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Abstract—Microgrids are small-scale power systems that in-
clude local generation and storage units to serve their loads.
The effectiveness of such systems depends on both sizing and
operations, that need to be efficient to minimize costs while
ensuring reliable power delivery. In this paper, we build a
stand-alone microgrid while considering not only electric power,
but also cooling, heating, and hydrogen consumption. A unit
commitment algorithm, formulated as a mixed integer linear
programming problem, is used to determine the best operation
strategy of the system. A genetic algorithm is used to search for
the best size of each component. Results show the feasibility of
the proposed sizing method.

Index Terms—sizing, energy management, microgrid (MG),
multi-energy system, unit commitment

I. INTRODUCTION

As natural disasters (e.g., hurricanes, storms, floods, earth-
quakes) often result in power cuts or blackouts [1] in tra-
ditional centralized systems, distributed generation (DG) pro-
vides an alternative solution. DG enables powering loads using
local resources, which reduces the dependence on the rest of
the system. Microgrids use DG to form small scale power
systems, capable of operating in stand-alone mode. While
conventional sources, such as diesel gensets, are commonly
used, drawbacks include the emissions resulting from their
operation, as well as dependence on fuel supply [1], [2].
Renewable energy emerges as another option, where direct
emissions are non existent, as well as fuel dependence.

In this work, we consider microgrids with multiple ener-
gies, including electric, thermal and hydrogen loads (Fig. 1).
Combined heat and power (CHP) plants are typically efficient
and economical, and have applications in the residential and
industrial sectors, especially when multiple energies are con-
sidered [3]–[5]. We also consider loads to be cooled by an
air conditioner and an absorption heat chiller, and loads to be
heated by solar heat, an electric heat boiler. Electric loads are
powered by PV panels, and a battery. Finally, a fuel cell is
used as a CHP source for both electricity and heat, and an
electrolyzer is used to produce hydrogen, which is then stored
in tanks. Similarly, heat storage is used.

Multiple energy systems are a key solution to evolve to-
ward a cleaner and affordable energy supply systems [6].
But the sizing and operation of such complex systems, with
interdependent layers (one for each type of energy: electricity,
heat or hydrogen), seems non trivial. For example, oversizing
components will result in higher capital and possibly operation

Fig. 1. Stand-alone microgrid architecture.

costs, while undersizing may result in generation curtailment
or load shedding. Adequate operation is also required to avoid
curtailment and shedding, while minimizing costs. This means
that the sizing results are affected not only by the architecture
of system, but also by the operation strategy [7]. Depending
on how components are used, their necessary capacity may
vary greatly, which in turn impacts sizing results.

In this paper, we decompose the sizing problem into a
leader-follower problem. The follower problem, namely, the
energy management strategy, is formulated as a unit commit-
ment problem, in the form of a mixed integer liner problem.
We use mixed integer linear programming (MILP) to obtain
the optimal operation strategy. The leader problem, namely,
the sizing problem, uses an evolutionary algorithm (EA) to
search for the best sizing values [8].

The remainder of this paper is organized as follows. Sec-
tion II introduces related work. Section III describes the model
of microgrid components, Section IV the operation strategy,
Section V the sizing solution, and Section VI the simulation
results. Finally, Section VII concludes the paper.

II. RELATED WORK

In this section, we review related works about the optimal
sizing problem of microgrids. Optimal sizing problem solu-
tions may be divided into two intricate parts: a) to determine
an operation strategy to control power flows in the system;
b) to search for the best sizing values of each component,
considering this operation strategy. In the literature, related



works using this approach may be categorized into three
categories: 1) papers using sizing values chosen from a discrete
set, and where the operation strategy is described using mixed
integer programming (MIP) [9]–[12]; 2) papers where sizing
values are chosen using an EA and where the operation
strategy is based on rules [13], [14]; and 3) papers where
sizing values are decided using an EA, and where the operation
strategy is described using MIP [8], [15]–[19].

For the first category, in [9], authors present a deterministic
linear programming (LP) model to obtain the optimal size of a
residential CHP, and the objective function is to minimize the
annual cost of the system. A constant ratio is used to represent
the relation between electricity output and heat output. In
[10], authors also present an LP algorithm to optimize the
operation of smart hybrid renewable energy communities. In
[11], authors present a mixed integer nonlinear programming
(MINP) model for optimal sizing of a residential CHP system,
aiming to minimize the overall cost. In [12], authors present
a MINP model to solve the sizing problem for an active
distribution system.

For the second category, the authors in [13], [14] compare
different heuristic techniques to find the optimal sizing of
microgrids, where the objective function is the total annual
cost. Multiple similar papers may be found in the literature.

In [15], authors present a leader-follower optimization
method for microgrid planning in electrical power systems.
The leader problem optimizes the planning decisions for
microgrids and the main grid, and then with the proposed
plan, the short-term and economic operation subproblems are
then solved. In [16], authors present a microgrid planning
model. This problem is decomposed into an investment master
problem and an operation subproblem. These problems are
linked via the benders decomposition method. In [17], authors
present a bi-level program for islanded microgrids including
compressed air energy storage. The upper level problem is
solved using a genetic algorithm (GA), and the lower level
problem is solved using an MILP technique. [18] presents
a multi-objective model-based optimization approach for the
optimal sizing of all components. A GA and the non-linear
mesh adaptive direct search method are used to decide the
sizing values, where the objectives are the capital expenditure,
the levelised cost of energy and emissions. The optimal control
problem is formulated as a MINLP, and solved using discrete
dynamic programming. [19] presents a two-stage optimal
planning and design method for a CCHP microgrid system.
In the first stage, a multi-objective genetic algorithm based
on NSGA-II is applied to solve the optimal design problem.
The objective function is to minimize the total net present cost
and carbon dioxide emissions. In the second stage, an MILP
algorithm was used to solve the optimal dispatching problem,
where the objective function is to minimize the operation cost.

Based on the above researches, we can conclude that the
sizing problem is a non-convex combinatorial co-optimization
problem, which requires suitable algorithms. Methods relying
on rules are too complex for such a multi-energy system.
In our previous paper [8], a co-optimization method com-

bining an EA and MILP was used to size a full-electric
islanded microgrid. In this paper, we expand our previous
work and focus on a hydrogen-storage-based multi-energy
islanded microgrid system, and research about the optimal
sizing strategy. Although [18], [19] also have considered co-
optimization methods, the contribution of this paper is focused
on providing a sizing solution capable to consider electricity,
heat, cooling and hydrogen load demands at the same time.
Moreover, others papers not focused hydrogen storage for the
sizing of multi-energy islanded microgrid systems.

III. COMPONENTS MODELS

In this paper, the stand-alone microgrid contains nine com-
ponents shown in Fig. 1. Due to page limits, the models
introduced in our previous paper [8] (PV panels, battery,
fuel cell, electrolyzer, and hydrogen tanks) are re-used and
not presented again in this paper. The models for the new
components are introduced below.

Due to the high time constants of most of the selected
models, static power converters are neglected and simple
models are used.

A. Solar generation components

For the solar heating system, the power output is computed
with [20]: Qsh = Nsh ·ηsh ·GA. where Nsh is the area of the
heating system, and ηsh its efficiency.

B. Battery

The state-of-charge (SOC) is used to represent the state of
the battery as follows:

SOC(t) =SOC(t−∆t)

+
ηch · Pch(t) ·∆t

CB
− Pdis(t) ·∆t

CB

(1)

where ηch is the charging efficiency, Pch(t) the charging
power, Pdis(t) the discharging power, ∆t the interval time,
and CB the capacity of the battery.

C. Hydrogen tank model

A hydrogen tank is used to store the hydrogen produced by
the electrolyzer, as well as supply hydrogen to the fuel cell.
We use the level of hydrogen (LOH) to represent the state of
the tank:

LOH(t) = LOH(t−∆t)+ṅproH2 ·∆t−ṅ
con
H2 ·∆t−LH2

(t) (2)

where LH2
(t) is the hydrogen load demand. Then, using the

law of perfect gases (PV = nRT ), the volume of the tanks
can be calculated.

D. Thermal components

We use simple models for the thermal components. A heat
boiler (HB) uses electricity to produce heat as follows [12]:
Qhb = ηhb · Phb, where Phb is the input power, ηhb the
efficiency, and Qhb the output heat.

An air conditioner is used to cool air [12]: Cac = ηac ·Pac,
where Pac is the input power, ηac the efficiency, and Cac the
cooling output cooling power.



Similarly, the absorption heat chiller (AHC) uses heat to
produce cooling, so [12]: Cahc = ηahc ·Qahc, where Qahc is
the input heat, ηahc the efficiency, and Cahc the output cooling
power.

Finally, the state of the heat storage system is represented
by the amount of heat stored [21]:

HS(t) = HS(t−∆t) + ηchhs ·Qch
hs ·∆t−

Qdis
hs

ηdishs

·∆t (3)

where HS(t) is the stored heat at time t. ηchhs and ηdishs are the
charge and discharge efficiency, respectively.

IV. UC OPTIMIZATION OPERATION STRATEGY

We now describe the strategy used to control the different
microgrid components. In this paper we adopt a UC op-
timization method formed as an MILP to optimize system
operation. The concept of UC optimization applied to this
case is to use the above models to optimize operations using
predicted information. In this case, the predicted information
corresponds to solar radiation and loads. The controller choses
the optimal operating point of each component to minimize a
cost function while enforcing all constraints.

A. Cost function

In order to achieve economical operation at each time step,
we need to assess the utilization cost of storage elements, as
well as all other auxiliary components. For the battery storage
system (BSS), the utilization cost of charge and discharge are
indroduced as follows [22]:

Bch,dis
cost (t) =

Cinv
ba

2 ·Ncycles
· (Pch(t) + Pdis(t)) (4)

where Cinv
ba is the investment cost of the battery, and Ncycles

is the number of cycles over the lifetime.
The hydrogen storage system (HSS) combines an elec-

trolyzer, a fuel cell and hydrogen tanks. As for the BSS, its
utilization cost can be computed as follows [22]:

Hele
cost(t) =

(
Cinv

ele

Nele
hours

+ Co&m
ele

)
· δele(t) +Cstartup

ele ·∆δele(t)
(5)

Hfc
cost(t) =

(
Cinv

fc

Nfc
hours

+ Co&m
fc

)
· δfc(t) +Cstartup

fc ·∆δfc(t)

(6)
where Cinv

ele , C
inv
fc are the investment costs of the elec-

trolyzer and the fuel cell, Co&m
ele and Co&m

fc the operation
and maintenance costs, and Cstartup

ele and Cstartup
fc the startup

costs. Variables δele(t) and δfc(t) are the state of the elec-
trolyzer and the fuel cell. When a unit is on, δi(t) =
1, i = {ele, fc}, otherwise it is set to 0. Equation ∆δi(t) =
max{δi(t) − δi(t − 1), 0}, i = {ele, fc} represents whether
the unit started or not.

We use a similar approach for thermal components. The
heat boiler, air conditioner and absoption heat chiller operation
costs are given by [11]:

HBcost(t) =
Cinv

hb

Nhb
life

· Phb(t) (7)

ACcost(t) =
Cinv

ac

Nac
life

· Pac(t) (8)

AHCcost(t) =
Cinv

ahc

Nahc
life

· Pahc(t) (9)

In the above equations, Cinv
. and N .

life are the investment cost
and life time of each component. For the heat storage system,
the operation cost is:

HScost(t) =
Cinv

hs

Nhs
life

· (Qch
hs(t) +Qdis

hs (t)) (10)

B. Operation cost function

The optimization tries to minimize overall operation costs
over a given horizon of T time steps. The total cost function
is then as follows:

Cop =

T∑
t=1

{Bch,dis
cost (t) +Hele

cost(t) +Hfc
cost(t) +HBcost(t)

+ACcost(t) +AHCcost(t) +HScost(t)

+α · (LScooling(t) + LSheat(t) + LSpower(t)

+β · (cutPV (t) + cutsolar(t))}
(11)

where LSm(t) with m = {cooling, heat, power} is the
shed cooling, heat and power loads, and cutn(t) with n =
{PV, solar} are the curtailed PV power and solar heating. α
and β are penalty values for load shedding and curtailed power.

C. Constraints

The stand-alone microgrid is subject to the
following constraints, with i = {el, fc} and
j = {el, fc, bach, badis, hb, ac, ahc, hsch, hsdis}. Variables
γj1 and γj2 are constant real values used to set the minimum
and maximum power range of each component (below, we
use the following notation: Zj(t) = δj(k) · Pj(t)):

γj1P
min
j ≤ Pj(t) ≤ γj2Pmax

j (12)

δj(k) · γj1Pmin
j ≤ Zj(t) = δj(k) · Pj(t) ≤ δj(k) · γj2Pmax

j

(13)
Zj(t) ≤ Pj(t)− (1− δj(t)) · γj1Pmin

j

Zj(t) ≥ Pj(t)− (1− δj(t)) · γj2Pmax
j

(14)

δele(t) + δfc(t) ≤ 1

δbach(t) + δbadis(t) ≤ 1

δhsch(t) + δhsdis(t) ≤ 1

(15)

Equation (15) means that the fuel cell and the electrolyzer
cannot start up at the same time. The BSS and heat storage
system also cannot charge and discharge at the same time.



∆δi(t) = max{δi(t) − δi(t − 1), 0} can be expressed
as ∆δi(t) = δi(t) · (1 − δi(t − 1)). Then, using [23], the
above nonlinear equations system can be transformed into the
following linear constraints:

− δi(t) + ∆δi(t) ≤ 0

− (1− δi(t− 1)) + ∆δi(t) ≤ 0

δi(t) + (1− δi(t− 1))−∆δi(t) ≤ 1

(16)

The power balance equation is written as:

PV (t)− cutPV (t)− (Lpower(t)− LSpower(t)) = Zele(t)

− Zfc(t) + Zbach(t)− Zbadis(t) + Zac(t) + Zhb(t)
(17)

Similarly, for the heat and cooling balance equations:

Qsh(t)− cutsolar(t)− (Lheat(t)− LSheat(t)) +Qfc(t)

+Qhb(t) = Qhsch(t)−Qhsdis(t) +Qahc(t)

Cac(t) + Cahc(t) = Lcooling(t)− LScooling(t)
(18)

Finally, for the SOC, LOH and HS constraints:

SOCmin ≤ SOC(t) ≤ SOCmax

LOHmin ≤ LOH(t) ≤ LOHmax

HSmin ≤ HS(t) ≤ HSmax

(19)

In summary, with the UC control strategy, the problem can
be formulated as:

min
S̃
{Cop}

s.t. (1), (2), (3), (12)− (19)
(20)

where S̃ is the set of variables.

V. SIZING SOLUTIONS

Based on the above section, we can describe the
power flow in the microgrid system. Our goal is to
compute the optimal size value of each component, namely,
NPV , Nsh, CB, P

max
fc , Pmax

el , V max
H2

, Pmax
hb , Pmax

ac , Qmax
ahc ,

HSmax. Let set U represent these size variables. Then the
sizing problem is to minimze F (U), with F (.) the total cost
function introduced in the following.

The total capital cost corresponds to the cost of buying the
equipment, and is given by:

Ccap = CRF · (NPV · Cinv
PV +Nsh · Cinv

sh + Pmax
fc · Cinv

fc

+Pmax
el · Cinv

ele + V max
H2

· Cinv
tank + Cbat · Cinv

bat + Pmax
hb · Cinv

hb

+Pmax
ac · Cinv

ac + Pmax
ahc · Cinv

ahc +HSmax · Cinv
hs )
(21)

where Cinv variables represent the price of each component.
CRF = r(1+r)ninv

(1+r)ninv−1 is the capital recovery factor (CRF) [14],
r is the real interest rate and ninv is the expected life span of
the microgrid.

The total cost function F (.) is thus: F = Ccap + Cop.

Finally, the overall problem can be formulated as:

min
U∈U
{Ccap + min

U∗,S̃
{Cop}}

s.t. (1), (2), (3), (12)− (19)
(22)

A genetic algorithm (GA) is used to search for the best
sizing values.

VI. SIMULATION RESULTS

A. System setup

For the fuel cell, the electrolyzer and the heat boiler, we set
γfc,ele1 = 0.5, γhb1 = 0, γfc,ele,hb2 = 1; for the air conditioner,
γac1 = 0.1, γac2 = 0.9; for the absorption heat chiller, γahc1 =
0, γahc2 = 0.9; for the battery, SOCmin = 0.5, SOCmin =
0.9; for the hydrogen tanks, LOHmin = 1N.m3; for the heat
storage, HSmin = 0; and α = β = 1010. Here, the penalty
values are chosen large enough to guarantee that no load
shedding and curtailed power will occur. The cost parameters
are adopted from [8], [12], [24]. The model is implemented
in MATLAB and solved with YALMIP [25] and Gurobi.
Simulations were run on a computer with an Intel Xeon CPU
E3-1220@3.1GHz.

Load demand data (for cooling, heat, electric power and
hydrogen) and solar radiation are obtainted from a research
building, located in Belfort, France. The corresponding profiles
(one day average) are shown in Figs. 2 and 3. In our simula-
tion, we adopt 12 days with one hour-resolution data. These
12 days correspond to the electricity load demand peak day,
heating load demand peak day, and the cooling load demand
peak day in the four seasons. Hydrogen is used to run FC
research experiments. Heating and cooling loads are calculated
based on a building thermal model.

Fig. 2. Cooling/heat/electricity demand profiles (one day average).

B. GA-based sizing results

A GA [8] is based on natural selection processes similar to
biological evolution. It uses tools such as mutations, crossover
and selection to generate candidate solutions. In our simula-
tion, the population size is 20, and the maximum number of
iterations is 100. Each population gives the sizing values of
each component, then the MILP operation optimization is run.



Fig. 3. Daily average solar radiation profile.

Based on these results, the population is then updated. The
total simulation time is about 1 hour.

The obtained optimal size values are: NPV = 327, Nsh =
43 m2, CB = 735 kWh, Pmax

fc = 131 kW, Pmax
el = 690 kW,

∆VH2 = 84865 Nm3, Pmax
hb = 283 kW, Pmax

ac = 159 kW,
Qmax

ahc = 686 kW, ∆HSmax = 3000 kWh.
Here ∆VH2 = max{∆V rd

H2
}, rd = {1, ..., 12}, where

rd represents the 12 days. ∆V rd
H2

= V rd
max − V rd

min repre-
sents the hydrogen level change in tanks for day rd. Sim-
ilarly, ∆HSmax = max{∆HSrd}, rd = {1, ..., 12}, where
∆HSrd = HSrd

max −HSrd
min represents the heat level change

in the heat storage system for day rd.
Based on the above sizing values, we can compute the

scheduling results by running the MILP algorithm. We run
it for scheduling one day (here, the cooling peak load de-
mand day in May). Fig. 4 shows the resulting electric power
schedule. We observe that the HSS is the main storage
system, with slow variations in output, while the BSS only
serves as an auxiliary storage system, with shorter and more
dynamic charge and discharge periods. The FC generates more
electricity than the electric load demand, in order to supply
the heating and cooling loads. On the other hand, the AC uses
electricity to produce cool air, and the HB uses electricity to
produce heat. We also observe that the curtailed PV power is
non existent, as is load shedding, which tends to indicate that
the sizing is sufficient.

Fig. 5 shows the heating power schedule. The heat boiler
and the fuel cell supply most of the heating load demand.
The heat boiler uses electricity to heat water. This heat can be
stored, and can also be used in the absorption chiller. The FC
also generates heat, which can be transferred to rooms through
pumps. The AHC uses heat to produce cooling, and operates
as load. Similarly, Fig. 6 shows the cooling power schedule.
The absorption heat chiller and the air conditioner supply all
the cooling load.

Regarding storage, Fig. 7 shows the change in SOC and
LOH. Fig. 8 shows the change in stored heat. We observe that
the hydrogen storage system operates as the main electricity
storage system. A similar comment can be made for the heat
storage system. When energy (electricity/heating) in each bus

is unbalanced, the storage system is used to balance the power
flow. Due to operation of the heat boiler, electric energy can
also be converted to heat.

Fig. 4. Electric power schedule (power means PV output minus electricity
load demand; charge/discharge curves are for the battery).

Fig. 5. Heat power schedule (power means solar output minus heat load
demand; charge/discharge curves are for the heat storage system).

Fig. 6. Cooling power schedule.

VII. CONCLUSION

In this paper, we introduced a strategy for sizing a stand-
alone microgrid combining cooling, heat, electric power and
hydrogen loads. The UC optimization method is used for



Fig. 7. LOH and SOC.

Fig. 8. LOH and stored heat.

defining the operation strategy, which aims at minimizing the
operation cost through an MILP algorithm. A GA is used to
compute the sizing value of each component, aiming to mini-
mize the total cost. The results show that the optimal size value
and operation algorithms are capable of scheduling multiple
components and managing flows from different natures (heat,
electricity and hydrogen). Future work will focus on longer
validation periods, as well as considering the dynamics of
components, especially for storage.
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