum sampling rate SRmin = 1 samples/3.33 sec

(corresponding to 30 samples per period) and Maximum
sampling rate SRmax = 1 sample/1.42 sec (correspond-
ing to 70 samples per period).

• Fisher Risk αfisher = 0.05.
• Initial risk level on all sensor nodes is randomnly set to
r0 = 0.4, indicating that all vital signs are slightly critical
and have the same impact on the patient’s health.

The global risk level which represents the overall health
condition of the patient is determined by the coordinator by
running the algorithm Health-RAD [22] for the multi-sensor
data fusion and health assessment [20].

First, we show the risk adaptation over time for different α
and β setups and discuss their impact on the risk evaluation.
Then we compare the results obtained in terms of data
reduction, loss of information and energy consumption for 3
different scenarios : static risk level r = 0.4, static risk level
r = 0.9 and our proposed approach.

A. Risk Adaptation over time

Figure 4 shows the ABPSys sensor node’s risk level adap-
tation over 70 periods for 3 different parameter setups. In our
proposed approach, α and β respectively denote the weights
accorded for the patient’s overall health condition and for the
vital sign’s severity level. Initially, the sensor node’s risk level
is set to 0.4, it is clear to see that in the 3 cases the risk
evaluation function has yielded most of the time a risk value

different than 0.4 and whose values range from low to high
risk levels. Hence, pointing out the importance of dynamically
adapting the risk level of each sensor node according to the
changes in the patient’s health conditon. When comparing
Figures 4a and 4b, we can clearly see the influence of both
parameters on the risk level evaluation. For example, between
period 45 and period 60, the risk level is mainly between 0.4
and 0.6 for α = 0.7 and β = 0.3, however it ranges between
0.6 and 0.8 for α = 0.3 and β = 0.7. This is due to the fact
that between these periods the severity level of the ABPSys
represented by the score ratio is more critical than the patient’s
overall health condition. Hence, giving the score ratio a higher
impact than the overall health condition has yeilded a higher
risk level (see Figure 4c) than in the opposite case (see Figure
4b). Whereas, between periods 8 and 18, the results show that
the overall health condition is more critical than the severity
level of the ABPSys. The risk level ranges between 0.2 and
0.4, in the case of α = 0.7 and β = 0.3 (see Figure 4b),
however it ranges between 0.1 and 0.2 in the case of α = 0.3
and β = 0.7 (see Figure 4c). Hence, the parameters α and
β of the risk level evaluation function should be medically
judged by the healthcare experts on the basis of the importance
given to each of the vital sign’s severity level and the patient’s
overall health condition. In the rest of this section, the results
correspond to a setup of α = β = 0.5.

B. Sampling Rate Adaptation and Energy Consumption

In this section, we compare the sampling rate adaptation and
the energy consumption between two cases: static (constant)
risk level r and our proposal of dynamic risk level r. We study
the sampling rate adaptation and the energy consumption of
the HR sensor node over 70 periods for 2 different patients.
Patient 1 corresponds to record s01840-3454-10-24-18-46nm
from MIMIC II database whereas patient 2 corresponds to
record 276n from MIMIC database . According to the available
datasets, all of the 5 vital signs are monitored for patient 1
and only the HR and the ABPSys are monitored for patient 2.

1) Sampling Rate Adaptation: Figure 5 shows the sampling
rate adaptation of the HR sensor node for both patients for 3
different cases: static risk r=0.4, static risk r=0.9 and dynamic
risk. For both patients, when comparing the two static cases
(see Figures 5b, 5c, 5e, 5f), we can notice that the sampling
rate adaptation results in higher sampling rates when r = 0.9
than when r = 0.4. For example periods 2 and 10 in Figures
5b, 5c and from period 50 till period 70 in Figures 5e and 5f.
This is due to the definition of the BV function which results
in higher sampling rates for higher risk level values. However,
if we compare the results obtained in the dynamic risk level
case with the results of the two static cases for patient 1, we
can notice that the total of sampled measurements during the
70 periods are less than the total of sampled measurements in
the case of the static risk r = 0.9 and slightly less than the
case of static risk r = 0.4. This indicates that our proposed
approach has evaluated the HR risk level to less than 0.9.
Thus, the amount of sampled data is reduced during the 70
periods which will have an impact on the energy consumption.
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Fig. 4: ABPSys sensor node’s risk level adaptation over 70 periods with different α and β setups
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(a) Patient 1: Dynamic Risk
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(b) Patient 1: Static Risk r = 0.4
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(c) Patient 1: Static Risk r = 0.9
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(d) Patient 2: Dynamic Risk
Number of Period

0 10 20 30 40 50 60 70

T
o

ta
l 

o
f 

s
a

m
p

le
d

 m
e

a
s

u
re

m
e

n
ts

0

10

20

30

40

50

60

70

(e) Patient 2: Static Risk r = 0.4
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(f) Patient 2: Static Risk r = 0.9

Fig. 5: Comparison of HR sensor node’s sampling rate adaptation over 70 periods between 3 different cases for 2 different
patients.

While, if we compare the results obtained for patient 2, we
can notice that the amount of sampled measurements in the
case of dynamic risk is greater than the amount of samples
in the case of static risk r = 0.4 and less than the amount of
samples in the case of static risk r = 0.9. This indicates that
our proposed approach has evaluated the HR risk level less
than 0.9. Thus, the amount of sampled data is reduced during
the 70 periods compared to a static risk of 0.9 and slighlty
increased compared to a static risk of 0.4. Therefore, adapting
the risk level value over time has an impact on the Fisher test
result since the amount of sampled data changes from one
period to another, as well as on the BV function and thus on
the output of the sampling rate adaptation scheme. This will
have an impact on the energy consumption.

2) Energy Consumption: Figure 6 shows the HR sensor
node’s remaining energy at the end of 70 periods for both
patient 1 and 2. We suppose that 1 unit of energy is equal to
152 Joules : the sensing task consumes 6 Joules, the processing
task consumes 24 Joules, the transmission task (TX) consumes
60 Joules and the receiving task (RX) consumes 62 Joules [23].
Thus, we suppose that each sampled measurement needs 0.6
units of energy to be sent to the coordinator. It includes 0.04
units of energy for the sensing task, 0.16 units of energy for
the processing task and 0.4 units of energy for the transmission

task. Having the initial energy randomnly set to 4000 units, the
dynamic approach has consumed the least energy among the 3
cases in the case of patient 1. The remaining energy is 1463.8
units when setting the risk level to 0.9, is 1687 units when
setting the risk level to 0.4 and 1753.6 units when adapting
the risk level over the 70 periods. However, the results of the
HR sensor node’s sampling rate adaptation of patient 2 shows
that adapting the risk level over time has reduced the energy
consumption compared to setting the risk level value to 0.9 but
it has increased the energy consumption compared to setting
the risk level value to 0.4. The remaining energy is 1703.2
units when setting the risk level to 0.9, 2031.4 units when
setting the risk level to 0.4 and 1888.6 units when adapting
the risk level over the 70 periods. Thus, adapting the risk level
of a vital sign over time adapts the lifetime of a sensor node
to the patient’s changing health condition.

C. Data Reduction vs Loss of information

In this section, we study the data reduction performed at the
sensor node level following the sampling rate adaptation and
discuss its impact on the loss of information. We compare
the results obtained for the adaptive sampling rate scheme
with static risk level and with dynamic risk level for patient
s01840-3454-10-24-18-46nm. Table I shows the data reduction
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(a) Patient 1: Energy Consumption of the HR sensor node over 70 periods
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(b) Patient 2: Energy Consumption of the HR sensor node over 70 periods

Fig. 6: Comparison of the HR sensor node’s remaining
energy at the end of 70 periods between 3 different cases.

performed at the level of each sensor node for the three
scenarios. Theoretically, if the Fisher Test null hypothesis
is rejected for all 70 periods then a data reduction of only
30% is acheived given that the maximum sampling rate is
SRmax = 1 sample/1.42 sec (corresponding to 70 samples out
of 100 per period). Whereas, if the Fisher Test null hypothesis
is accepted for all 70 periods with F = 0 then a maximum
data reduction of 70% is acheived given that the minimum
sampling rate is SRmax = 1 sample/3.33 sec (corresponding
to 30 samples out of 100 per period) (cf. Algorithm 1). The
results show that for both patients and for all the monitored
vital signs the percentage of data reduction is bounded by 30%
and 70% such as the data reduction is stricly higher than 30%
demonstrating that the F-test is a suitable statistical test for
this type of medical data. As shown in Table I, a total data
reduction of about 48% compared to the original dataset has
been acheived in our approach, of 43% in the case of a static
risk r = 0.9 and of 47% in the case of a static risk r = 0.4.
We compare the scores of the measurements of the sampled
datasets to the ones of the original dataset in each of the three
scenarios, while taking the time granularity of the original
dataset (1 sec). We choose the mean-squared error to measure
the average of the squares of the errors or deviations given that
MSE = 1

M×N

∑M
i=1

∑N
j=1(a(i, j)−b(i, j))2 where M is the

total of monitored vital signs, N is the total of measurements
for each vital sign during the simulation, a is the score of
the jth measurement of the ith vital sign in the original

TABLE I: Data reduction performed for each monitored vital
sign of record s01840-3454-10-24-18-46nm from MIMIC II
compared to original dataset in 3 different cases.

Risk Level Setup HR SpO2 BLOODT Resp ABPSys
Static Risk r = 0.9 40% 44% 65% 34% 34%
Static Risk r = 0.4 45% 48% 65% 37% 37%

Dynamic Risk 47% 48% 65% 38% 38%

TABLE II: Mean squared error between original dataset and
sampled dataset of patient s01840-3454-10-24-18-46nm from
MIMIC II for 3 different scenarios.

Risk Level Setup MSE
Static Risk r = 0.9 0.0128
Static Risk r = 0.4 0.0144

Dynamic Risk 0.0145

TABLE III: Percentage of detected critical changes compared
to original dataset of patient s01840-3454-10-24-18-46nm
from MIMIC II for 3 different scenarios.

Risk Level Setup HR SpO2 BLOODT Resp ABPSys
Static Risk
r = 0.9

76% 97% 80% 97% 86%

Static Risk
r = 0.4

72% 96% 80% 97% 85%

Dynamic Risk 69% 95% 80% 97% 86%

dataset and b is the score of the jth measurement of the ith

vital sign in the sampled dataset. The results (cf. Table II)
show that the MSE of the three scenarios are very close to
1, thus the loss of information is negligible. Our approach
has reduced the amount of sampled data 5% more than the
case of static risk r = 0.9 with a MSE difference of 0.0017.
Table III shows the percentage of critical events detected over
70 periods compared to the critical events recorded in the
original dataset. As we can see, the percentage is greater than
about 70% for all vital signs for the three scenarios. However,
it is important to note that the percentage of critical events
in the original dataset for each of the HR, SpO2, BlOODT,
RESP and ABPSys which do not last more than 2 seconds
are respectively 38%, 1%, 20%, 5% and 17%. Thus, in three
scenarios and for all vital signs, all of the persistant critical
events have been detected. Finally, Figure 7 shows the HR
sensor node’s totals for each score for the 3 different scenarios
in comparison with the totals of the original dataset. As we can
see, although our proposed approach has reduced the amount
of HR sampled data to 47% (cf. Table I), the totals of all
scores were conserved. Consequently, our proposed approach
allows a sensor node to dynamically adapt its risk level over
time based on the state of the vital sign it is monitoring as
well as the overall health condition of the patient. Fixing the
risk level to a high value when it is not needed increases the
energy consumption and the amount of sampled data over time
whereas in some scenarios, fixing the risk level to a low value
can increase the loss of information and some critical events
can be passed unseen.
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Fig. 7: The HR sensor node’s totals for each score for three
different scenarios in comparison with the original dataset.

V. CONCLUSION

In this paper, an adaptive sampling rate approach using
dynamically adapted risk level has been proposed. Since the
patient’s health condition, remotly and continously monitored
using a WBSN, changes over time, we have proposed to adapt
the risk level of each sensor node based on the overall health
condition of the patient and the state of their corresponding
vital sign. The risk level represents the degree of monitoring
importance given to a vital sign regarding the severity level
of the patient’s health condition. The results show that our
approach, compared to an adaptive sampling rate approach
with static risk levels, adapts the amount of sampled data
and energy consumption according to the patient’s status
while preserving information about critical events as well as
about the changing condition of the vital sign whether it is
deteriorating or improving. As a future work, we intend to
study other statistical tests which can be applied on medical
data to study the variations of the measurements, propose
other types of behavior function and compare them with our
proposed adaptive sampling rate scheme. Moreover, a real
implementation of the proposed approach is intended to be
achieved in order to validate its performance on real-case
scenarios.
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