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Abstract

Compute the coarsest simulation preorder included in an initial preorder is used to reduce the
resources needed to analyze a given transition system. This technique is applied on many models like
Kripke structures, labeled graphs, labeled transition systems or even word and tree automata. Let
(Q,→) be a given transition system and Rinit be an initial preorder over Q. Until now, algorithms to
compute Rsim, the coarsest simulation included in Rinit, are either memory efficient or time efficient
but not both. In this paper we propose the foundation for a series of efficient simulation algorithms
with the introduction of the notion of maximal transitions and the notion of stability of a preorder
with respect to a coarser one. As an illustration we solve an open problem by providing the first
algorithm with the best published time complexity, O(|Psim|.|→|), and a bit space complexity in
O(|Psim|2. log(|Psim|)+ |Q|. log(|Q|)), with Psim the partition induced by Rsim.

1 Introduction

The simulation relation has been introduced by Milner [Mil71] as a behavioural relation between process.
This relation can also be used to speed up the test of inclusion of languages [ACH+10] or as a sufficient
condition when this test of inclusion is undecidable in general [CG11]. Another very helpful use of a
simulation relation is to exhibit an equivalence relation over the states of a system. This allows to reduce
the state space of the given system to be analyzed while preserving an important part of its properties,
expressed in temporal logics for examples [GL94]. Note that the simulation equivalence yields a better
reduction of the state space than the better known bisimulation equivalence.

1.1 State of the Art

The paper that has most influenced the literature is that of Henzinger, Henzinger and Kopke [HHK95].
Their algorithm, designed over Kripke structures, and here named HHK, to compute Rsim, the coarsest
simulation, runs in O(|Q|.|→|)-time, with → the transition relation over the state space Q, and uses
O(|Q|2. log(|Q|)) bits.

But it happens that Rsim is a preorder. And as such, it can be more efficiently represented by a
partition-relation pair (P,R) with P a partition, of the state space Q, whose blocks are classes of the
simulation equivalence relation and with R⊆ P×P a preorder over the blocks of P. Bustan and Grumberg
[BG03] used this to propose an algorithm, here named BG, with an optimal bit-space complexity in
O(|Psim|2 + |Q|. log(|Psim|)) with |Psim| (in general significantly smaller than |Q|) the number of blocks
of the partition Psim associated with Rsim. Unfortunately, BG suffers from a very bad time complexity.
Then, Gentilini, Piazza and Policriti [GPP03] proposed an algorithm, here named GPP, with a better time
complexity, in O(|Psim|2.|→|), and a claimed bit space complexity like the one of BG. This algorithm had
a mistake and was corrected in [vGP08]. It is very surprising that none of the authors citing [GPP03],
including these of [vGP08, RT07, RT10, CRT11] and [GPP15], realized that the announced bit space
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complexity was also not correct. Indeed, as shown in [Céc13] and [Ran14] the real bit space complexity
of GPP is O(|Psim|2. log(|Psim|)+ |Q|. log(|Q|)). In a similar way, [RT10] and [CRT11] did a minor
mistake by considering that a bit space in O(|Q|. log(|Psim|)) was sufficient to represent the partition in
their algorithms while a space in O(|Q|. log(|Q|)) is needed.

Ranzato and Tapparo [RT07, RT10] made a major breakthrough with their algorithm, here named
RT, which runs in O(|Psim|.|→|)-time but uses O(|Psim|.|Q|. log(|Q|)) bits, which is more than GPP. The
difficulty of the proofs and the abstract interpretation framework put aside, RT is a reformulation of HHK
but with a partition-relation pair instead of a mere relation between states. Over unlabelled transition
systems, this is the best algorithm regarding the time complexity.

Since [RT07] a question has emerged: is there an algorithm with the time complexity of RT while
preserving the space complexity of GPP ?

Crafa, Ranzato and Tapparo [CRT11], modified RT to enhance its space complexity. They proposed
an algorithm with a time complexity in O(|Psim|.| → |+ |Psim|2.| →Psp,Psim |) and a bit space complexity in
O(|Psp|.|Psim|. log(|Psp|)+ |Q|. log(|Q|)) with |Psp| between |Psim| and |Pbis|, the number of bisimulation
classes, and→Psp,Psim a smaller abstraction of→. Unfortunately (although this algorithm provided new
insights), for 22 examples, out of the 24 they provided, there is no difference between |Pbis|, |Psp| and
|Psim|. For the two remaining examples the difference is marginal. With a little provocation, we can
then consider that |Psp| ≈ |Pbis| and compute the bisimulation equivalence (what should be done every
time as it produces a considerable speedup) then compute the simulation equivalence with GPP on the
obtained system is a better solution than the algorithm in [CRT11] even if an efficient computation of the
bisimulation equivalence requires, see [PT87], a bit space in O(| → |. log(|Q|)).

Ranzato [Ran14] almost achieved the challenge by announcing an algorithm with the space complexity
of GPP but with the time complexity of RT multiplied by a log(|Q|) factor. He concluded that the
suppression of this log(|Q|) factor seemed to him quite hard to achieve. Gentilini, Piazza and Policriti
[GPP15] outperformed the challenge by providing an algorithm with the space complexity of BG and the
time complexity of RT, but only in the special case of acyclic transition systems.

1.2 Our Contributions

In this paper, we respond positively to the question and propose the first simulation algorithm with the
time complexity of RT and the space complexity of GPP.

Our main sources of inspiration are [PT87] for its implicit notion of stability against a coarser
partition, that we generalize in the present paper for preorders, and for the counters it uses, [HHK95] for
the extension of these counters for simulation algorithms, [BG03] for its use of little brothers to which
we prefer the use of what we define as maximal transitions, [Ran14] for its implicit use of maximal
transitions to split blocks and for keeping as preorders the intermediate relations of its algorithm and
[Céc13] for its equivalent definition of a simulation in terms of compositions of relations.

Note that almost all simulation algorithms are defined for Kripke structures. However, in each of
them, after an initial step which consists in the construction of an initial preorder Rinit, the algorithm
is equivalent to calculating the coarsest simulation inside Rinit over a classical transition system. We
therefore directly start from a transition system (Q,→) and an initial preorder Rinit inside which we
compute the coarsest simulation.

2 Preliminaries

Let Q be a set of elements, or states. The number of elements of Q is denoted |Q|. A relation over Q is
a subset of Q×Q. Let R be a relation over Q. For all q,q′ ∈ Q we may write qR q′, or q R q′ in
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the figures, when (q,q′) ∈R. We define R(q), {q′ ∈ Q
∣∣qR q′} for q ∈ Q, and R(X), ∪q∈XR(q) for

X ⊆ Q. We write X R Y , or X R Y in the figures, when X ×Y ∩R 6= /0. For q ∈ Q and X ⊆ Q, we
also write X R q (resp. q R X) for X R {q} (resp. {q}R X). A relation R is said coarser than another
relation R ′ when R ′ ⊆R. The inverse of R is R−1 , {(y,x) ∈ Q×Q

∣∣(x,y) ∈R}. The relation R is
said symmetric if R−1 ⊆R and antisymmetric if qR q′ and q′R q implies q = q′. Let S be a second
relation over Q, the composition of R by S is S ◦R , {(x,y)∈Q×Q

∣∣y∈S (R(x))}. The relation R
is said reflexive if for all q ∈Q we have qR q, and transitive if R ◦R ⊆R. A preorder is a reflexive and
transitive relation. A partition P of Q is a set of non empty subsets of Q, called blocks, that are pairwise
disjoint and whose union gives Q. A partition-relation pair is a pair (P,R) with P a partition and R a
relation over P. To a partition-relation pair (P,R) we associate a relation R(P,R) ,

⋃
(C,D)∈RC×D. Let R

be a preorder on Q and q ∈ Q, we define [q]R , {q′ ∈ Q
∣∣qR q′∧q′R q} and PR , {[q]R ⊆ Q

∣∣q ∈ Q}.
It is easy to show that PR is a partition of Q. Therefore, given any preorder R and a state q ∈ Q, we
also call block, the block of q, the set [q]R . A symmetric preorder P is totally represented by the
partition PP since P = ∪E∈PP E×E. Let us recall that a symmetric preorder is traditionally named
an equivalence relation. Conversely, given a partition P, there is an associated equivalence relation
PP , ∪E∈PE×E. In the general case, a preorder R is efficiently represented by the partition-relation
pair (PR ,RR) with RR , {([q]R , [q′]R) ∈ PR ×PR

∣∣qR q′} a reflexive, transitive and antisymmetric
relation over PR . Furthermore, for a preorder R, we note [·]R the relation over Q which associates to a
state the elements of its block. Said otherwise: [·]R , ∪q∈Q{q}× [q]R . Finally, for a set X of sets we
note ∪X for ∪E∈X E.

Proposition 1. Let X and Y be two blocks of a preorder R. Then

(X ′ ⊆ X ∧Y ′ ⊆ Y ∧X ′ R Y ′)⇒ X×Y ⊆R.

Said otherwise, when two subsets of two blocks of R are related by R then all the elements of the first
block are related by R with all the elements of the second block.

Proof. Thanks to the transitivity of R.

A finite transition systems (TS) is a pair (Q,→) with Q a finite set of states, and→ a relation over Q
called the transition relation. A relation S is a simulation over (Q,→) if:

S ◦→−1⊆→−1◦S (1)

For a simulation S , when we have q S q′, we say that q is simulated by q′ (or q′ simulates q).
A relation B is a bisimulation if B and B−1 are both simulations. The interesting bisimulations,

such as the coarsest one included in a preorder, are equivalence relations. It is easy to show that an
equivalence relation B is a bisimulation iff :

B ◦→−1⊆→−1◦B (2)

Remark. The classical definition is to say that a relation S is a simulation if: q1 S q2∧ q1→ q′1⇒
∃q′2 . q2→ q′2∧q′1 S q′2. However, we prefer the formula (1), which is equivalent, because it is more
global and to design efficient simulation algorithms we must abstract from individual states.

In the remainder of the paper, all relations are over the same finite set Q and the underlying transition
system is (Q,→).

3 Key Ideas

Let us start from equation (1). If a relation R is not a simulation, we have R ◦→−1 *→−1◦R. This
implies the existence of a relation Remove such that: R ◦→−1⊆ (→−1◦R)∪Remove. It can be shown
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c b

d U (b)

R(b)

R(c)

c b

d U (b)

R(b)
V (c)

Figure 1: R is U -stable and V , obtained after a split of blocks of R and a refinement of R, is R-stable.

that most of the simulation algorithms cited in the introduction, like HHK, GPP and RT, are based on this
last equation. In this paper, like in [Céc13], we make the following different choice. When R is not a
simulation, we reduce the problem of finding the coarsest simulation inside R to the case where there is a
relation NotRel such that: R ◦→−1⊆→−1◦ (R ∪NotRel). Let us note U , R ∪NotRel. We will say
that R is U -stable since we have:

R ◦→−1⊆→−1◦U (3)

Our definition of stability is new. However, it is implicit in the bisimulation algorithm of [PT87, p. 979]
where, with the notations from [PT87], a partition Q is said stable with every block of a coarser partition
X . Within our formalism we can say the same thing with the formula PQ ◦→−1⊆→−1◦PX .

Consider the transition c→ b in Figure 1. The preorder R is assumed to be U -stable and we want to
find the coarsest simulation included in R. Since R is a preorder, the set R(c) is a union of blocks of
R. A state d in R(c) which doesn’t have an outgoing transition to R(b) belongs to→−1◦U (b), thanks
to (3), but cannot simulate c. Thus, we can safely remove it from R(c). But to do this effectively, we
want to manage blocks of states and not the individual states. Hence, we first do a split step by splitting
the blocks of R such that a resulting block, included in both R(c) and→−1◦U (b), is either completely
included in→−1◦R(b), which means that its elements still have a chance to simulate c, or totally outside
of it, which means that its elements cannot simulate c. Let us call P the equivalence relation associated
to the resulting partition. We will say that P is R-block-stable. Then, to test whether a block, E of
P , which has an outgoing transition in→−1◦ (U \R)(b), is included in→−1◦R(b), it is sufficient
to do the test for only one of its elements, arbitrarily choosen, we call the representative of E: E.rep.
To do this test in constant time we manage a counter which, at first, count the number of transitions
from E.rep to U (b) = U ([b]P). By scanning the transitions whose destination belongs to (U \R)(b)
this counter is updated to count the transitions from E.rep to R(b) = R([b]P). Therefore we get the
equivalences: there is no transition from E to R(b) iff there is no transition from E.rep to R(b) iff this
counter is null. Remark that the total bit size of all the counters is in O(|Psim|2. log(|Q|)) since there
is at most |Psim| blocks like E, |Psim| blocks like [b]P and |Q| transitions from a state like E.rep. The
difference is not so significative in practice but we will reduce this size to O(|Psim|2. log(|Psim|)), at a cost
of O(|Psim|.| → |) elementary steps, which is hopefully within our time budget. Removing from R(c) the
blocks of→−1◦ (U \R)(b), like [d]P , which do not have an outgoing transition to R(b) is called the
refine step. After this refine step, R(c) has been reduced to V (c). Doing these split and refine steps for
all transitions c→ b results in the relation V that we will prove to be a R-stable preorder.

In summary, from an initial preorder we will build a strictly decreasing series of preorders (Ri)i≥0
such that Ri+1 is Ri-stable and contains, by construction, all simulations included in Ri. Since all the
relations are finite, this series has a limit, reached in a finite number of steps. Let us call Rsim this limit.
We have: Rsim is Rsim-stable. Therefore, with (1) and (3), Rsim is a simulation and by construction
contains all simulations included in the initial preorder: this is the coarsest one.

4



q q′

q′′

R R

⇒q′q

Figure 2: Illustration of the left property of Lemma 3.

Remark. The counters which are used in the previous paragraphs play a similar role as the counters used
in [PT87]. Without them, the time complexity of the algorithm of the present paper would have been
multiplied by a |Psim| factor and would have been this of GPP: O(|Psim|2.|→|).

4 Underlying Theory

In this section we give the necessary theory to define what should be the ideal split step and we justify
the correctness of our refine step which allows to treat blocks as if they were single states. We begin
by introducing the notion of maximal transition. This is the equivalent concept for transitions from
that of little brothers, introduced in [BG03], for states. The main difference is that little brothers have
been defined relatively to the final coarsest simulation in a Kripke structure. Here we define maximal
transitions relatively to a current preorder R.

Definition 2. Let R be a preorder. The transition q→ q′ is said maximal for R, or R-maximal, which
is noted q→R q′, when:

∀q′′ ∈ Q . (q→ q′′∧q′ R q′′)⇒ q′′ ∈ [q′]R

The set of R-maximal transitions and the induced relation are both noted→R .

Lemma 3 (Figure 2). For a preorder R, the two following properties are verified:

→−1⊆→−1
R ◦R and →−1◦R =→−1

R ◦R

Proof. Let (q,q′) ∈→ and X = {q′′ ∈ Q
∣∣q→ q′′∧q′Rq′′}. Since R is reflexive, this set is not empty

because it contains q′. Let Y be the set of blocks of R which contain an element from X . Since this set is
finite (there is a finite number of blocks) there is at least a block G maximal in Y . Said otherwise, there is
no G′ ∈ Y , different from G, such that GR G′. Let q′′ ∈ G such that q→ q′′. From what precedes, the
transition (q,q′′) is maximal and q′Rq′′. Hence: (q′,q) ∈→−1

R ◦R. So we have:

→−1⊆→−1
R ◦R (4)

Now, from (4) we get→−1◦R ⊆→−1
R ◦R ◦R and thus→−1◦R ⊆→−1

R ◦R since R is a preorder.
The relation→R is a subset of→. Therefore we also have→−1

R ◦R ⊆→−1◦R which concludes the
proof.

In the last section, we introduced the notions of stability and of block-stability. Let us define them
formaly.

Definition 4. Let R a preorder.

• R is said U -stable, with U a coarser preorder than R, if:

R ◦→−1⊆→−1◦U (5)
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Figure 3: Illustration of 3.

• An equivalence relation P included in R, is said R-block-stable if:

∀b,d,d′ ∈ Q .d P d′⇒ (d ∈→−1◦R(b)⇔ d′ ∈→−1◦R(b)) (6)

Remark. Say that P is included in R means that each block of P is included in a block of R.

As seen in the following lemma we have a nice equivalence: an equivalence relation P is R-block-
stable iff it is R-stable.

Lemma 5. Let P be an equivalence relation included in a preorder R. Then (6) is equivalent with:

P ◦→−1⊆→−1◦R (7)

Proof. To show the equivalence of (6) and (7) we use an intermediate property:

P ◦→−1◦R ⊆→−1◦R (8)

With the help of Figure 3 it is straightforward to see the equivalence of (6) and (8). It remains therefore
to show the equivalence of (7) and (8).

(7)⇒ (8). From (7) we get P ◦→−1◦R ⊆→−1◦R ◦R and thus (8) since, as a preorder R is
transitive.

(8)⇒ (7). Let I = {(q,q)
∣∣q ∈ Q} be the identity relation. We have P ◦→−1= P ◦→−1◦I

and thus P ◦→−1◦I ⊆ P ◦→−1◦R since R is a preorder and as such contains I . With (8)
we thus get (7).

With (5) and (7) the reader should now be convinced by the interest of (1) to define a simulation.
Following the keys ideas given in Section 3 there is an interest, for the time complexity, of having a

coarse R-block-stable equivalence relation P . Hopefully there is a coarsest one.

Proposition 6. Given a preorder R, there is a coarsest R-stable equivalence relation.

Proof. With Lemma 5 and by an easy induction based on the two following properties:

• the identity relation, I = {(q,q)
∣∣q ∈ Q}, is a R-stable equivalence relation.

• the reflexive and transitive closure (P1∪P2)
∗ of the union of two R-stable equivalence relations,

P1 and P2, is also a R-stable equivalence relation, coarser than them.
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We are now ready to introduce the main result of this section. It is a formalization, and a justification,
of the refine step given in Section 3. In the following theorem, the link with the decreasing sequence of
relations (Ri)i≥0 mentioned at the end of Section 3 is: if Ri is the current value of R then Ri−1 is U
and Ri+1 will be V . The reader can also ease its comprehension of the theorem by considering Figure 1.

Theorem 7. Let U be a preorder, R be a U -stable preorder and P be the coarsest R-stable equivalence
relation. Let NotRel = U \R and V = R \ NotRel′ with

NotRel′ =
⋃

b,c,d∈Q, c→b, cR d,
d∈→−1◦NotRel(b),

d 6∈→−1 ◦R(b)

[c]P×[d]P

Then:

1. NotRel′ = X with
X =

⋃
b,c,d∈Q, c→R b, cR d,

d∈→−1
R◦NotRel(b),

d 6∈→−1
R ◦R(b)

{(c,d)}

2. Any simulation S included in R is also included in V .

3. V ◦→−1⊆→−1◦R

4. V is a preorder.

5. V is R-stable.

6. Blocks of V are blocks of P (i.e. PV = PP ).

Proof.

1. Since (c,d) belongs to [c]P×[d]P ,→R ⊆→ and→−1◦R =→−1
R ◦R, from Lemma 3, we get

X ⊆ NotRel′. For the converse, let (c′,d′) ∈ NotRel′. By definition, there are b,c,d ∈ Q such that
c→ b, cR d, d ∈→−1 ◦NotRel(b), d 6∈→−1◦R(b), c′∈[c]P and d′∈[d]P . From d 6∈→−1◦R(b)
and Lemma 3 we have d 6∈→−1

R ◦R(b). From c→ b, Lemma 3, Lemma 5, and the hypothesis
that P is R-stable, we have c′ →−1

R ◦ R(b). Therefore, there is a state b′ such that c′ →R b′

and bR b′. Les us suppose d′ ∈→−1
R ◦R(b′). Since bR b′, we would have had d ∈→−1

R ◦R(b).
Thus d′ 6∈→−1

R ◦R(b′). We have c′P c, cR d, d P d′, and thus c′R d′ since R is a preorder and
P ⊆ R. With c′ →R b′ and the hypothesis that R is U -stable, we get d′ ∈→−1◦ U (b′) and
thus, with Lemma 3, d′ ∈→−1

R ◦R ◦U (b′) and thus d′ ∈→−1
R ◦U (b′) since U is a preorder and

R ⊆ U . As seen above, d′ 6∈→−1
R ◦ R(b′). So we have d′ ∈→−1

R ◦ (U \R)(b′). In summary:
c′→R b′, c′R d′, d′ ∈→−1

R ◦ NotRel(b′) and d′ 6∈→−1
R ◦R(b′). All of this implies that (c′,d′) ∈ X .

So we have NotRel′ ⊆ X and thus NotRel′ = X .

2. By contradiction. Let (c,d) ∈S such that (c,d) 6∈ V . This means that (c,d) ∈ NotRel′. From 1)
and the hypothesis S ⊆R there is b ∈ Q such that c→R b, d 6∈→−1

R ◦R(b) and thus d 6∈→−1◦
R(b), from Lemma 3. From c→R b, thus c→ b, and the assumption that S is a simulation
there is d′ ∈ Q with d→ d′ and b S d′ thus b R d′. This contradicts d 6∈→−1◦R(b). Therefore
S ⊆ V .

3. If this is not the case, there are b,c,d ∈ Q such that c V d, c→ b and d 6∈→−1◦ R(b). Since
V ⊆R and R is a U -stable relation there is d′ ∈Q such that d→ d′ and b U d′. The case b R d′

would contradict d 6∈→−1◦R(b). Therefore d ∈→−1◦ NotRel(b) and all the conditions are met
for (c,d) belonging in NotRel′ which contradicts c V d.

7



4. Let us show that V is both reflexive and transitive. If it is not reflexive, since R is reflexive, from
1) there is (c,d) in X and a state b such that c→R b and d 6∈→−1

R ◦R(b) and c = d. But this is
impossible since R is reflexive. Hence, V is reflexive. We also prove by contradiction that V
is transitive. If it is not the case, there are c,e,d ∈ Q such that c V e, e V d but ¬ c V d. Since
V ⊆R and R is transitive then c R d. With ¬ c V d and 1), there is b such that c→R b and
d 6∈→−1

R ◦R(b). But from 3), there is b′ ∈ Q such that b R b′ and e→ b′. With e V d and the
same reason, there is b′′ such that b′ R b′′ and d→ b′′. By transitivity of R we get b R b′′ and thus
d ∈→−1◦R(b). With Lemma 3 this contradicts d 6∈→−1

R ◦R(b). Hence, V is transitive.

5. This is a direct consequence of the two preceding items and the fact that by construction V ⊆R.

6. By hypothesis, P ⊆R. This means that blocks of R are made of blocks of P . By definition, V
is obtained by deleting from R relations between blocks of P . This implies that blocks of V are
made of blocks of P . To proove that a block of V is made of a single block of P , let us assume,
by contradiction, that there are two different blocks, B1 and B2, of P in a block of V . We show
that P is not the coarsest R-block-stable equivalence relation. Let P ′ = P ∪B1×B2∪B2×B1.
Then P ′ is an equivalence relation strictly coarser than P ′. Furthermore, since B1 and B2 are
blocks of V , we get P ′ ⊆ V . With 3) we get that P ′ is R-stable and thus R-block-stable with
Lemma 5. This contradicts the hypothesis that P was the coarsest one. Therefore, blocks of V are
blocks of P .

Remark. 1) means that blocks of P are sufficiently small to do the refinement step efficiently, as if they
were states. 6) means that these blocks cannot be bigger. 5) means that we are ready for next split and
refinement steps.

In what precedes, we have assumed that for the preorder R, inside which we want to compute the
coarsest simulation, there is another preorder U such that condition (5) holds. The fifth item of Theorem 7
says that if this true at a given iteration (made of a split step and a refinement step) of the algorithm then
this is true at the next iteration. For the end of this section we show that we can safely modify the initial
preorder such that this is also initially true. This is indeed a simple consequence of the fact that a state
with an outgoing transition cannot be simulated by a state with no outgoing transition.

Definition 8. Let Rinit be a preorder. We define InitRefine(Rinit) such that:

InitRefine(Rinit), Rinit∩{(c,d) ∈ Q×Q
∣∣∃c′ ∈ Q .c→ c′ ⇒ ∃d′ ∈ Q .d→ d′}

Proposition 9. Let R = InitRefine(Rinit) with Rinit a preorder. Then:

1. R is (Q×Q)-stable,

2. a simulation S included in Rinit is also included in R.

Proof.

1. Q×Q is trivially a preorder. It remains to show that R is also a preorder and that (5) is true with
U = Q×Q.

Since Rinit is a preorder and thus reflexive, R is also trivially reflexive. Now, by contradiction, let us
suppose that R is not transitive. There are three states c,e,d ∈Q such that: cR e∧eR d∧¬ cR d.
From the fact that R ⊆Rinit and Rinit is a preorder, we get cRinit d. With ¬ cR d and the definition
of R this means that c has a successor while d has not. But the hypothesis that c has a successor
and cR e implies that e has a successor. With eR d we also get that d has also a successor, which
contradicts what is written above. Hence, R is transitive and thus a preorder.
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The formula R ◦→−1⊆→−1 ◦(Q×Q) just means that the two hypotheses, cR d and c has a
successor, imply that d has also a successor. This is exactly the meaning of the second part of the
intersection in the definition of R.

2. By contradiction, if this is not true there is (c,d) a pair of states which belongs to S and Rinit but
does not belong to R. By definition of R this means that c has a successor while d has not. But
the hypotheses cS d, c has a successor and S is a simulation imply that d has also a successor
which contradicts what is written above. Hence, S is also included in R.

The total relation Q×Q will thus play the role of the initial U in the algorithm.

Remark. In [PT87, p. 979] there is also a similar preprocessing of the initial partition where states with
no output transition are put aside.

5 The Algorithm

The approach of the previous section can be applied to several algorithms, with different balances between
time complexity and space complexity. It can also be extended to labelled transition systems. In this
section the emphasis is on the, theoretically, most efficient in memory of the fastest simulation algorithms
of the moment.

5.1 Counters and Splitter Transitions

Let us remember that a partition P and its associated equivalence relation PP (or a equivalence relation
P and its associated partition PP ) denote essentially the same thing. The difference is that for a partition
we focus on the set of blocks whereas for an equivalence relation we focus on the relation which relates
the elements of a same block. For a first reading, the reader may consider that a partition is an equivalence
relation, and vice versa.

From a preorder R that satisfies (5) we will need to split its blocks in order to find its coarsest
R-block-stable equivalence relation. Then, Theorem 7 will be used for a refine step. For all this, we first
need the traditional Split function.

Definition 10. Given a partition P and a set of states Marked, the function Split(P,Marked) returns
a partition similar to P, but with the difference that each block E of P such that E ∩Marked 6= /0 and
E 6⊆Marked is replaced by two blocks: E1 = E ∩Marked and E2 = E \ E1.

To efficiently perform the split and refine steps we need a set of counters which associates to each
representative state of a block, of an equivalence relation, the number of blocks, of that same equivalence
relation, it reaches in R(B), for B a block of R.

Definition 11. Let P be an equivalence relation included in a preorder R. We assume that for each
block E of P , a representative state E.rep has been chosen. Let E be a block of P , B be a block of R
and B′ ⊆ B. We define:

RelCount(P,R)(E,B
′), |{E ′ ∈ PP

∣∣E.rep→ E ′∧B′ R E ′}| (9)

Proposition 12. Let P be an equivalence relation included in a preorder R, E be a block of P , B be a
block of R and B′ be a non empty subset of B. Then:

RelCount(P,R)(E,B) = RelCount(P,R)(E,B
′)

9



Proof. Thanks to the transitivity of R.

Following Section 3, the purpose of these counters is to check in constant time whether a block E
of an equivalence relation P is included in→−1◦R(b) for a given state b. But this is correct only if
P is already R-block-stable. If this is not the case, its underlying partition should be split accordingly.
We thus introduce the first condition which necessitates a split of the current equivalence relation P to
approach the coarsest R-block-stable equivalence relation. For this, we take advantage of the existence
of RelCount(P,R).

Definition 13. Let P be an equivalence relation included in a preorder R, E be a block of P and
B be a block of R such that E → B and RelCount(P,R)(E,B) = 0. The transition E → B is called a
(P,R)-splitter transition of type 1.

The intuition is as follows. With a block E of P and a block B of R, if P was R-block-stable, with
E→ B and Lemma 5 we would have had E ⊆→−1◦R(B). But RelCount(P,R)(E,B) = 0 denies this.
So we have to split PP .

Lemma 14. Let E → B be a (P,R)-splitter transition of type 1. Let P′ = Split(PP ,→−1◦R(B)).
Then PP′ is strictly included in P and contains all R-block-stable equivalence relations included in P .

Proof. To prove the strict inclusion, let us show that E is split. From E→ B there is e∈ E such that e→ B
and thus e ∈→−1◦R(B) since R is reflexive. Furthermore, by definition, RelCount(P,R)(E,B) = 0
means that E.rep 6∈→−1◦ R(B). This implies that e and E.rep do not belong to the same block of
P′. Thus, at least E has been split. Now, let P ′′ be a R-block-stable equivalence relation included
in P . If P ′′ is not included in P ′ there are two states, h1 and h2, from a block H of P ′′ such that
h1 ∈→−1◦R(B) and h2 6∈→−1◦R(B). But, by definition, if P ′′ is R-block-stable, h1 ∈→−1◦R(B)
implies h2 ∈→−1◦R(B) which leads to a contradiction. Therefore P ′′ is included in P ′.

Saying that PP′ is strictly included in P means that at least one block of P , here E, has been split
to obtain P′.

Lemma 15. Let P be an equivalence relation included in a preorder R such that there is no (P,R)-
splitter transition of type 1. Let E be a block of P and B be a block of R such that E → B. Then,
E.rep ∈→−1

R ◦R(B).

Proof. Let E → B be a transition with E and B satisfying the hypotheses of the lemma. Since there is
no (P,R)-splitter transition of type 1, RelCount(P,R)(E,B) 6= 0. Therefore, E.rep ∈→−1◦R(B) and
thus E.rep ∈→−1

R ◦R(B) by Lemma 3.

Now, for E to be really a representative, we need the following implication: E.rep→ B⇒ E ⊆
→−1◦R(B). But to check this property effectively, taking advantage of the counters, we need a stronger
property equivalent with the one, (6), defining block-stability.

Lemma 16. Let P be an equivalence relation included in a preorder R. Then (6) is equivalent with:

P ◦→−1
R ⊆→−1◦ [·]R (10)

Proof. With Lemma 5 it suffices to show the equivalence between (7) and (10):

(7)⇒ (10). Let (c′,d) ∈P ◦→−1
R . There is a state c such that (c,d) ∈P and c→R c′. With (7)

there is a state d′ such that c′R d′ and d→ d′. With (d,c) ∈P , since P is symmetric, and (7)
again there is a state c′′ such that d′R c′′ and c→ c′′. But c→ c′ being a R-maximal transition
implies that c′′ ∈ [c′]R . So we have c′′R c′, c′R d′, d′R c′′ and thus d′ ∈ [c′]R . This means that
d ∈→−1◦ [·]R(c′) and thus (c′,d) ∈→−1◦ [·]R . Therefore P ◦→−1

R ⊆→−1◦ [·]R .
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Figure 4: Proof of second statement of Lemma 18.

(10)⇒ (7). With Lemma 3 we have P ◦→−1⊆ P ◦→−1
R ◦R. With (10) we have P ◦→−1

R ◦
R ⊆→−1◦ [·]R ◦R. But R being a preorder we have [·]R ◦R ⊆ R. With all of this: P ◦→−1

R
⊆→−1◦R.

Definition 17. Let P be an equivalence relation included in a preorder R. Let E be a block of P
and B be a block of R such that E.rep→ B, RelCount(P,R)(E,B) = |{[b]P ⊆ B

∣∣E.rep→ b}| and
E *→−1 (B). The transition E→ B is called a (P,R)-splitter transition of type 2.

Remark. The conditions in Definition 17 are inspired from those used in [Ran14] for its split step.

The intuition is as follows. If E.rep→ B and the condition on the counter is true (all transitions from
E.rep that reach states greater, relatively to R, than B actually have their destination states in B), this
means that the transition E.rep→ B is maximal. With Lemma 16, if P is R-block-stable this should
imply E ⊆→−1 (B). Since this is not the case, P must be split.

Lemma 18. Let P be an equivalence relation included in a preorder R such that there is no (P,R)-
splitter transition of type 1 and let E→ B be a splitter transition of type 2. Let P′ = Split(PP ,E∩→−1

(B)). Then PP′ is strictly included in P and contains all R-block-stable equivalence relations included
in P .

Proof. To prove the strict inclusion, let us show that E is split. From E → B being a (P,R)-splitter
transition of type 2 we have |{[b]P ⊆ B

∣∣E.rep→ b}| 6= 0 and E *→−1 (B). The first property implies
that E.rep ∈→−1 (B) and the second one implies the existence of a state e ∈ E which does not belong
to→−1 (B). Therefore E has been split. The second statement is proved by contradiction. Let P ′′ be
a R-block-stable equivalence relation included in P . Consider Figure 4. If P ′′ is not included in P ′

there are two states, h1 and h2, from a block H of P ′′ such that h1 ∈→−1 (B) and h2 6∈→−1 (B). With
Lemma 3 there is a block G1 of R such that: B R G1 and h1→R G1. Since P ′′ is R-block-stable this
implies h2→ G1. With Lemma 15 there is a block G2 of R such that E.rep→R G2 and G1 R G2. But
the condition RelCount(P,R)(E,B) = |{[b]P ⊆ B

∣∣E.rep→ b}| implies that the transition from E.rep
to B is maximal which implies that G2 = B = G1. So we have h2 ∈→−1 (B) which contradicts an above
assumption. Therefore P ′′ is included in P ′.

Theorem 19. Let P be an equivalence relation included in a preorder R such that there is no (P,R)-
splitter transition of type 1 or (P,R)-splitter transition of type 2. Then P is R-block-stable.

Proof. Consider Figure 5. Let us consider a transition E→R B with E a block of P and B a block of
R. By definition there is a state e ∈ E such that e→R B and by Lemma 15 there is a block G such
that B R G and E.rep→R G. From E.rep→R G it is easy to show that RelCount(P,R)(E,G) 6= 0
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Figure 6: Proof of second item of Proposition 20.

and RelCount(P,R)(E,G) = |{[g]P ⊆ G
∣∣E.rep→ g}| since the transition E.rep→ G is maximal. But

since there is neither (P,R)-splitter transition of type 1 nor (P,R)-splitter transition of type 2 then
E ⊆→−1 (G) and thus e→G. With e→R B and B R G we necessarily get B = G and thus E ⊆→−1 (B).
So we have E→R B implies E ⊆→−1 (B). This is equivalent of saying that (10) is true. With Lemma 16
this implies that P is R-block-stable.

Therefore, in the algorithm, before a refine step on R using Theorem 7, we will start from the partition
PR and split it in conformity with Lemma 14 and Lemma 18. By doing so, we will obtain the coarsest
R-block-stable equivalence relation.

The next proposition shows where to search splitter transitions: those who ends in blocks B of R
such that NotRel(B) is not empty.

Proposition 20. Let U be a preorder, R be a U -stable preorder, P be an equivalence relation included
in R and let NotRel = U \R. Then

1. If E→ B is a (P,R)-splitter transition of type 1 then NotRel(B) 6= /0.

2. Under the absence of (P,R)-splitter transition of type 1, if E→ B is a (P,R)-splitter transition
of type 2 then NotRel(B) 6= /0.

Proof.

1. Let E→ B be a (P,R)-splitter transition of type 1. By definition there is e ∈ E such that e→ B.
Since E is a block of P we have e P E.rep and thus e R E.rep. With the hypothesis that R
is U -stable we get E.rep ∈→−1◦ U (B). But the hypothesis that E → B is a (P,R)-splitter
transition of type 1 implies E.rep 6∈→−1◦R(B). From these two last constraints on E.rep we get
E.rep ∈→−1◦ (U \R)(B) and thus NotRel(B) 6= /0.

2. Consider Figure 6. Let E → B be a (P,R)-splitter transition of type 2. By definition we get
E.rep→R B and E2 = E \ (→−1 (B)) is not empty. Let e ∈ E2, with a similar argument than the
first item, we get e ∈→−1◦U (B). By contradiction, let us assume e ∈→−1◦R(B). There is G1
a block of R such that B R G1 and e→ G1. From Lemma 15 there is G2 a block of R such that
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E.rep→ G2 and G1 R G2, and thus B R G2. Since the transition from E.rep to B is maximal
this implies that B = G1 = G2 which contradicts e 6∈→−1 (B). Therefore e 6∈→−1◦R(B). With
e ∈→−1◦U (B) we get e ∈→−1◦ (U \R)(B) and thus NotRel(B) 6= /0.

We have now everything to propose an efficient algorithm.

5.2 Data Structures and Space Complexity

Remark. Since the final partition Psim is obtained after several splits of the initial partition Pinit we have
|P| ≤ |Psim| with P the current partition at a given step of the algorithm.

The current relation R is represented in the algorithm by a partition-relation pair (P,Rel). The data
structure used to represent a partition is traditionally a (possibly) doubly linked list of blocks, themselves
represented by a doubly linked list of states. But in practice, each node of a list contains a reference,
to the next node of the list. The size (typically 64 bits nowadays) of these references is static and does
not depend on the size of the list. We therefore prefer the use of arrays because we can control the size
of the slots and manipulate arrays is faster than manipulate lists. The idea, see [VL08] and [Céc13] for
more details, is to identify a state with its index in Q and to distribute these indexes in an array, let us
name it T , such that states belonging to the same block are in consecutive slots in T . A block could thus
be represented by the indexes of its first and last elements in T , the two indexes defining a contiguous
subarray. If a block is split, the two subblocks form two contiguous subarrays of that subarray. By playing
with these arrays (other arrays are needed, like the one giving the position in T of a state) we obtain a
representation of a partition which allows splitting (some elements of a block are removed from their
original block and form a new block) and scanning of a block in linear time.

However, as seen in the previous sections, we need two generations of blocks at the same time: the
first one corresponds to blocks of R and the second one corresponds to blocks of the next generation, V ,
of this preorder. Hence, we need an intermediate between blocks and their corresponding states: nodes.
A node corresponds to a block or to an ancestor of a block in the family tree of the different generations
of blocks issued from the split steps of the algorithm. To simplify the writing, we associate in the present
paper, a node to the set of its corresponding states. As an example, consider a block B which consists of
the following three states {q1,q2,q3}. In reality, we will associate B to a node N = {q1,q2,q3}. In this
way, if B is split in B1 and B2, corresponding respectively to {q1,q2} and {q3}, we create two new nodes
N1 = {q1,q2} and N2 = {q3} and we associate B1 to N1 and B2 to N2. By doing so, N remains bounds to
the set {q1,q2,q3}. To represent a node we just need to keep in memory the index of its first element and
the index of its last element in the array T (see the previous paragraph). When a block which corresponds
to a node is split, the corresponding states change their places in T but keep in the same subarray. Let
us note that when a block is split, it is necessarily in two parts. Therefore, the number of nodes is at
most twice the number of blocks and the bit space needed to represent the partition and the nodes is in
O(|Q|. log(|Q|)) since there is less blocks than states.

To be more precise about the relations between states, blocks and nodes: at any time of the algorithm,
the index of a state q is associated to the index of its block q.block, the index of a block E is associated
to the index of its node E.node and the index of a node is associated to the states it contains (via two
indexes of the array T ). A node which is not linked by a block is an ancestor of, at least two, blocks. By
the data structure chosen to represent the partition it is easy to see that given a node N we can scan in
linear time the states it contains (this corresponds to the scan of a contiguous subarray) and the blocks
it contains (by a similar process). The function ChooseBlock(N) which arbitrarily choose one block
whose set of elements is included in those of N is executed in constant time (we choose e.block, with e
the first element of N). Similarly, the function ChooseState(E) which returns a state of a block E, used
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to defined E.rep a representative of E, is also executed in constant time (we choose the first element in
E.node).

The relation Rel is distributed on the blocks. To each block C we associate an array of booleans,
C.Rel, such that (C,D) ∈ Rel, what we note D ∈C.Rel, iff the boolean at the index of the block D in
C.Rel is true. These arrays are resizable arrays whose capacities are doubled as needed. Therefore the
classical operations on these arrays, like get and set, take constant amortized time. We use this type of
array wherever necessary. The bit size needed to represent Rel is therefore in O(|Psim|2).

The relation U that appears in the previous sections is not directly represented. We use instead the
equality U = R ∪NotRel and represent NotRel. Since U is a coarser preorder than R, for a given node
B which represents a block of R, the set NotRel(B) is represented in the algorithm by B.NotRel a set of
nodes (encoded by a resizable array of the indexes of the corresponding nodes) which represent blocks of
R. As explained earlier, we have to use nodes instead of blocks because nodes never change whereas
blocks can be split afterwards. The bit space representation of NotRel is thus in O(|Psim|2. log(|Psim|)).
Remember, the number of nodes is linear in the maximal number of blocks: |Psim|.

In Section 5.1 we introduced a counter, RelCount(P,R)(E,B), for each pair made of a block E of
the current equivalence relation P represented in the algorithm by the current partition P, and a block
B of the current relation R represented in the algorithm by (P,Rel). As seen in Proposition 12, for any
subblock B′ ∈ PP of B we have RelCount(P,R)(E,B) = RelCount(P,R)(E,B′). Therefore, we can
limit these counters to any pair of blocks of the current partition P in the algorithm. Such a counter
counts a number of blocks. This means that the total bit size of these counters is in O(|Psim|2. log(|Psim|)).
In practice, we associate to each block B′ a resizable array, B′.RelCount, of |P| elements such that
B′.RelCount(E) = RelCount(P,R)(E,B′).

At several places in the algorithm we use a data structure to manage a set of indexed elements. This
is the case for Touched, Touched′, Marked, Re f inerNodes, Re f inerNodes′, PreB′, Remove, PreE and
PreE ′. Such a set is implemented by a resizable boolean array, to know in constant time whether a given
element belongs to the set, and another resizable array to store the indexes of the elements which belongs
to the set. This last array serves to scan in linear time the elements of the set or to emptied the set in
linear time of the number of the elements in the set. So the operations, add an element in the set and
test whether an element belongs to the set are done in constant time or amortized constant time. Also,
scanning the elements of the set and emptying the set are executed in linear time of the size of the set.
We use a finite number of these sets for states, blocks or nodes. The overall bit space used for them is
therefore in O(|Q|. log(|Q|)). The other variables used in the algorithm, some booleans and a counter,
E.count, associated to each block E in Function Split2 are manipulated by constant time operations and
need a bit space in O(|Q|. log(|Q|)) since |P| and the number of nodes are both in O(|Q|). From all of
this, we derive the following theorem.

Theorem 21. The overall bit space used by the presented simulation algorithm is in
O(|Psim|2. log(|Psim|)+ |Q|. log(|Q|)).

Remark. We assume one can iterate through the transition relation→ in linear time of its size. From each
state q we also assume one can iterate through the set→−1 (q) in linear time of its size. It is a tradition in
most articles dealing with simulation to not count the space used to represent the transition relation since
it is considered as an input data. If it was to be counted it would cost O(| → |. log(|Q|)) bits.

5.3 Procedures and Time Complexity

In this section we analyze the different functions of the algorithm and give their overall time complex-
ities. The reader should remember that, in the algorithm, a block is just an index and the set of states
corresponding to a block E ∈ P is E.node.
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Function Sim(Q,→,Pinit,Rinit)
Data: Re f inerNodes: the set of nodes B corresponding to blocks of R such that B.NotRel 6= /0

1 Re f inerNodes := /0 ;
2 P :=Init(Q,→,Pinit,Rinit,Re f inerNodes) ;

3 while Re f inerNodes 6= /0 do
4 SimUpdateData(P,Re f inerNodes) ;

5 Split1(P,Re f inerNodes) ;
6 Split2(P,Re f inerNodes) ;
7 Refine(Re f inerNodes) ;

8 Psim := P ; Rsim := {(C,D) ∈ P×P
∣∣D ∈C.Rel} ;

9 return (Psim, Rsim)

5.3.1 Function Sim

This is the main function of the algorithm. It takes as input a transition system (Q,→) and an initial
preorder, Rinit, represented by the partition-relation pair (Pinit,Rinit). Let us define the two following
relations:

R ,
⋃

{(E,E ′)∈P2
∣∣E ′∈E.Rel}

E.node×E ′.node (11)

NotRel ,
⋃

B ∈ Re f inerNodes

B× (∪B.NotRel) (12)

Let R0 = Q×Q and Ri (resp. NotReli) be the value of R (resp. NotRel) at the ith iteration of the
while loop at line 3 of Function Sim. We will show (in the analysis of Function Init for the base case and
procedures SimUpdateData and Refine for the inductive step) that, at this line 3, we maintain the five
following properties at the ith iteration of the while loop:

Ri is Ri−1-stable (13)

A simulation included in Ri−1 is included in Ri (14)

NotReli = Ri−1 \Ri and thus Ri−1 = Ri∪NotReli (15)

Re f inerNodes is the set of nodes B corresponding to

blocks of Ri such that B.NotRel 6= /0 (16)

∀E,B′ ∈ P . B′.RelCount(E)= |{E ′ ∈ P
∣∣E.rep→ E ′.node∧B′.node×E ′.node⊆Ri−1}| (17)

From (13), and thus Ri ⊆Ri−1, (15), (16) and the condition of the while loop we get that (Ri)i≥0
is a strictly decreasing sequence of relations. Since the underlying set of states is finite, this sequence
reaches a limit in a finite number of iterations. Furthermore, if this limit is reached at the kth iteration,
then, from (16) and the condition of the while loop, we have NotRelk+1 = /0 and from (15) and (13) we
obtain that Rk = Rk+1 and Rk+1 is Rk-stable. Which means that Rk is a simulation. From (14) and the
fact, to be shown in the analysis of function Init, that all simulation included in Rinit is also included
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Procedure SimUpdateData(P,Re f inerNodes)

1 PreE ′ := /0 ;
2 foreach B ∈ Re f inerNodes do
3 B′ = ChooseBlock(B) ;

// At this stage, B′ is the only block of B
4 foreach E ′ ∈ P

∣∣E ′.node⊆ ∪B.NotRel do
5 foreach e ∈→−1 (E ′.node) do
6 E := e.block ;
7 if e = E.rep then
8 PreE ′ := PreE ′∪{E} ;

9 foreach E ∈ PreE ′ do B′.RelCount(E)−− ;
10 PreE ′ := /0 ;

in R1, we deduce that Rk contains all simulation included in Rinit. Therefore, Function Sim returns a
partition-relation pair that corresponds to Rsim, the coarsest simulation included in Rinit.

The fact that (Ri)i≥0 is a strictly decreasing sequence of relations and (15) imply the following lemma
that will be used as a key argument to analyze the time complexity of the algorithm.

Lemma 22. Two states, and thus two blocks or two nodes, are related by NotRel in at most one iteration
of the while loop in function Sim.

5.3.2 Procedure SimUpdateData

Assuming (17) is true, the role of this procedure is to render the following formula true after line 4 of
Function Sim during the ith iteration of the while loop. In this way, the counters are made consistent
with (9):

∀E,B′ ∈ P . B′.RelCount(E)= |{E ′ ∈ P
∣∣E.rep→ E ′.node∧B′.node×E ′.node⊆Ri}| (18)

From (12), (15), (16) and (17) we just have, for each node B in Re f inerNodes, to scan the blocks in
∪B.NotRel in order to identify their predecessor blocks. The corresponding counters are then decreased.
The lines which are the most executed are those in the loop starting at line 5. They are executed once for
each pair of (e→ e′,B) with e′ ∈ ∪B.NotRel. But from Lemma 22 such a pair can be considered only
once during the life time of the algorithm and thus the overall time complexity of this procedure is in
O(|Psim|.| → |).

5.3.3 Procedure Split

This procedure corresponds to Definition 10. The differences are that Procedure Split transforms the
current partition (it is not a function) and each time a block is split, Procedure SplitUpdateData is called
to update the data structures (mainly Rel and RelCount). Apart from the call of SplitUpdateData, which
we discuss right after, it is known that, with a correct implementation found in most articles from the
bibliography of the present paper, a call of Split is done in O(|Marked|)-time. Therefore, we only give a
high level presentation of the procedure.

5.3.4 Procedure SplitUpdateData

The purpose of this procedure is to maintain the data structures coherent after a split of a block C in two
subblocks, the new C and a new D. Since this procedure only modifies the Rel’s and NotRel’s, we will
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Procedure Split(P,Marked)

1 Touched := /0 ;
2 foreach r ∈Marked do Touched := Touched∪{r.block} ;
3 foreach C ∈ Touched

∣∣C.node* Marked do
4 D := newBlock() ; P := P∪{D} ;
5 D.node :=C.node∩Marked ;
6 foreach q ∈ D.node do q.block := D ;

// The subblock which is disjoint from Marked keeps the identity of C.
7 C.node :=C.node \ D.node ;

8 SplitUpdateData(P,C,D) ;

9 Touched := /0 ;

only look at (11) and (18).
The Rel’s are updated at lines 2 and 3. Let R ′ be the value of R before the split, let R ′′ be its value

after the split and let N be the node associated with the block C before it was split. Before the split,
we have N =C.node and after the split we have N =C.node∪D.node. With line 2, we have, for each
block E ∈ P, the equivalence N×E.node⊆R ′⇔ (C.node∪D.node)×E.node⊆R ′′ and with line 3
we have the equivalence E.node×N ⊆R ′⇔ E.node× (C.node∪D.node)⊆R ′′. And thus R has not
changed since the other products E.node×E ′.node in its definition have not changed. For one call of
SplitUpdateData these two lines are executed in O(|P|)-time. Since SplitUpdateData is called only when
a block is split and since there is, at the end, at most |Psim| blocks. The overall time complexity of these
two lines is in O(|Psim|2).

The RelCount’s are updated in the other lines of the procedure. In (18), the split can involve three
blocks: B′, E or E ′. Let us remember that R is not changed during this procedure.

Line 5 treats the case where the split block is a B′. Since R is a preorder, after lines 2 and 3, we
have C ∈ D.Rel and D ∈ C.Rel. It is therefore normal that for any E ∈ P we have D.RelCount(E) =
C.RelCount(E) since R is a preorder. The overall time complexity of line 5 is thus in O(|Psim|2).

If in (18) the split block is E, the test at line 6 determines the block X among the new C and D that
did not inherit E.rep (which is C.rep at this line since C keeps the identity of the parent block, the old
C and thus E). This means that we will have to initialise B′.RelCount(X) for all B′ ∈ P. This is done
after at lines 21 to 27. For now, if D has inherited E.rep we do B′.RelCount(D) := B′.RelCount(E) for
all B′ ∈ P. Remember, at this stage, we have B′.RelCount(E)= B′.RelCount(C).

Lines 12 to 20 treat the case where the split block is E ′. We thus have E ′.node=C.node∪D.node.
There is three alternatives for a given block E: either E.node→ C.node, or E.node→ D.node, or
both. For the two first alternatives B′.RelCount(E) does not change. But for the third one, we have to
increment this count by one. Apart for lines 17 to 19 the overall time complexity of these lines is in
O(|Psim|.| → |). Remember, SplitUpdateData is called only when a block is split and this occurs at most
|Psim| times. To correctly analyze the time complexity of lines 17 to 19, for a state e let us first define
→ (e)P , {E ′ ∈ P

∣∣e→ E ′}. This set→ (e)P is a partition of→ (e), the set of the successors of e. Then,
each time a state e is involved at line 16 this means that a block E ′ in→ (e)P has been split in C and in D.
For a given state e there can be at most | → (e)| splits of→ (e)P. Hence, the sum of the sizes of Touched′

for all executions of SplitUpdateData is in O(| → |). Furthermore, for one execution of this procedure,
the time complexity of lines 18–19 is in O(|Psim|). Therefore, the overall time complexity of lines 17 to
19 is in O(|Psim|.| → |).

Lines 21 to 28 treat the case where the split block is E. The block E has been split in C and D. One of
them contains E.rep. It is therefore not necessary to recompute the counters associated with it (although
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Procedure SplitUpdateData(P,C,D)
Data: C keeps the identity of the parent block ; D is the new block

1 D.count := 0 ;

// Update of the Rel’s

2 D.Rel := copy(C.Rel) ;
3 foreach E ∈ P

∣∣C ∈ E.Rel do E.Rel := E.Rel∪{D} ;

// Update of the RelCount’s

4 D.rep :=C.rep ;
5 D.RelCount := copy(C.RelCount) ;
6 if C.rep.block=C then
7 X := D ;

8 else
9 foreach B′ ∈ P do

10 B′.RelCount(D) := B′.RelCount(C) ;

11 X :=C ;

// Update of the RelCount’s from predecessors of both C and D
12 Touched := /0 ; Touched′ := /0 ;
13 foreach e ∈→−1 (C.node)

∣∣e = e.block.rep do
14 Touched := Touched∪{e.block} ;

15 foreach e ∈→−1 (D.node)
∣∣e = e.block.rep∧ e.block ∈ Touched∧ e.block 6∈ Touched′ do

16 Touched′ := Touched′∪{e.block} ;

17 foreach E ∈ Touched′ do
18 foreach B′ ∈ P

∣∣C ∈ B′.Rel do
19 B′.RelCount(E)++ ;

20 Touched := /0 ; Touched′ := /0 ;

// Compute the RelCount’s from X (C or D) which did not inherited the old C.rep.

21 X .rep := ChooseState(X) ;
22 foreach B′ ∈ P do B′.RelCount(X) := 0 ;
23 foreach q→ q′

∣∣q = X .rep do
24 Touched := Touched∪{q′.block} ;

25 foreach E ′ ∈ Touched do
26 foreach B′ ∈ P

∣∣E ′ ∈ B′.Rel do
27 B′.RelCount(X)++ ;

28 Touched := /0 ;
29 C.node.NotRel := /0 ; C.node.NotRel′ := /0 ;
30 D.node.NotRel := /0 ; D.node.NotRel′ := /0 ;

these counters have been possibly updated at lines 12 to 20). The variable X represents the block, C or
D, which has not inherited E.rep. Therefore, we have to initialize the counters associated with it. Note
that lines 21 to 28 are executed at most once for each block. Therefore, apart from the nested loops at
lines 25–27, the overall time complexity of them is in O(|Psim|.| → |). For the nested loops, we have to
observe that the size of Touched is less than the number of outgoing transitions from X .rep and those
transitions are considered only once during the execution of the algorithm. Therefore the overall time
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Function Init(Q,→,Pinit,Rinit,Re f inerNodes)

1 P := copy(Pinit) ;
2 foreach E ∈ P do
3 E.count := 0 ; E.rep := ChooseState(E) ;
4 E.node := {q ∈ Q

∣∣q.block= E} ;
5 E.Rel := {E ′ ∈ P

∣∣(E,E ′) ∈ Rinit} ;

// Initialization to take into account Proposition 9.

6 Marked := /0 ; Touched := /0 ;
7 foreach q→ q′ do Marked := Marked∪{q} ;
8 Split(P,Marked) ;
9 foreach E ∈ P

∣∣E.rep ∈Marked do
10 Touched := Touched∪{E} ;

11 foreach C ∈ Touched do
12 foreach D 6∈ Touched do C.Rel :=C.Rel \ {D} ;

13 Marked := /0 ; Touched := /0 ;

// Initialization of Re f inerNodes and the NotRel ’s.

14 foreach C ∈ P do
15 C.node.NotRel′ := /0 ;
16 C.node.NotRel := {D.node

∣∣D 6∈C.Rel} ;
17 if C.node.NotRel 6= /0 then
18 Re f inerNodes := Re f inerNodes∪{C.node} ;

// Initialization of the RelCount’s.

19 foreach E,B′ ∈ P do B′.RelCount(E) := 0 ;
20 PreE ′ := /0 ;
21 foreach E ′ ∈ P do
22 foreach e ∈→−1 (E ′.node)

∣∣e = e.block.rep do
23 PreE ′ := PreE ′∪{e.block} ;

24 foreach E ∈ PreE ′,B′ ∈ P do
25 B′.RelCount(E)++ ;

26 PreE ′ := /0 ;

27 return (P) ;

complexity of the nested loops is also in O(|Psim|.| → |).
All of this implies that the overall time complexity of Procedure SplitUpdateData is in O(|Psim|.| → |).

5.3.5 Function Init

This function initializes the data structures and transforms the initial preorder such that we start from a
preorder stable with the total relation R0 = Q×Q. The first lines require no special comment except that
the Rel array for each block E is initialized according to (11). The time complexity of these lines 1–5 is
in O(|Psim|2).

Lines 6–13 transform the initial preorder according to Proposition 9. Note that the call of Function
Split at line 8 has the side effect to transform the counters before their initialization. This is not a problem
since this does not change the overall time complexity and the real initialization of the counters is done
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Procedure Split1(P,Re f inerNodes)

1 Marked := /0 ; atLeastOneSplit := false ;
2 foreach B ∈ Re f inerNodes do
3 B′ = ChooseBlock(B) ;
4 foreach e ∈→−1 (B) do
5 if B′.RelCount(e.block) = 0 then
6 atLeastOneSplit := true ;

7 if atLeastOneSplit = true then
8 foreach q→ q′

∣∣q′.block ∈ B′.Rel do
9 Marked := Marked∪{q} ;

10 Split(P,Marked) ;
11 Marked := /0 ; atLeastOneSplit := false ;

after, at lines 19–26. Just after line 13, with Proposition 9, the invariants (13) is true for i = 1 and each
simulation included in the preorder represented by the partition-relation pair (Pinit,Rinit) is included in R1.
Apart from the inner call of Procedure SplitUpdateData, whose we know the overall time complexity,
O(|Psim|.| → |), the time complexity of these lines is in O(| → |+ |Psim|2).

The loop starting at line 14 initializes the NotRel’s according to (12) such that (15) is also true for
i = 1. The set Re f inerNodes is also initialized according to (16) for i = 1. The time complexity of this
loop is in O(|Psim|2).

Lines 19–26 initialize the counters such that for all E,B′ ∈ P we have:

B′.RelCount(E)= |{E ′ ∈ P
∣∣E.rep→ E ′.node}|

The invariant (17) is thus true for i = 1 since B′.node×E ′.node⊆R0 is always true, with R0 = Q×Q.
The time complexity of the loop at line 19 is in O(|Psim|2). The time complexity of the loop at line 22 is
in O(|Psim|.| → |). An iteration of the loop at line 24 corresponds to a meta-transition E.node→ E ′.node
and a block B′ ∈ P. Its time complexity is therefore in O(|Psim|.| → |).

5.3.6 Procedure Split1

The purpose of this procedure is to apply Lemma 14 to split the current partition P until there is no
(P,R)-splitter transition of type 1, with P = PP and R defined by (11). This is done such that
the coarsest R-block-stable equivalence relation included in PP before the execution of Split1 is still
included in PP after its execution. Proposition 20 guarantees that all splitter transitions of type 1 have
been treated since we assume (16). Note that at line 3, B is a node, a set of states, which corresponds to a
block of the relation R. As explained in section 5.2, the counters are defined between two blocks of the
current partition P. We thus need to choose one of this block included in B to represent B since we have
Proposition 12.

A transition e→ e′ with e′ ∈ B at line 4 is considered only if there is a block in ∪B.NotRel. From
Lemma 22 this can happen only |Psim| times. Therefore, the overall time complexity of the loop at line
4 is in O(|Psim|.| → |). From Lemma 14, lines 8–11 are executed only when at least one block is split.
Therefore, their overall time complexity is in O(|Psim|.| → |).

5.3.7 Procedure Split2

This procedure is applied after Split1. We can therefore assume that there is no more (P,R)-splitter
transition of type 1, with P and R defined in the analysis of Split1. The aim of this procedure is to
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Procedure Split2(P,Re f inerNodes)

1 PreB′ := /0 ; Touched := /0 ; Touched′ := /0 ; Marked := /0 ;
2 foreach B ∈ Re f inerNodes do
3 foreach B′ ∈ P

∣∣B′.node⊆ B do
4 foreach e ∈→−1 (B′.node) do
5 E := e.block ;
6 if e = E.rep then
7 PreB′ := PreB′∪{E} ;

8 foreach E ∈ PreB′ do
9 E.count++ ;

10 Touched := Touched∪{E} ;

11 PreB′ := /0 ;

12 B′ = ChooseBlock(B) ;
13 foreach E ∈ Touched do
14 if B′.RelCount(E) = E.count then

// The transition E.rep→ B is maximal

15 Touched′ := Touched′∪{E} ;

16 E.count := 0 ;

17 foreach e ∈→−1 (B)
∣∣e.block ∈ Touched′ do

18 Marked := Marked∪{e} ;

19 Split(P,Marked) ;
20 Touched := /0 ; Touched′ := /0 ; Marked := /0 ;

implement Lemma 18. It works as follows. For a given node B which corresponds to a block of R such
that B.NotRel 6= /0 we scan the blocks B′ of P which are included in B. For each of those B′ we scan, loop
at line 4, the incoming transitions from representatives states of blocks E. For each of these blocks we
increment E.count, loop at line 8. Therefore, at the end of the loop at line 3, for each block E ∈ P such
that E→ B, we have E.count= |{[b]P ⊆ B

∣∣E.rep→ b}|. This allows us to identify, loop at line 13, the
blocks that may be split according to Lemma 18. The split is done thanks to lines17–19. For reasons
similar to those for Procedure Split1, we have: the overall time complexity of Procedure Split2 is in
O(|Psim|.| → |).

5.3.8 Procedure Refine

Procedures Split1 and Split2 possibly change the current partition P, but not R, and preserve (12), (13),
(14), (15), (16) and (18). Thanks to Lemma 14 and Lemma 18 all R-block-stable equivalence relation
presents in PP before the execution of Split1 and Split2 are still presents after. Furthermore, with
Theorem 19, we know that PP, after the execution of Split2, is R-block-stable. From all of this, before
the execution of Refine, PP is the coarsest R-block-stable equivalence relation. The conditions are thus
met to apply Theorem 7 to do a refine step of the algorithm. Note that, thanks to (18) and Proposition 12,
we have the equivalence: d 6∈→−1◦ R(B)⇔ B′.RelCount(D) = 0 at line 6. At the end of the while
loop at line 2, the relation R has been refined by NotRel′. In lines 15–18 NotRel is set to NotRel′ and
Re f inerNodes is set to Re f inerNodes′ to prepare the next iteration of the while loop in Procedure Sim.
By construction, see the loop starting at line 10, (15) and (16) are set for the next iteration of the while
loop in Sim. In a similar way, the RelCount’s are not modified by Refine, (18) is thus still true and (17)
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Procedure Refine(Re f inerNodes)

1 Remove := /0 ; Re f inerNodes′ := /0 ;
2 foreach B ∈ Re f inerNodes do
3 B′ = ChooseBlock(B) ;
4 foreach d ∈→−1 (∪B.NotRel) do
5 D := d.block ;
6 if B′.RelCount(D)= 0 then
7 Remove := Remove∪{D} ;

8 foreach c ∈→−1 (B) do
9 C := c.block ;

10 foreach D ∈ Remove
∣∣D ∈C.Rel do

11 C.Rel :=C.Rel \ {D} ;
12 C.node.NotRel′ :=C.node.NotRel′∪{D.node} ;
13 Re f inerNodes′ := Re f inerNodes′∪{C.node} ;

14 Remove := /0 ; B.NotRel := /0 ;

15 Re f inerNodes := /0 ;
16 foreach B ∈ Re f inerNodes′ do
17 swap(B.NotRel,B.NotRel′) ;

18 swap(Re f inerNodes,Re f inerNodes′) ;

will be true for the next iteration of the while loop in Sim. Thanks to Theorem 7, (13) and (14) are also
preserved.

From Lemma 22, a node B and a transition d→ d′ with d′ ∈ ∪B.NotRel are considered at most once
during the execution of the algorithm. Therefore, the overall time complexity of the loop at line 4 is
in O(|Psim|.| → |). Let us now consider a block D in Remove and a transition c→ b with b ∈ B. By
contradiction, let us suppose this pair (D,c→ b) can happen twice, at iteration i and at iteration j of the
while loop of Function Sim, with i < j. From (15) and line 4 we have for k = i and k = j: D→Rk−1(b)
and D 6→Rk(b). But this is not possible since (Ri)i≥0 is a strictly decreasing sequence of relations. This
means that the overall time complexity of the loop at line 8 is also in O(|Psim|.| → |). The other lines
have a lower overall time complexity. From all of this, the overall time complexity of this procedure is in
O(|Psim|.| → |).

5.3.9 Time Complexity of the Algorithm

From the analysis of the functions and procedures of the algorithm, we derive the following theorem.

Theorem 23. The time complexity of the presented simulation algorithm is in O(|Psim|.| → |).

6 Improvements and Future Work

With the new notions of maximal transition, stable preorder, block-stable equivalence relation and
representative state, we have introduced new foundations that we will use to design some efficient
simulation algorithms. This formalism has been illustrated with the presentation of the most efficient in
memory of the fastest simulation algorithms of the moment.

It is possible to increase in practice the time efficiency of procedures SplitUpdateData, Split1
and Split2 if we allow the use of both → and →−1 (or if we calculate one from the other, which
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requires an additional bit space in O(| → |. log(|Q|)) to store the result). Procedures SplitUpdateData
and SimUpdateData can be further improved in practice, but this changes O(|Psim|2. log(|Psim|)) to
O(|Psim|2. log(|Q|)), which is not really noticeable in practice, in the bit space complexity, if we count
states instead of blocks in (9), (17) and (18).

Simulation algorithms are generally extended for labeled transition systems (LTS) by embedding
them in normal transition systems. This is what is proposed in [RT10, GPP03] and [GPP15] for example.
By doing this, the size of the alphabet is introduced in both time and space complexities. Even in
[ABH+08], where a more specific algorithm is proposed for LTS, the size of the alphabet still matter.
In [Céc13] we proposed three extensions of [RT10] for LTS with significant reduction of the incidence
of the size of the alphabet. We will therefore propose the same extensions but from the foundations
given in the present paper. Note that the bit space complexity of the algorithm presented here is in fact in
Θ(|Psim|2. log(|Psim|)+ |Q|. log(|Q|)). It is therefore interesting to propose other algorithms with better
compromises between time and space complexities. We will therefore compare in practice different
propositions.

Then, we will have all the prerequisites to address a more challenging problem that we open here:
the existence of a simulation algorithm with a time complexity in O(| → |. log(|Q|)+ |Psim|.|→sim|),
with →sim the relation over Psim induced by →, and a bit space complexity in O(|Psim|2. log(|Psim|)+
| → |. log(|Q|)). What is surprising is that the biggest challenge is not the part in O(|Psim|.|→sim|) but
the part in O(| → |. log(|Q|)) in the time complexity. Such an algorithm will lead to an even greater
improvement from the algorithm of the present paper than that of the passage from HHK to RT since
there are, in general, many more transitions than states in a transition system.
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