
Energy Efficient Filtering Techniques for Data
Aggregation in Sensor Networks

Hassan Harba,b, Abdallah Makhoula, Samar Tawbic

, and Oussama Zahweb
aUniv. Bourgogne Franche-Comté, FEMTO-ST Institute/CNRS, Belfort, France

bDepartment of Computer Science, American University of Culture and Education (AUCE), Beirut, Lebanon
cDepartment of Computer Science, Lebanese University, Beirut, Lebanon

Emails: hassan.moustafa harb@univ-fcomte.fr, abdallah.makhoul@univ-fcomte.fr

Abstract—Minimizing latency is a major issue for data aggre-
gation in wireless sensor networks (WSNs). Hence, the proposed
algorithms must achieve the minimum delay in data delivery
while decreasing the energy consumption. In this paper, we
propose a new version of the prefix frequency filtering technique
(PFF) proposed by [1], which aims to minimize aggregation
latency. PFF finds similar sets of data generated by nodes in
order to reduce redundancy in data over the network, thus, nodes
consume less energy. While in the enhanced version of the PFF
technique, called PPSFF, we propose a positional filtering that
exploits the order of readings both in the prefix and the suffix of
a set and leads to upper bound estimations of similarity scores.
Experiments on real sensor data show that our enhancement can
significantly improve the latency of the PFF technique without
affecting its performance.

Keywords—Wireless sensor networks, periodic applications, data
aggregation, similarity functions, prefix-suffix filtering.

I. INTRODUCTION

Nowadays, wireless sensor networks (WSNs) found their
way into a great number of application areas. In such networks,
each sensor node monitors a given phenomenon and sends
notifications and readings back to the sink at each period p
[2]. Subsequently, in-network data aggregation is essential for
periodic applications where data generated by sensor nodes is
usually redundant and highly correlated, particularly in case of
dense networks. The main objective of in-network aggregation
is to eliminate redundancy and minimizes the number of
transmissions to the sink, thus saving energy.

Subsequently, data latency is an important factor in WSNs
that depends on applications. Some applications, such as per-
mafrost monitoring [3], require periodic and fast data delivery
over long periods. Therefore, in-network data aggregation must
be completed within a minimum delay in order to deliver
aggregated data to the sink as fast as possible [4], [5], [6].
In result, latency and energy efficiency are key elements to
evaluate the performance of an in-network data aggregation
technique. In WSNs, in-network data aggregation has been
largely studied by research community [7], [8], [9], [10], [11],
[12], [13]. In the most of the proposed techniques, networks are
based on two-tier tree-based or single-hop clustering networks
where data aggregation are performed at the sensor nodes and
an intermediates nodes called, ”aggregators” or cluster-heads
(CHs) (see Fig. 1). The authors in [11] propose a two-level
sensor fusion-based event detection technique for the WSN.
In the first level, each sensor node is responsible for deciding

whether an event has been occurred, using a feed forward
neural network (FFNN) or Naive Bayes classifier. In the second
level, at CH or aggregator, a fusion algorithm is proposed to
reach a consensus among individual detection decisions made
by sensor nodes. In [12], the authors propose a two-stage
data aggregation model dedicated to underwater WSNs. After
processing data at each sensor, the authors use Euclidean and
Cosine distances at the aggregator level to reduce packet size
and minimize data redundancy.

Sink

Aggregators

Local Aggregation

Aggregation of datasets

Processing

Fig. 1. Data aggregation scheme.

Recently, the authors in [1] study a new area within
filtering aggregation problem, the Prefix-Frequency Filtering
(PFF) technique. Further to a local processing at sensor node
level, PFF uses Jaccard similarity function at aggregator’s
level to identify similarities between near sensor nodes and
integrate their sensed data into one record. However, PFF stays
a hard technique for the aggregator because it needs costly
computations to search the similarity between all received
sets and thus affecting data latency factor. In this paper,
our objective is to enhance PFF by adding additional filters,
based on prefix data indexing and suffix filtering, in order to
reduce the number of comparisons between data sets and thus
improving the data latency.

The rest of the paper is organized as follows. Section II
recalls the PFF technique proposed in [1]. Section III presents
our enhancing version of PFF technique with additional data
filtering. Experimental results based on real data readings are
exposed in Section IV. Section V concludes this paper and
provides directions for future work.

II. PFF TECHNIQUE RECALLS

This section recalls the data aggregation scheme proposed
in [1] and that will be enhanced in this paper. The proposed
method works at two levels: sensor nodes and aggregators.

A. First Level: Local Aggregation

In this tier of aggregation, the idea is to identify similar
readings captured by a sensor during a period p. In periodic
applications, each sensor Si captures a vector of T readings,
Ri=

[
ri1 , ri2 , . . . , riT

]
, during each period then sends it to the

aggregator. In order to reduce the size of Ri, a similarity
function, called link, between readings and a frequency of
a reading are defined as follows:

Definition 1: (link function): We define the link function
between two readings as:

link(rij , rik) =

{
1 if |rij − rik | ≤ δ,
0 otherwise

where δ is a threshold determined by the application.
Furthermore, two readings are similar if and only if their link
function is equal to 1.

Definition 2: (Reading’s frequency): The frequency of a
reading ri is defined as the number of the subsequent occur-
rence of the same or similar (according to the link function)
readings in the same vector. It is represented by f(ri).

For each new captured reading, Si searches for similarities
of the new taken reading. If a similar reading is found,
it deletes the new one and increments the corresponding
frequency by 1, else it adds the new reading to the set and
initialize its frequency to 1 (See Algorithm 1 proposed in
[1] for more details). Therefore, Si will transform the initial
vector of readings, Ri, to a set of readings, R′i, associated to
their corresponding frequencies as follows: R′i={(r′i1 , f(r′i)),
(r′i2 , f(r′i2)), . . . , (r′ik , f(r′ik))} before sending it to the aggre-
gator.

B. Second Level: PFF Aggregation

At the end of each period, the aggregator will receive n sets
of readings with their frequencies coming from different nodes.
The objective in this aggregation step is to identify all pairs of
sets whose similarities are above a given threshold t. For this
reason, the Jaccard similarity function is used which returns a
value in [0, 1]. Thus, if two reading sets have similarity more
than t then, the aggregator deletes one of them before sending
them to the sink. The Jaccard similarity function between two
sets R′i and R′j , generated respectively by Si and Sj , can be
formulated as follows [1]:

J(R′i, R
′
j) ≥ t⇔ |R′i ∩s R′j | ≥ α =

2× t× T
1 + t

(1)

In order to prevent to enumerate and compare every pair of
sets which has a O(n2) number of comparisons, the authors
in [1] propose to use a prefix frequency filtering approach
(PFF). After ordering readings by decreasing order of their
frequencies, e.g. order O, PFF defines a prefix of length |R′i|−
dt.|R′i|e+ 1 for every set R′i. Then, it scans sequentially each
set R′i, selects the candidates (may be similar) that intersects
with its prefix. Afterwards, R′i and all its candidates will be
verified against the Jaccard similarity threshold to finally return
the set of correct similar readings sets. In practice, the number
of non-similar sets surviving after PFF is still quadratic growth.

Therefore, in this paper, we are looking to add more additional
filters in order to prune out further the unfeasible non-similar
sets thus, enhancing the data latency of PFF.

III. POSITION-BASED PREFIX-SUFFIX FREQUENCY
FILTERING TECHNIQUE (PPSFF)

In this section, we present our enhanced version of PFF
called Position-based Prefix-Suffix Frequency Filtering tech-
nique (PPSFF). PPSFF can reduce the number of candidates
(comparisons) in PFF, thus improving the data latency, by
implementing two additional filters: positional and suffix.

A. Positional Filtering

In this section, we propose to insert a new filter, called
positional filtering, which it can be applied over the prefix of
each set, e.g. |R′i| − dt.|R′i|e + 1. The positional filtering has
an objective to estimate an upper bound of overlap between
prefixes during the searching for similar readings. The intuition
of positional filtering is formalized by the following lemma
inspired from [14]:

Lemma 1: Consider two sets of sensor readings R′i and
R′j , such that their prefixes are ordered by increasing order
of their values. let p-prefix be the first p elements of R′i.
let reading (wi, f(wi)) = (p-R′i[i], f(p-R′i[i])), wi partitions
p-R′i into the left partition p-R′il(wi) = p-R′i[1 . . . (i − 1)]
and the right partition p-R′ir(wi) = p-R′i[(i + 1) . . . p].
Based on [1], two sets are candidates if fs(p-R′i, p-R′j) ≥
(
∑|p-R′

i|
k=1 f(r′k)) − 1−t

1+t × T where r′k ∈ p-R′i; thus for every
(wi, wj) ∈ (p-R′i∩sp-R′j) with frequency fmin(wi, wj) where
wj ∈ p-R′j and link(wi, wj) = 1: fs(p-R′il(wi), p-R′jl(wj)) +

fmin(wi, wj) + min
(∑|p−R′

ir|
k1=1 f(r′k1

),
∑|p−R′

jr|
k2=1 f(r′k2

)
)
≥(∑|p-R′

i|
k3=1 f(r′k3

)
)
− 1−t

1+t × T where r′k1
∈ p-R′ir, r′k2

∈ p-
R′jr, r′k3

∈ p-R′i, p-R′jl(wj) = p-R′j − {(wj , f(wj) −
fmin(wi, wj))} − p-R′jr if wj ≤ wi or p-R′jr(wj) = p-
R′j − {(wj , f(wj)− fmin(wi, wj))} − p-R′jl if wj > wi.

Proof: We denote by p-R′i and p-R′j the prefixes of the
sets R′i and R′j respectively. We also consider (wi, wj) ∈ (p-
R′i∩sp-R′j), where wi ∈ p-R′i and wj ∈ p-R′j . Then, we have:
R′i and R′j are similar:

⇒ fs(p-R′i, p-R′j) ≥
|p-R′

i|∑
k=1

f(r′k)− 1− t
1 + t

× T = A

⇒ fs(p-R′il, p-R′j) + fs(p-R′ir, p
′-R′j) ≥ A,

where p′-R′j = p-R′j − fs(p-R′il, p-R′j)
⇒ fs(p-R′il, p-R′jl) + fmin(wi, wj) + fs(p-R′il, p-R′jr)+

fs(p-R′ir, p
′-R′j) ≥ A

we have: fs(p-R′il, p-R′jr) = 0, because p-R′i and p-R′j are
ordered by increasing order of their values

⇒ fs(p-R′il, p-R′jl)+fmin(wi, wj)+fs(p-R′ir, p
′-R′j) ≥ A

⇒ fs(p-R′il, p-R′jl) + fmin(wi, wj) + fs(p-R′ir, p
′-R′jl)+

fs(p-R′ir, p-R′jr) ≥ A,
where p′-R′jl = p-R′jl − fs(p-R′il, p-R′jl)

we have: fs(p-R′ir, p
′-R′jl) = 0, for the same reason above

⇒ fs(p-R′il, p-R′jl)+fmin(wi, wj)+fs(p-R′ir, p-R′jr) ≥ A
since:

fs(p-R′ir, p-R′jr) ≤ min
(|p−R′

ir|∑
k1=1

f(r′k1
),

|p−R′
jr|∑

k2=1

f(r′k2
)
)
,

where r′k1
∈ p−R′ir and r′k2

∈ p−R′jr

⇒ fs(p-R′il, p-R′jl) + fmin(wi, wj) +min
(|p−R′

ir|∑
k1=1

f(r′k1
),

|p−R′
jr|∑

k2=1

f(r′k2
)
)
≥ A

The lemma is proved.

B. Suffix Filtering

This section exploits, in addition to the prefix of a set, the
suffix of this set. As well as to eliminate the non-similar sets
prior to the similarity computation. Let us define the suffix of
a set R′i, s-R

′
i as follows:

Definition 3: Suffix of the set R′i, s-R
′
i. We denote by s-

R′i the remainder readings of the set R′i after excluding the
prefix p-R′i. We compute the length of s-R′i as dt× |R′i|e− 1.

Our intuition of suffix filtering is that two sets of readings
are similar if their common readings in their suffixes are
greater than a calculated bound B as presented in the following
lemma.

Lemma 2: Assume that all readings in the sets R′i and
R′j are ordered according to the ordering O. If fs(R′i, R

′
j) ≥

2×t×T
1+t , then fs(s-R′i, s-R

′
j) ≥ B = 2×t×T

1+t −
∑|p-R′

j |
k=1 f(r′k),

where r′k ∈ p-R′j .

Proof: We denote by p-R′i the prefix of the set R′i and
s-R′i the set of remainder readings where R′i = {p-R′i+s-R

′
i}.

We have: fs(R′i, R
′
j)

= fs(p-R′i, R
′
j) + fs(s-R′i, R

′′
j),

where R′′j = R′j − fs(p-R′i, R
′
j)

= fs(p-R′i, p-R′j) + fs(p-R′i, s-R
′
j) + fs(s-R′i, R

′′
j)

∼= fs(p-R′i, p-R′j) + fs(s-R′i, R
′′
j)

≤ fs(p-R′i, p-R′j) + fs(s-R′i, p
′-R′′j) + fs(s-R′i, s-R

′
j),

where p′-R′′j = p-R′j − fs(p-R′i, p-R′j)

≤ fs(s-R′i, s-R′j) +

|p-R′
j |∑

k=1

f(r′k),where r′k ∈ p-R′j

In the third line we omitted fs(p-R′i, s-R
′
j) because we

have assumed that it is negligible compared to the other terms
in the equation. Indeed, if the two sets are similar then the
readings having highest frequencies must be in the prefix of

the set and not in the remainder. From the above equations
and Equation (1) (similarity condition) we can deduce:

fs(s-R′i, s-R
′
j) ≥

2× t× T
1 + t

−
|p-R′

j |∑
k=1

f(r′k),where r′k ∈ p-R′j

(2)

The lemma is proved.

Usually, the length of the suffix is greater than the prefix.
Thus, the calculation of the common readings in suffixes is
more complex, especially in WSNs where collected sets can
consist of ten hundreds or thousands readings. Therefore, in
order to reduce the overhead of this calculation, we propose
to divide the suffixes of sets into two partitions and then find
a reading where at this position a similarity upper bound uB
for the overlapping fs is estimated and checked against the
similarity threshold. As soon as the check is failed we can
stop the suffix condition computation early. In the rest of this
section we will consider that readings in each suffix are ordered
following the increasing order of their values.

1) Set’s partition: Given a reading w and a set of readings
R′i, the goal of this phase is to divide R′i into two partitions
(R′il, R

′
ir) such that the first one contains all readings less

than w and the second one contains all readings greater than
w. This partition is shown in Algorithm 1.

Algorithm 1 Set’s Partition Algorithm.

Require: A set of readings R′i and a reading w.
Ensure: Two subsets of R′i (R′il andR

′
ir).

1: R′il ← ∅, R′ir ← ∅
2: Search for w or its similar in R′i
3: if w is found at position k of the set then
4: R′il ← the first k − 1 readings of R′i
5: R′ir ← the remainder readings from k to |R′i|
6: else
7: Find the position k of the first reading in R′i such that

this readings is greater than w
8: R′il ← the first k − 1 readings of R′i
9: R′ir ← the remainder readings from k to |R′i|

10: end if

2) Upper Bound Computation: After the partition of the
sets and in order to reduce the overhead calculation of the
overlapping fs at the suffix level, our proposed technique finds
an upper bound uB for fs that allows stopping the suffix
condition computation early. Given a reading w (in random
or deterministic) the partition algorithm divides s-R′i and s-
R′j into s-R′il, s-R

′
ir and s-R′jl, s-R

′
jr respectively. Then, as

readings are ordered by increasing order of their values, we
can deduce that: (s-R′il∩s-R′jr = ∅) and (s-R′ir∩s-R′jl = ∅).
Hence, the upper bound of fs can be computed as:

fs(s-R′i, s-R
′
j) ≤ min

(|s-R′
il|∑

k1=1

f(r′k1
),

|s-R′
jl|∑

k2=1

f(r′k2
)
)

+min
(|s-R′

ir|∑
k3=1

f(r′k3
),

|s-R′
jr|∑

k4=1

f(r′k4
)
)

where r′k1
∈ s-R′il, r′k2

∈ s-R′jl, r′k3
∈ s-R′ir and r′k4

∈ s-R′jr.

If this upper bound is violated, thus both sets are not
candidates. This operation can be repeated k times following
a recursive manner as shown in Algorithm 2, where k1 can
be defined prior to PSN deployment.

Algorithm 2 Upper Bound Algorithm.

Require: Two Sets of readings R′i and R′j , B.
Ensure: The upper bound of overlapping between R′i and R′j

(uB).
1: m← d|R′i|/2e
2: w ← R′i[m] // the reading of R′i at position m
3: partition(R′i, w)
4: partition(R′j , w)

5: uB ← min(
∑|s-R′

il|
k1=1 f(r′k1

),
∑|s-R′

jl|
k2=1 f(r′k2

))+

min(
∑|s-R′

ir|
k3=1 f(r′k3

),
∑|s-R′

jr|
k4=1 f(r′k4

))
6: if uB < B then
7: return uB
8: else
9: uBl ← Upper bound (R′il, R

′
jl, B)

10: uB ← uBl + min(
∑|s-R′

ir|
k3=1 f(r′k3

),
∑|s-R′

jr|
k4=1 f(r′k4

))
11: if uB ≥ B then
12: uBr ← Upper bound (R′ir, R

′
jr, B − uBl)

13: return uBl + uBr

14: else
15: return uB
16: end if
17: end if

Based on the complexity of prefix filtering calculated on
[15], we can found the complexity of the suffix filtering in
similar manner and we can say that it is equal, in worst case,
to the prefix filtering (O(Θ`)).

C. PPSFF Algorithm

In this section we present our Position-based Prefix-Suffix
Frequency Filtering (PPSFF) algorithm, which integrates the
position filter to the prefix following by the suffix filter (studied
before). Algorithm 3 describes our technique to find similar
sets of readings based on the PPSFF. It is a hybrid solution,
where we integrate our position and suffix conditions presented
in lemmas 1 and 2 to the PFF technique proposed in [1].

When PPSFF identifies all pairs of similar data sets, the
aggregator deletes redundant data sets sent from neighboring
sensors in order to reduce the amount of data transmitted to the
sink while conserving the integrity of information. Algorithm
4 shows how the aggregator selects the data sets to be sent
to the sink among the pairs of similar received sets. For each
similar pair of set, the aggregator chooses the one having the
highest cardinality (line 3), then it adds it to the list of sets to
be sent to the sink (line 4). After that, it removes all pairs of
similar sets that contain R′i or R′j from the set of pairs (which
means it will not check them again). Finally, the aggregator
assigns to each set its frequency (line 6).

1in this article k is equal to 2.

Algorithm 3 PPSFF Algorithm.

Require: Set of reading sets R′ = {R′1, R′2, . . . , R′n}, t.
Ensure: All pairs of sets (R′i, R

′
j), such that J(R′i, R

′
j) ≥ t.

- Insert after line 2 in PFF Algorithm [1]
for each set R′i ∈ R′ do
p-R′i ← sort(p-R′i, |p-R′i|), the prefix of R′i is sorted
by increasing order of the readings

end for
- Insert after line 15 in PFF Algorithm [1]
ubound← Fs[R′j] +min(

∑|p-R′
i|

n=k+1 f(R′i[n]),∑|p-R′
j |

n=l+1 f(R′j [n]))
if ubound < sumFreq − 1−t

1+t × T then
Fs[R

′
j]← 0

else
line 16 in PFF Algorithm [1]

end if
- Replace line 22 in PFF Algorithm [1] with
for each R′j such that Fs[R

′
j] > 0 do

compute the bound B
compute uB following suffix filtering technique
if uB ≥ B then

lines 23 to 25 in PFF Algorithm [1]
end if

end for

Algorithm 4 Selecting Sets Algorithm.

Require: All pairs of sets (R′i, R
′
j), such that J(R′i, R

′
j) ≥ t.

Ensure: List of selected sets, L.
1: L← ∅
2: for each similar pair of sets (R′i, R

′
j) do

3: Consider |R′i| ≥ |R′j |
4: L← L ∪ {R′i}
5: Remove all pairs of sets containing one of the

two sets R′i and R′j
6: f(R′i) = number of removed pairs+ 1
7: end for

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results which
show the effectiveness of PPSFF compared to PFF technique
proposed in [1]. We have implemented both techniques based
on a Java simulator. We used the publicly available Intel
Lab dataset which contains data collected from 54 Mica2Dot
sensors deployed in the Intel Berkeley Research Lab [16]. Each
sensor collects new readings of humidity, temperature, light
and voltage once every 31 seconds. For the sake of simplicity,
in this paper we are interested in one field of sensor readings:
the temperature2. Each node reads periodically real readings
while applying the first aggregation phase. At the end of this
step, each node sends its set of readings/frequencies to an
aggregator node which in its turn applies filtering techniques
over theses sets. In our experiments, we have varied δ to 0.05,

2the others are done by the same manner.

0.07 and 0.1, and we varied the period size, e.g. T , from 500
to 1000 and t is varied from 0.75 to 0.9.

A. Number of Candidates / Comparisons

In this section, we compare the number of candidates
(number of compared sets) generated respectively using PPSFF
technique, PFF technique and the results obtained after apply-
ing the Jaccard similarity function (the real number of similar
sets). The obtained results in Fig. 2 (a to e) show that our
PPSFF technique can successfully reduce, when varying the
threshold t, the number of comparisons in all cases compared
to PFF. Subsequently, the suffix filtering helps prune from 12%
to 39% infeasible candidates that remain after applying PFF.

PFF PPSFF Results

200

300

400

500

600

700

800

N
u

m
b

er
 o

f
ca

n
d

id
a
te

s

0.75 0.8 0.85 0.9

Jaccard similarity threshold (t)

(a) T = 500, δ = 0.05

PFF PPSFF Results

300

400

500

600

700

800

900

1 000

N
u

m
b

er
 o

f
ca

n
d

id
a
te

s

0.75 0.8 0.85 0.9

Jaccard similarity threshold (t)

(b) T = 500, δ = 0.07

PFF PPSFF Results

400

500

600

700

800

900

1 000

1 100

1 200

N
u

m
b

er
 o

f
ca

n
d

id
a
te

s

0.75 0.8 0.85 0.9

Jaccard similarity threshold (t)

(c) T = 500, δ = 0.1

PFF PPSFF Results

200

250

300

350

400

450

500

550

N
u

m
b

er
 o

f
ca

n
d

id
a
te

s

0.75 0.8 0.85 0.9

Jaccard similarity threshold (t)

(d) T = 200, δ = 0.07

PFF PPSFF Results

200

300

400

500

600

700

800

N
u

m
b

er
 o

f
ca

n
d

id
a
te

s

0.75 0.8 0.85 0.9

Jaccard similarity threshold (t)

(e) T = 1000, δ = 0.07

Fig. 2. Sets comparison.

Based on the results in Fig. 2, several observations are
eminent:

1) both techniques generate less candidate pairs by in-
creasing similarity threshold t. This happens because
the similarity between sets decreases when t increases.

2) the number of candidates generated using PPSFF
becomes closer to the final results when t increases.
This is because, when t increases the length of the
prefix decreases thus its corresponding suffix length’s
increases. Therefore, the suffix filtering can found
more unsimilar readings between suffixes of two sets.

3) the number of erroneous candidates deleted by the
PPSFF technique increases when δ threshold de-
creases. This is because, the cardinality of a set

increases when δ decreases, thus the length of the
suffix increases. Therefore, the suffix filtering used
in PPSFF will find more erroneous candidates to be
deleted.

B. Data Latency / Running Time

In this section, we compare the execution time required for
both techniques, PFF and PPSFF, in order to aggregate data
(Fig. 3). In PFF, the execution time is highly dependent on the
prefix filtering and the number of generated candidates. Con-
sequently, PPSFF outperforms PFF in terms of execution time
for two reasons: first, the positional filtering used in PPSFF
can minimize the computation of similarity between readings
in prefixes of the sets; second, the number of candidates is
reduced in PPSFF thanks to the suffix filtering which leads
to minimize the time required to verify these candidates. The
obtained results in Fig. 3 show that the additional filters used
in PPSFF can successfully minimize, up to 41%, the execution
time for PFF for all similarity thresholds.

PFF PPSFF

200

300

400

500

600

700

800

900

1 000

R
u

n
n

in
g
 t

im
e

(i
n

 m
s)

0.75 0.8 0.85 0.9

Jaccard similarity threshold (t)

(a) T = 500, δ = 0.05

PFF PPSFF

200

300

400

500

600

700

800

900

R
u

n
n

in
g
 t

im
e

(i
n

 m
s)

0.75 0.8 0.85 0.9

Jaccard similarity threshold (t)

(b) T = 500, δ = 0.07

PFF PPSFF

200

300

400

500

600

700

R
u

n
n

in
g
 t

im
e

(i
n

 m
s)

0.75 0.8 0.85 0.9

Jaccard similarity threshold (t)

(c) T = 500, δ = 0.1

PFF PPSFF

100

200

300

400

500

600

R
u

n
n

in
g
 t

im
e

(i
n

 m
s)

0.75 0.8 0.85 0.9

Jaccard similarity threshold (t)

(d) T = 200, δ = 0.07

PFF PPSFF

400

600

800

1 000

1 200

1 400

1 600

1 800

R
u

n
n

in
g
 t

im
e

(i
n

 m
s)

0.75 0.8 0.85 0.9

Jaccard similarity threshold (t)

(e) T = 1000, δ = 0.07

Fig. 3. Running time.

Several observations can be made based on the results
shown in Fig. 3:

1) the running time for both techniques, PPSFF and PFF,
decreases when the similarity threshold t increases,
because the candidates number’s and the final results
decrease when t increases (see results in Fig. 2).

2) the PPSFF technique is more efficient when the thresh-
old δ decreases, except for δ = 0.9. This is due to

two reasons: first, when δ decreases the length of sets
prefixes’ increases therefore the positional filtering can
optimize more the overhead of similarity computation
between prefixes of the sets; second, the number of
erroneous candidates deleted by the PPSFF technique
increases when δ decreases (see observations for Fig.
2). Otherwise, for δ = 0.9, the positional filtering has
no effect because the length of the prefix becomes
very short.

C. Aggregated Sets Ratio

In Fig. 4, we show the results for the aggregated sets ratio
which represents the percentage of readings sets’ received
by the sink, at each period, over the total number of sets
generated by all sensor nodes for the temperature field. These
experiments permit to show how well aggregation techniques
reduce redundant data. In both cases, PPSFF and PFF, we have
the same aggregated sets ratio which means that we find, at
the end of the similarity computation, the same number of
readings sets’ to be sent to the sink. The obtained results show
that both techniques can reduce 13% and up to 45% of sets
sent to the sink. Therefore, PPSFF can be considered as an
efficient data aggregation technique that eliminates redundant
data forwarded to the sink within a minimum delay for data
delivery. We can also notice that the aggregated sets ratio
increases when the similarity threshold (t) increases or the
threshold δ decreases. This confirm the good behavior of
PPSFF which eliminates redundant data sets while preserving
the accuracy of sent data.

50

55

60

65

70

75

80

85

90

A
g
g
re

g
a
te

d
 s

et
s

ra
ti

o

0.75 0.8 0.85 0.9

Jaccard similarity threshold (t)

(a) T = 500

60

65

70

75

80

85

90

A
g
g
re

g
a
te

d
 s

et
s

ra
ti

o

0.75 0.8 0.85 0.9

Jaccard similarity threshold (t)

(b) δ = 0.07

Fig. 4. Aggregated sets ratio.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an efficient data aggregation
technique called PPSFF with low level data latency dedicated
to periodic sensor applications. The objective of our technique
is to reduce the number of redundant data sent to the end
user while preserving the data integrity. We have implemented
two novel filtering technique, e.g. position and suffix algo-
rithms. We used the additional filtering methods to accelerate
the calculation and prune erroneous candidates that survive
after applying the prefix frequency filtering technique. We
show through experiment results that our technique reduces
the number of comparisons and outperforms existing prefix
filtering techniques in terms of data latency.

As future work, we will adapt our proposed technique
to take into consideration reactive periodic sensor networks,
where sensor nodes operate with different sampling rate. In
periodic applications the dynamics of the monitored condition

or process can slow down or speed up; and to save more energy
the sensor node can adapt its sampling rates to the changing
dynamics of the condition or process.

ACKNOWLEDGEMENTS

This project has been performed in cooperation with the
Labex ACTION program (contract ANR-11-LABX-0001-01).

REFERENCES

[1] J. Bahi, A. Makhoul, and M. Medlej, “A two tiers data aggregation
scheme for periodic sensor networks,” Ad Hoc & Sensor Wireless
Networks, vol. 21, no. (1-2), pp. 77–100, 2014.

[2] H. Harb, A. Makhoul, R. Tawil, and A. Jaber, “Energy-efficient data
aggregation and transfer in periodic sensor networks,” IET Wireless
Sensor Systems, vol. 4, no. 4, pp. 149–158, 2014.

[3] I. Talzi, A. Hasler, S. Gruber, and C. Tschudin, “Permasense: investigat-
ing permafrost with a wsn in the swiss alps,” Proc. Of the 4th workshop
on Embedded networked sensors (EmNets’07), New York, USA, pp. 8–
12, 2007.

[4] M. Bagaa, Y. Challal, A. Ksentini, A. Derhab, and N. Badache,
“Data aggregation scheduling algorithms in wireless sensor networks:
Solutions and challenges,” Communications Surveys & Tutorials, IEEE,
vol. 16, no. 3, pp. 1339–1368, 2014.

[5] M. Bagaa, M. Younis, D. Djenouri, A. Derhab, and N. Badache,
“Distributed low latency data aggregation scheduling in wireless sensor
networks,” ACM Transactions on Sensor Networks (TOSN), vol. 11,
no. 3, p. Article No. 49, 2015.

[6] J. M. Bahi, A. Makhoul, and M. Medlej, “An optimized in-network
aggregation scheme for data collection in periodic sensor networks,”
Ad-hoc, Mobile, and Wireless Networks - 11th International Conference,
ADHOC-NOW 2012, Belgrade, Serbia, July 9-11, 2012. Proceedings,
pp. 153–166, 2012.

[7] D. Wang, R. Xu, X. Hu, and W. Su, “Energy-efficient distributed com-
pressed sensing data aggregation for cluster-based underwater acoustic
sensor networks,” International Journal of Distributed Sensor Networks,
vol. 2016, no. 2016, p. 14 pages, 2016.

[8] G. Li and Y. Wang, “Automatic arima modeling-based data aggregation
scheme in wireless sensor networks,” EURASIP Journal on Wireless
Communications and Networking, vol. 85, pp. 1–13, 2015.

[9] A. Tripathi, S. Gupta, and B. Chourasiya, “Survey on data aggregation
techniques for wireless sensor networks,” International Journal of
Advanced Research in Computer and Communication Engineering,
vol. 3, no. 7, 2014.

[10] P. Zou and Y. Liu, “A data-aggregation scheme for wsn based on optimal
weight allocation,” Journal Of networks, vol. 9, no. 1, pp. 100–107,
2014.

[11] M. Bahrepour, N. Meratnia, and P. Havinga, “Sensor fusion-based event
detection in wireless sensor networks,” 6th Annual International Mobile
and Ubiquitous Systems: Networking & Services, pp. 1–8, 2009.

[12] K. T.-M. Tran, S.-H. Oh, and J.-Y. Byun, “Well-suited similarity
functions for data aggregation in cluster-based underwater wireless
sensor networks,” International Journal of Distributed Sensor Networks,
vol. 2013, no. Article ID 645243, p. 7 pages, 2013.

[13] H. Harb, A. Makhoul, D. Laiymani, A. Jaber, and R. Tawil, “K-
means based clustering approach for data aggregation in periodic sensor
networks,” IEEE 10th International Conference on Wireless and Mobile
Computing, Networking and Communications, WiMob 2014, Larnaca,
Cyprus, October 8-10, 2014, pp. 434–441, 2014.

[14] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” Proc. Int. Conf. on Data Engineering
(ICDE’06), Atlanta, GA, pp. 1–5, 2006.

[15] J. Wang, G. Li, and J. Feng, “Can we beat the prefix filtering? an
adaptive framework for similarity join and search,” Proc. of the 2012
ACM SIGMOD International Conference on Management of Data
(SIGMOD’12), pp. 85–96, 2012.

[16] S. Madden, “http://db.csail.mit.edu/labdata/labdata.html,” Available On-
line, 2004.

