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ABSTRACT
In this paper, we study the optimal use of a conveying sur-
face, called smart surface, using distributed microrobotic
system that is designed to manipulate fragile micro objects.
The smart surface is composed of a 2D array of decentralized
micro-modules. Each micro-module is composed of a mi-
croactuator, a microsensor, computing and communication
units. The cooperation among these micro-modules allows
the micro-object to be accurately located and moved on the
surface. We discuss in this paper the algorithmic solutions
that allow the system to determine the best path to move
an object from an initial to a target position in the surface.
The optimality of the path is evaluated according to two
different and complementary criteria corresponding to short
and long term visions. The short term vision optimizes on
the speed of conveyance. The long term vision optimizes
on the lifespan of the system and maintenance issues. We
describe the best way to deal with these two aspects and
their impact on the smart surface performance. The results
observed confirm the improvement of smart surface perform-
ance compared to a naive approach, with a gain in lifespan
of up to 160% and good objects transfer times.

Keywords
Multicriteria conveying problem, distributed MEMS system,
distributed algorithms, shortest path.

1. INTRODUCTION
A conveyor represents a mechanical equipment that allows
the transportation and/or manipulation of various kinds of
materials. The use of conveyors is profitable in many op-
erations such as the transportation of imposing objects [17]
or tiny and fragile components [7, 4]. They are useful for
their quick and efficient transportation with a wide variety
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of materials, which makes them very popular in the ma-
terials handling, assembling and packaging industries. The
conveying systems differ according to the used mechanisms,
summarized by M. G. Kay [12] in 19 different technologies,
including the chain conveyor, wheel conveyor, flat belt con-
veyor, magnetic belt conveyor, bucket conveyor, vibrating
conveyor, pneumatic conveyor, etc. Using conveyors is much
safer than using a forklift or other machines, and the absence
of human intervention makes them a less strenuous and less
expensive alternative.

A smart surface [2] is a distributed surface composed of nu-
merous Micro-Electro-Mechanical System (MEMS) developed
for the transportation of microscopic objects over short dis-
tances. A grid of MEMS microblocks composed of micro-
sensors, microactuators and control units collaborate to move
the objects to target locations1. The smart surface convey-
ing system presents two main advantages. First, contact-
based technologies are not appropriate for fragile and tiny
micro-objects (medicines, micro-electronics parts, etc.), which
can be easily damaged, contaminated or even scratched dur-
ing conveyance. Thus, systems based on air-jet technology
[14, 3, 6] such as smart-surface system avoid contact with
conveyed objects and provide safer manipulation conditions.
Second, a conveyor usually consists of a single monolithic
block dedicated to a specific task in a fixed environment.
As a consequence, when a failure occurs on a component of
the system, the system becomes unable to perform the ded-
icated task and has to be replaced. The modularity of the
smart surface system results in self-reconfiguration features
(different paths to convey the object until its destination loc-
ation) and leads to better flexibility and fault tolerance. The
distributed approach compared to a centralized one (e.g. ex-
ternal computational resource) provides scalability and fault
tolerance.

In this work, we aim to increase the efficiency of future pro-
duction lines. The conveying principle consists in sending
micro-objects from a start block to a final destination us-
ing controlled air flow coming from MEMS valves. To do
so, the degradation of all MEMS valves involved in the ob-
ject transport has to be controlled [15]. MEMS compon-
ents suffer from various failure mechanisms [22, 18] which
impact their performance and reduce their lifespan. This

1Smart Surface is a research project (ANR 06 ROBO 0009)
supported by French National Research Agency (ANR).



highlights the need to monitor their behavior and estimate
their remaining time before failure (RUL, Remaining Use-
ful Life), and take appropriate decisions accordingly, such
as reconfiguration and maintenance [20]. These tasks are
studied using Prognostics and Health Management (PHM)
approaches [10, 9, 16].

This paper does not address the PHM aspect, but only the
algorithmic solution allowing to coordinate blocks’ actions
in order to optimally convey the objects. The next section
presents research works related to similar problems and em-
phasizes the particularity of the conveying problem in smart
surface system. Section 3 summarizes the main contribu-
tions and major highlights of this work. Section 4 presents
the distributed MEMS-based surface. Section 5 describes
the scalable distributed algorithm used for optimizing the
conveying path. Section 6 presents the studied criteria to
manage the tradeoff between system lifespan and object
transfer time. Section 7 introduces the test simulator and
presents the simulation results. The last section concludes
the paper.

2. RELATED WORK
Increasing conveying system lifetime by carefully choosing
paths presents some similarities with intelligent transport-
ation problems. The energy-saving question in multi-hop
wireless networks [1, 5, 11] is one of these problems. During
packet routing, some nodes are used more often than oth-
ers, and their energy may be exhausted faster the others. To
avoid this, packets need to be routed through paths which
optimize the energy of nodes in the network. The problem
is different from smart surface conveying problem. In the
network case, sources and destinations are spread over the
whole surface, whereas in conveyors only one or a few nodes
(usually on the border of the surface) can act as source or
destination, leading to specific usage patterns. In addition
the reuse of blocks also leads to longer transfer time due
to degradation effects, which is not the case in multi-hop
wireless network.

Finding optimal paths in road systems is another similar
problem [8]. In both problems, external conditions such as
road accidents or dust on the smart surface, affect the sys-
tem characteristics (transfer time of the MEMS blocks or the
traffic speed on the roads). There are differences between
these problems. In road networks, many cars circulate at
the same time. As a result, the traffic flow propagates in
both time and space. This sometimes leads to congestion.
Instead, in our conveying problem, objects are introduced in
sequence and only one object at a time exists on the surface.
Secondly, the road infrastructure lifespan is not immediately
impacted by the traffic while the lifespan of the smart sur-
face is partially determined by block use. Finally, the road
planner is a centralized computing unit with considerable
capabilities, while the path optimization is a distributed
process since the MEMS blocks have limited memory and
computing capacity.

3. CONTRIBUTIONS
As previously mentioned, even though the principles are the
same, each problem has its own features and from this point
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Figure 1: The conveyor and the path taken by an
object from S to D.

of view the smart-surface conveying problem is an original
one. The distributed nature of the path optimization al-
gorithm is a real challenge. We ensure that the algorithm,
run by each block is scalable with a memory and compu-
tational complexity less than O(m) (m is the number of
blocks). Furthermore, the convergence of the algorithm is
ensured with a time complexity O(m). Additionally, to the
best of our knowledge, no article in the literature deals with
increasing conveyor lifespan by avoiding overused blocks.
The paper present an original study about how to man-
age the tradeoff between the short-term performance of the
surface (transfer time of an object) and the long-term per-
formance (surface lifespan). The work presented here fo-
cuses on sequential conveying system where a new object
is introduced one the precedent object is removed from the
surface. This assumption allow us to ignore, at this stage,
the physical conflicts between objects (collision problem).

4. THE DISTRIBUTED MEMS-BASED CON-
VEYOR

The conveying surface is composed of a 2D array of de-
centralized micro-blocks, see Fig. 1. Each block includes
a sensor to detect whether an object is above it, an actu-
ator as a MEMS valve, a micro-controller executing code, a
power supplier, and a network module allowing communic-
ation with its four neighboring blocks. The valves generate
air, which allows objects above it to be moved from one
point to another.

Let’s consider a smart surface composed of m blocks, each
one including a MEMS valve. The number of cycles of a
block b, C(b), represents the number of objects that the
block has already moved to an adjacent position. Every
MEMS block is defined by two dynamic values: the RUL
and the transfer time. The RUL (remaining useful life) des-
ignates the expected remaining number of times that the
block could be used before it fails. In real world scenarios,
this value is computed in real-time, using the current health
state of the block and the formula obtained in the learning
step (an offline initial procedure where the behavior of the
block is observed); this is studied by Prognostics and Health
Monitoring (PHM) field. The transfer time of a given block
is the time needed to move an object from the given block to
the adjacent one, and depends on valve state, e.g. the more
the valve is used, the less it opens to allow the air to push the
object. These two values are subject to variations over time



due to a variety of causes. According to the degradation
model, criteria such as transfer time of the last object(s),
number of uses, frequency of uses and last use date can be
considered to forecast the RUL and next transfer time on a
given block. Section 7 describes the degradation model used
in tests to measure the remaining time before failure of a
given block and the transfer time of the block.

In this work, we propose a distributed protocol that allows
the surface to determine, in real time, the best itinerary
between the current position of an object and its target po-
sition. Each time the surface detects an object to move to
a given final position, the system computes the best path
that reduces the transfer time of the current object while
preserving the system lifetime. The distributed conveyance
procedure allows each block to determine the neighbor to
send the object to if the object crosses it. The conveying pro-
cedure called by each block aims to reduce the time to reach
the final position and extend the surface lifespan. Whereas
the reduction of transfer time is clearly identified as the sum
of the transfer time over all the blocks within the path:

T (p) =
∑
b∈p

T (b) (1)

the evaluation of the system lifespan on the basis of RUL(b)
values is a complex question. Therefore, in this paper we
study different measurement functions of the RUL of a path.
In the same manner, each block tries to optimize the RUL of
the remaining path before reaching the final position. The
RUL of a path p starting from block b1st is computed us-
ing the recursive function RUL(p) described in equation 2,
where F is a function to be defined:

RUL(p) = F (RUL(p− {b1st}), RUL(b1st)) (2)

F is an increasing or decreasing monotonic function that
should be defined in such manner that it respects the fol-
lowing condition:

RUL(p)

 ≤
or
≥

F (RUL(p), RUL(b)) (3)

where the comparison operator is constant, either ≤ or ≥.
The monotonicity is needed to avoid aberrant situations
where adding a loop to a given path may improve its evalu-
ation according to the chosen function F .

To convey an object, a block can communicate only with its
four neighbors and can send the object to only one of them.
When the object reaches its destination, it gets out of the
surface, and a new object enters the system.

5. MULTICRITERIA DISTRIBUTED CON-
VEYING ALGORITHM

As already stated, our problem presents similarities with the
problem of finding the shortest path in a graph. Hence, we
decide to reuse the well known Dijkstra’s algorithm. Ac-
cording to literature, Dijkstra’s algorithm has the smallest
complexity among all the algorithms finding the optimal
solution. However, Dijkstra’s algorithm was conceived for
mono-criterion problems. Hence it needs to be adapted to
fit our multi-criteria problem.

The distributed Dijkstra approach consists in comparing the
best current path with a new path provided by a neighbor,
and do this for each node (Algo. 1, line 8). The compar-
ison procedure between two different paths is one of the key
aspects in the model discussed in the simulation section.
This point defines the selection policy among two potential
solutions evaluated according to two numerical criteria, es-
pecially when no dominated solution exists.

Definition 1. Let s1 and s2 two potential solutions (paths
in our case) and let (f1, ..., fn) be n evaluation criteria. s1
is said dominating s2 if and only if:

• ∀fi, fi(s1) is better or equal than fi(s2) and

• ∃fj , fj(s1) is better than fj(s2)

In our distributed algorithm, each block stores only its own
RUL and T , called myRUL and myT , and determines only
its next block to reach the dest position. The memory com-
plexity of the algorithm is reduced to a constant value O(1),
making the algorithm scalable. The broadcasting of the
state changes of a block is unneeded, hence there is no up-
date message. The complete optimal path is not stored by
any block, only the next position is known. Therefore, at
the end of the algorithm, every block knows, in advance,
where to move the object (next) when it is detected above
the block.

Our algorithm is presented in Algo. 1, in which the yet to
be defined function F is the one given in eq. 2. The dif-
ferent partitions of the path are explored and compared in
parallel by blocks to provide the best path, thus reducing
the CPU time of the procedure. Each block that receives
an OPTIMIZE message from a neighbor compares the
path (between the neighbor and the dest) with the best ever
known. If the new path is better, the considered block sends
an OPTIMIZE message to the other neighbors (different
from the sender) to inform them about this new best path.

5.1 Termination condition
In the absence of a global knowledge of the system state,
the distributed procedure requires a termination condition
that ensures that no better path would be found by the
neighbors. To this end, two solutions can be used. In the
first solution, the worst case is studied to determine the limit
of time after which no new path would be found. This worst
case happens when the best conveying path, according to F ,
corresponds to the longest path in terms of number of blocks.
Fig. 2 shows three examples of the worst case. These cases
occur when the best path includes slightly more than half of
the surface blocks. Numerous simulations and bibliographic
research showed that the longest path in terms of the number
of blocks cannot exceed the value MaxPathLength:

MaxPathLength =
m

2
+ max

(x
2
+ ỹ,

y

2
+ x̃

)
(4)

where x, y are respectively the number of columns and lines
of the surface (x× y = m) and Ñ is equal to N if N is odd

and 0 otherwise (Ñ = N ×N%2).

Proof. Let’s consider the worst case described at the right
of Fig. 2, where the best found path between the starting



Algorithm 1 Massively distributed Dijkstra-based al-
gorithm.

Require: myRUL, myT, dest
Ensure: best path from me toward dest: next
1: bestRUL = worstValue
2: bestT = ∞
3: if self == dest then
4: send message OPTIMIZE(self, myRUL, myT) to all

neighbors
5: end if
6: for each round do
7: if self receives a message OPTIMIZE(v, pathRUL,

pathT) then
8: if (F(myRUL,pathRUL),myT+pathT) is better

than (bestRUL,bestT) then
9: bestRUL = F(myRUL,pathRUL)
10: bestT = myT+pathT
11: next = v
12: if self is not the source of the object then
13: send message OPTIMIZE(self, bestRUL, be-

stT) to all neighbors except v
14: end if
15: end if
16: end if
17: end for

Figure 2: Three examples of conveying algorithm
worst case. ’S’ represents the starting block and ’D’
the destination block.

and the final blocks follows a zigzag (snake) pattern which
represents the longest path in the x× y matrix [13]. In the
worst case, the massively distributed algorithm converges
when the longest path, which is also the best path, is evalu-
ated. Let’s consider a horizontal zigzag pattern. The path is
composed of y/2 or y/2+1 lines (depending on whether the
number of lines is even or odd) plus y/2 blocks to link the
lines. The longest path length is then (y/2 + y%2)x+ y/2.
On the contrary, if the zigzag pattern is vertical, the longest
path length is (x/2 + x%2)y + x/2.

We assume that a message sent during one round of the
computing process is available during the next round at
the receiver. Therefore the algorithm will be run on each
block MaxPathLength rounds. The time complexity of the

algorithm is then O(m
1
2 ), including potentially many idle

rounds that do not consume energy (rounds with no new
received message).

The second solution to ensure the termination of the al-
gorithm is to limit the program execution to MaxRounds ≪
MaxPathLength rounds. Indeed, long paths, even if they

satisfy the optimization criteria, increase the long-term de-
gradation of the surface since many blocks are used. There-
fore the importance of optimal resolution of the problem
should be put into proper perspective by constraining the
conveying path length. The execution time of the algorithm
is then improved without really impacting the solution qual-
ity. In our tests we set MaxRounds to twice the direct
trajectory length between the source and the destination of
the object, bringing the time complexity of the algorithm to
O(m):

MaxRounds = 2× dManhattan (5)

6. OPTIMIZATION CRITERIA
The aforementioned algorithm uses an objective function F
which computes the quality of a given path in order to select
the best one (the maximum or minimum). In this section, we
analyze the best way to combine the two criteria (RUL and
T ) within a single function. The choice of the objective func-
tion is a key factor of the efficiency of the proposed solution.
It determines the desired trade-off between the short-term
(fast object conveyance) and the long-term vision (high sys-
tem lifespan). The objective function determines also how
the lifetime notion measured for each block is extended to
measure the global degradation of the system, and especially
the impact of a given conveying path on the system durab-
ility. In the following paragraphs, we present the different
objective functions.

Direct line In this case, the notion of RUL and T are
completely ignored and a naive approach is adopted consist-
ing in the direct line linking the source and the destination
blocks. Therefore the Dijkstra’s algorithm is not used and
no optimization criteria is needed.

MaxMin RUL function In MaxMin funtion, the path
RUL is equal to the smallest RUL in the path (eq. 6). The
objective is to find the path with the highest value of RUL.
RUL(p) and RUL(p′) are compared to determine which
path, p or p′, is better. If RUL(p) and RUL(p′) are equal
then the path with a better transfer time is taken.

max
p

RUL(p) = max
p

min
b∈p

RUL(b) (6)

Powers function The RUL of a path corresponds to the
sum of βC(b) over the blocks of the path:

min
p

RUL(p) = min
p

∑
b∈p

βC(b) (7)

where β is a numerical parameter to be defined. The use of
the function power aims to favor the selection of blocks with
lower usage by minimizing the value of the function.

Minimum transfer time function The chosen path is the
fastest path, i.e. with the minimum transfer time to convey
an object from source to destination, no matter the RUL of
path’s blocks:

min
p

T (p) = min
p

∑
b∈p

T (b) (8)

7. SIMULATION AND ANALYSIS



In this section, we present the simulator and the scenarios
used, and compare the different objective functions presen-
ted above.

7.1 Scenarios
A scenario is defined by the dimensions of the surface, n ×
n = m, by the generation rule of the initial and final pos-
itions of the objects, and by the degradation model of the
system. We simulate surfaces of dimension 6 × 6, 10 × 10,
15× 15 and 20× 20.

We also consider two kinds of rules which select randomly
the initial and final positions of objects: in the first rule,
source and destination can be any block on the surface; in
the second rule, the source is on an edge of the surface and
the destination on another edge. The first rule refers to ma-
nipulation or placement applications while the second rule
fits sorting applications.

We use a simple model to estimate the Remaining Useful
Life of a given block. In this model, a block is conceived
to be usable a given number of times, Cmax, corresponding
to its theoretic capacity (the number of times that the air-
jet valve can be activated to move an object before being
revised or replaced). Therefore, the remaining time before
failure of the surface is determined according to the number
of uses of each block. The conceptual capacity Cmax of the
blocks is known and given by the constructor.

RUL(b) = Cmax − C(b) (9)

We also consider two transfer time degradation models. The
first one is a dummy model, also used in [19], where a block
transfer time is linearly degraded when the block is used, so
each time a block is crossed by an object, the transfer time
increases by a constant value α:

T (b) = T0 + αC(b) (10)

The second degradation model is a more realistic model,
based on experimental results [21]. In our case, we introduce
a probabilistic degradation effect modeled by an exponential
distribution with mean α. The transfer time of a block b is
simulated by a recursive function where after each activation
of a block, its transfer time is degraded as follows:

T (b) = T (b)− α log(RND) (11)

where RND is a random value uniformly selected in [0,1].

In the following, we refer to a scenario by the notation n :
GEN : DEG, where n × n is the dimension of the surface,
GEN ∈ {any, edge} is the generation rule of the objects,
and DEG ∈ {lin, exp} is the degradation model used.

7.2 Simulator
We implemented a simulator in VBA Microsoft Excel. It
executes a given scenario until a maintenance procedure is
required as a result of a block degradation (∃b,RUL(b) = 0).
The simulator algorithm is described in Algo. 2.

In all tests, we used the following parameters: Cmax = 100,
T0 = 1 s, α = 10 s, and the parameter in powers functions

Algorithm 2 Procedure of simulating a scenario.

Require: n, GEN, DEG
1: while no need for maintenance do
2: a new object enters the surface at initial and final

position given by GEN method
3: run the distributed algorithm to convey the object
4: update C, RUL and transfer time values according to

DEG method
5: object gets out of the surface
6: end while

is β = 1.04. The initial surface is new, i.e. C(b) = 0 for all
blocks.

7.3 Optimization Criteria Comparison
In this section we test and discuss the advantages and dis-
advantages of the different objective functions presented be-
fore. We consider each of the objective functions for 16
scenarios. A comparison is made on the basis of the number
of conveyed objects, the average transfer time of conveyed
objects, and the average transfer time of only the first 200
conveyed objects. The latter is important since a surface
which conveys many objects will clearly be more degraded
at the end than a surface which only conveys a few objects.
Also, the average on the first 200 objects allows to assess
the conveyance rapidity during the starting period of the
system.
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Figure 3: Comparison of different objective func-
tions.



Figure 3 shows the results of this comparison. The functions
based on the entire path’s blocks such as powers function are
better than the functions based on a part of the path, such
as MaxMin function. Trying at any cost to avoid overused
blocks leads to more crossed blocks with only marginally
less degradation (see Fig. 4.a). Furthermore, the maximum
block use does not capture the values of the other blocks in
the path. Thus, two paths with equal minimum block RUL
can be completely different when considering all the blocks
of the path (see fig. 4.b). In some cases, generated paths are
longer, leading to many blocks used every time. With the
scenarios based on linear degradation, the Min time function
performs slightly better than power function. The reason for
this is that, in such scenarios, path transfer time is strongly
correlated with the path sum of RUL (eq. 9 and 10). How-
ever, in exponential degradation scenarios (where RUL and
time functions are less correlated), the Min time function
provides clearly worse results than the power function.

S 45 56 75 88 33 S 55 41 65

37 59 40 66 53 40

35 36 34 34 43 45 47 40 63

35 47 47 62

36 53 41 54

37 34 D 50 42 44 D

(b)(a)

Figure 4: Numerical values refer to RUL(b). In (a)
the dark left path is better according to the min-
imum RUL value (34 against 33), but when using
this path many worn blocks become even more worn.
In (b) the two paths are equal according to the min-
imum RUL value (40), but the light right path is
better since its blocks have generally higher values.

The good performance of the powers function can be ex-
plained mainly by the penalization of the use of overused
blocks. The idea is to ensure that the distributed algorithm
prefers to use b rather than b′ if C(b) < C(b′). The Powers
function represents, therefore, a good tradeoff between the
MaxMin function and a hypothetical average RUL function.
An example is given in figure 5. According to MaxMin func-
tion, the bottom left path is the best with a minimum RUL
equal to 14 (against 12 and 13 for the two other paths). How-
ever this path is clearly the worst since it crosses 7 blocks
with low RUL. According to the average RUL function, the
middle and the top right paths are equal, whereas using the
power function, the top right path will be preferred because
the use of the block with RUL=12 is more penalized.

The direct line function provides the worst results. Results
show that central blocks are much more frequently used than
edge blocks, making the system falls sooner. The good res-
ults of direct line function according to the average transfer
time are due to few conveyed objects, which shows that dir-
ect line method leads to a heterogeneous use of the surface.

In terms of average transfer time, the functions emphasiz-

15 S 44 56

14 45 13

22 56 12 D

16 17 23 14

Figure 5: Numerical values refer to RUL(b). The
bottom left path is the path selected by MaxMin
function even if it is the longest one. The sum
of RULs of blocks (path RUL) is identical for the
middle and top right paths. In contrast, using
powers, the top right path is preferred since crossing
the block with RUL=12 is more penalizing.

ing transfer time (Min time function) provide the best res-
ults. However, this criterion alone is not sufficient, since, as
stated in the beginning of the section, a function, such as
powers, which conveys more objects is penalized compared
to a function, such as average time, which conveys fewer
objects; indeed, last conveyed objects take more time than
first conveyed objects, due to the surface degradation. To
complete this comparison we should also consider the av-
erage transfer time of the first 200 objects. In this case,
power function provides good results. For example in scen-
ario 15:any:exp, power function conveys the first 200 objects
in an average time of 57 s, while minimum transfer time func-
tion conveys the first 200 objects in an average time of 56 s
(just one second of difference).

8. CONCLUSION AND PERSPECTIVES
In this paper we studied the problem of conveying objects on
a 2D distributed MEMS surface called smart surface. Des-
pite some similarities with well known problems in trans-
portation and communication fields, the problem remains
particular. This particularity is due to the millimetric scale
of the system, inducing hardware and software constraints
(memory storage, computing capabilities), and to the de-
gradation phenomena observed on the MEMS modules. De-
gradation effects make that a path to convey an object could
be good at a given moment and become bad later. There-
fore we proposed a bicriteria model that takes into account
a short-term objective consisting to convey the current ob-
ject as soon as possible to its final position, and a long-term
objective related to the extension of the system lifespan.

We proposed a scalable (in terms of computational and memory
complexity) distributed algorithm to optimize the conveying
path and we studied different ways to combine the short-
term and long-term criteria within a single objective func-
tion used by the optimization algorithm. We proved that
methods based on the progressive penalization of the over-
used blocks provide best results.

The results obtained are encouraging since the lifespan of the
system is extended by up to 160% without reducing convey-
ing speed. On the contrary, unbalanced use of the surface
blocks provokes the reduction of conveying speed. The rela-
tionship between the number of use cycles and the degrad-
ation of the transfer time determines the suitable tradeoff



between the RUL and transfer time criteria. We have ana-
lyzed two different degradation models defining this rela-
tionship. However, other phenomena that could potentially
impact the degradation level should be studied, such as the
frequency of use, the non-use of a block for long periods, etc.

Two major studies are needed to complete this work. First
of all, how to adapt the model and the distributed algorithm
to take into account the presence of concurrent objects above
the surface. Secondly, we need to introduce the number of
orientation changes in the object’s followed path as a third
criterion to minimize. Indeed, every orientation change im-
plies to stop the object and then start it in the new direction,
and both stopping and restarting the movement consume
energy and time.
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