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Abstract

Internet of Things (IoT) is a wireless network composed of a variety of heterogeneous objects such as Connected Wearable
Devices (sensors, smartwatches, smartphones, PDAs ...), Connected Cars, Connected Homes,...etc. These things use
generally wireless communication to interact and cooperate with each other to reach common goals. IoT (T, n) is a
network of things composed of T things with n items (packets) distributed randomly on it. The aim of the permutation
routing is to route to each thing, its items, so it can accomplish its task. In this paper, we propose two agent-based
broadcast protocols for mobile IoT, using a limited number of communication channels. The main idea is to partition
the things into groups where an agent in each group manages a group of things. This partitioning is based on the
memory capacities for these heterogeneous nodes. The first protocol uses a few communication channels to perform a
parallel broadcasting and requires O(nk ) memory space, where k is the number of communication channels. The second
protocol uses an optimal complexity of memory space for each thing to achieve the permutation routing with a parallel
broadcasting using less number of channels. We give an estimation of the upper and lower bounds of the number of
broadcast rounds in the worst case and we discuss experimental results.

Keywords: Internet of thing; parallel broadcasting; communication protocols; permutation routing; collision-free;
energy-efficiency

1. Introduction

The Internet of things (IoT) consists of a great number
of heterogeneous nodes such as Connected Wearable De-
vices (sensors, MEMS, robots, smartwatchs, smartphones,
PDA ...), Connected Smart Cars, Connected Smart Homes,5

Connected Smart Cities, and the Industrial Internet. These
things are equipped with data processing and communi-
cation capabilities which give them the ability of sensing,
computation, and wireless communications [1, 2, 3, 4]. IoT
is an attractive research subject that has started to receive10

growing attention from the research and engineering com-
munities in recent years. The nodes in IoT may be mobile
or static, deployed in ad hoc manner in area of interest.
These things are useful in a wide range of applications of
our every-day life. Such applications include smart energy,15

smart health, distributed intelligent MEMS, smart build-
ings, smart transport, smart industry, smart city, facili-
tating/conducting urban search and rescue, tasks in unat-
tended and rough environments etc.,[5, 6, 7, 8, 9]. Roughly
speaking, IoT is making our daily life easier and smarter.20

The Internet of things generally employs large number
of distributed heterogeneous things, which may be minia-
turized devices that cooperate and collaborate with each
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other using wireless communication to achieve common
goals and objectives. Each thing has an onboard radio that25

can be used to receive messages from its neighbors and to
send the information to them. That is, each thing needs to
receive information available in the local memories of other
things using routing protocols. We refer the reader to Fig.
1, depicting a 15-things in IoT. Such technological develop-30

ment has encouraged practitioners to envision aggregating
the limited capabilities of the individual things in a large
scale network that may operate unattended, [1, 5, 10, 11].

Figure 1: Example of an Internet of Things network, things cooperate
and collaborate with each others to achieve a common goal

As said before, IoT will occupy a prominent place in
our day-to-day life. However, the design of protocols to35
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control them in order to achieve a common goal is far from
being a simple task. Indeed, due to the resources limita-
tion, a solution for an application in Internet of things
should take into account the restrained capabilities (lim-
ited battery power, processing power and memory storage)40

of these heterogeneous devices by using as little memory
and energy as possible whilst maximize the lifetime of the
network [12, 13, 14]. Furthermore, the number of radio
channels are limited. In addition, transmissions through
wireless channels can suffer errors due to both channel and45

interference conditions, [15, 16, 17, 19]. It is well known
that, in real applications communication channels are sub-
ject to channel noise, fault and thus errors may be intro-
duced during transmission from the source to a receiver.
Besides, in some cases some channels are damaged and are50

no longer used. These facts illuminate the need and the
importance to have efficient protocols that perform with
a limited number of communication channels, and explain
the large number of research devoted to this complex field.

In this paper, we are interested in the problem of rout-55

ing in single-hop IoT. Single-hop IoT is the key solution
to handle routing in multi-hop networks. As preliminary
step, the network is partitioned into single-hop networks
called Clusters. Each cluster contains a set of things man-
aged by a Cluster-head. Broadcasting is performed locally60

in each cluster and getaways are used for the communica-
tion between cluster heads to send the items to their final
destinations [17, 18, 25].

The problem of permutation routing is involved when
each node in the network needs to receive information from65

other nodes. More precisely, each node cannot decide or
cannot do its task, because the information that allow it
to know what to do or decide are localized at the memory
spaces of other nodes. Each node has to send what it
has in its local memory to allow its neighbors progress.70

Thus, the nodes permute their information between them
to solve the problem, while minimizing the total number
of retransmissions [26, 27, 28, 29].

The permutation routing problem has been subject to
several researches. It was studied under the condition that75

each node has only one item (information) to be transmit-
ted to another destination node. Afterward, in an effort to
generalize the definition, and having regard to needs, the
problem has been studied under the condition that each
node i has x items, that must be transmitted to yi nodes80

where each node receives exactly x items (an item has one
destination). This generalization made the problem more
complex to solve in a restrained resource networks. How-
ever, the real generalization of the definition of this inter-
esting problem was not studied until the arrival of IoT. In85

IoT, the problem is more complicated because the nodes
are heterogeneous (in term of memory capacity, energy
capacity, computing capacity etc.) In IoT, the problem is
defined as follows: each thing ti stores in its local memory
Mi items, each ti must receive Mi items available in the90

local memories of fi things. Thing ti knows the destina-
tions of all the Mi items that it holds. However, thing

ti does not know from which stations it will receive its
items. The aim of the permutation routing problem is to
route the items in such a way that each node has all its95

own items at the end. These items allow to a thing to
know its task. For example, in Fig. 1, the thing lamp
needs to receive information (messages) from the car and
the pad, to decide if it has to be bright or not. As stated
in [16, 17, 19], the permutation routing problem is one of100

the most important issue in the field of computer sciences.
The permutation routing can also serve as solution for

privacy and security. Indeed, to prevent the attacker to
know the task for a thing (soldier), we do not give to a
thing all its items during the deployment, but we permute105

the items on a set of things. When the things are all in a
safe environment, they do the permutation routing, to let
each thing receive all its items from the other things that
are in the same network.

In this work, we propose efficient agent-based routing110

solutions for the internet of things where the number of
channels and the memory usage are as few as possible.

Related Works.
As said before, IoT is going to offer a large number

of applications in various environments for improving the115

quality of our lives. Routing in IoT is a topic that has
attracting the research community in last years [20]. In
[21], the authors propose 6LoWPAN, a major routing pro-
tocol for IoT systems. It has been defined by the En-
gineering Task Force (IETF) to route data through the120

Internet among non IP sensors. However, 6LoWPAN is
used for networks with high processing capabilities. For
that, (RPL) Protocol for Low Power and Lossy Networks
[22] has been designed for resources constrained devices.
RPL is a distance vector routing protocol that is based on125

IPV6. It builds a Destination Oriented Directed Acyclic
Graph (DODAG). Many metrics may be used to construct
a DODAG: the Expected Number of Transmissions (ETX)
[23], the remaining energy of the devices. Energy-Efficient
Probabilistic Routing (EEPR) [24] is an alternative solu-130

tion for routing in an IoT environment. It is based on
the same idea of AODV but the transmission of a RREQ
packet follows a certain forwarding probability that de-
pends on the residual energy and the ETX metric. The
authors in [20] proposed a cross-layer routing protocol to135

meet the performance parameters of IoT applications such
as the minimum date delivery rate and maximum packet
delay. All these papers do not take into account the rout-
ing of a huge number of packets in the same time using
a limited number of communications channels and a very140

limited memory capacity of some nodes.
The number of studies specifically targeted to the per-

mutation routing problem in radio networks has grown
significantly. The common goal of all these researches is
to propose efficient broadcasting protocols that use few145

communication channels.
It is shown in [17, 15] that the permutation routing of n

items distributed on a wireless radio network of p stations
and k channels with k < p, can be carried out efficiently
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if k ≤
√

p
2 as the number k of available radio channels150

is significantly smaller than the number of stations p. A
more energy-efficient permutation routing that handles the
dynamicity of the networks in the sense sleep/wakeup ap-
peared in [16]. In [30], the authors solve the problem us-
ing a concurrent broadcast protocol on multiple channels.155

The author in [31], derived a fault tolerant permutation
routing protocol of n items distributed on mobile ad-hoc
network of p stations and k channels MANET (n, p, k) for
short. He also assumed that k ≤

√
p
2 and in the presence

of faulty nodes some data items are lost. These algorithms160

require two phases. These two phases approach divides the
stations into groups. During the first phase, each packet
is routed to a station in the group containing the destina-
tion station. In the second phase, stations in each group
route packets to their final destination. In [19], the au-165

thors present for single-hop radio networks a one phase
algorithm that routes the packets directly to their destina-
tions. Its expected run time is nearly n

k and assumes that
k ≤ √p. In [32], the authors presented a randomized al-
gorithm for the permutation routing that takes 3n

k +O(nk )170

broadcast rounds with high probability.
In [33], the authors presented a fault tolerant proto-

col which avoids the loss of items. The existence of these
faulty nodes can significantly affect the packets delivery
rate. If a faulty node, participating in a permutation rout-175

ing operations, drops packets, all these packets will be lost.
Hence, the goal of a fault tolerant permutation routing in
[33], is to provide certain level of packet delivery guaran-
tee in spite of the presence of faulty stations. The goal of
the solution in [34] is to route the overall items to their180

destinations while consuming as little energy as possible.
The authors showed that the permutation routing prob-
lem of n packets on a RadioNetwork(p, k) of p stations
and k channels can be solved in 2n

k + ( pk )2 + p+ 2k2 slots.
In [35], the authors propose an optimal permutation rout-185

ing on mesh networks where n
p = 1. Another approach as

an application of an initialization algorithm appeared in
[36]. All these approaches assume that the nodes of the
network are homogeneous. The solution in [37] presents a
randomized algorithm for the same problem in multi-hop190

network with high probability. These solutions are de-
signed for radio or sensor networks and each node within
these protocols stores exactly one item or n

p items.
Some solutions for the permutation routing in wire-

less node networks use clustering to divide the network195

into groups of single-hop networks where the cluster head
routes the items to another cluster. The protocol in [38]
is designed for multi-hop homogenous sensors. It needs
(n
p )(HUBmax )(k + 1 ) + O(HUBmax ) + k2 + k broadcast

rounds, where n is the number of the data items stored in200

the network, p is the number of sensors, HUBmax is the
number of sensors in the clique of maximum size and k
is the number of cliques after the first clustering. The
drawback of this protocol is the fact that there is a high
probability of collision and conflict on the communication205

channels, because it has not been shown a mechanism to

manage the broadcasting. In [39], it is presented a se-
cure permutation routing protocol in multi-hop networks.
It uses clustering and secures the procedure of clustering
and routing.210

Contributions. We consider a wireless network of
heterogeneous things with n items (packets) and T things,
IoT (T, n) for short. The n items are distributed on the T
things, so each thing t has in its local memory Mt items.
In this paper, we propose two, agent-based, distributed215

and parallel protocols for the permutation routing for In-
ternet of Things. We partition the things into groups,
where in each group there is a set of agents. The role of
the agents is to manage groups of things and also man-
age the broadcasting on the communication channels so to220

provide protocols that run without collision or conflict at
the communication channels. Both protocols aim to use
maximally the communication channels available.
The aim of the first protocol is to use a few communication
channels and perform broadcasting in parallel to optimize225

the number of broadcast rounds. The main idea of this
protocol is to partition the things into k groups, where k
is the number of communication channels that allows us-
ing O(nk ) of memory space. In this protocol the grouping
is based on the number k. The aim of the second pro-230

tocol is to use a minimum amount of memory for each
thing, where the broadcasting in parallel is possible. In
this protocol a thing t that stores Mt items uses O(Mt)
of memory space. Contrary to the first protocol, in this
one the partitioning is based on the memory capacities of235

the nodes in the groups. Therefore, the number of commu-
nication channels used is smaller compared to the first one.
The proposed permutation routing protocols are distributed,
where nodes make autonomous decisions without any cen-
tralized control. We give an estimation of the upper bound240

of the number of broadcast rounds in the worst case and
experiments results. Our solutions are the first to give
efficient and collision-free solutions for the permutation
routing problems for Internet of Things.

Outline of the paper. The paper is made up of 5 sec-245

tions. The rest of sections is organized as follows: Section
2 presents the model of the network and some definitions.
Section 3 presents and discusses the proposed protocols.
Section 4 details the simulation results. Finally, our con-
clusions and suggestions for the future works are given in250

section 5.

2. Model and definitions

The network considered is simple-hop (the pairs can
communicate directly). IoT includes large numbers of
mobile thing nodes. The things communicate with each255

other using bidirectional links. The computation and com-
munication capabilities are different for all thing nodes.
Furthermore, the things have different memory capacities.
IoT (T, n) is a thing network with n items (information
or packets) and T things. Fig. 2 depicts IoT (15, 56). In260

IoT (T, n), each thing ti has in its local memory Mi items.
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Each item has a unique destination thing. The time is
divided into slots and all packet transmissions take place
at slot boundaries in IoT (T, n). The permutation rout-
ing problem is to route the items in such a way that each265

thing ti receives its Mi items. Fig. 2 (a) presents an
example where the items are distributed in the network
and each thing holds items that must be routed to their
destinations. Fig. 2 (b) presents the network after the
permutation routing, so each node has its information and270

it can proceed to perform its task.
As in [16, 17, 19], the term broadcast in this paper

refers to one-to-many and to point-to-point transmission.
The set of all broadcast operations that take place in the
same time slot is referred to as a broadcast round.275

Let LT = {t1, t2, ..., tT } be the list of T things in
IoT (T, n) and let L = {M1,M2, ...,MT } be the list of the
memory spaces that hold the items of the things in the
network. With, for each 1 ≤ i ≤ T , Mi is the memory
space (number of items) of thing ti. We note:280

-MIN (Mi), the lowest memory space for items that a thing
has in the network, i with ∀j 6= i then Mj > Mi. If
Mj = Mi, then i < j
-MAX (Mi), the largest memory space for items that a
thing has in the network, i with ∀j 6= i, then Mj < Mi. If285

Mj = Mi, then i < j.
In the presentation of the proposed protocols, we work

mainly on the memory spaces for items M1,M2, ...,MT

and when an action (add into a group, delete from a group...)
is applied on a given memory space Mi this means that the290

action is applied on ti, assuming that there is a function
ID(Mi) that gives the thing ti.

3. Proposed Protocols

In this section we present and discuss our proposed
protocols. This section is divided into two subsections.295

In the first one, we present an efficient protocol that uses
O(nk ) of memory space for each thing and in the second
subsection, we present a protocol that uses O(Mi) for each
thing ti. We discuss the advantages of each one.

3.1. Protocol with O(nk ) memory on IoT (T, n)300

The aim of this section is to show that the permutation
routing on an IoT (T, n, k) of T things, n items (informa-
tion) and k channels, where each thing has a memory space
of O(nk ) is possible if:

k ≤

⌊ ∑T
i=1(Mi)

MAX(Mi)

⌋
. (1)

The procedure is to divide the channels on the T things,305

so to perform broadcasting in parallel and to use optimally
each channel. Clearly, the aim is to distribute the broad-
casting on the channels. Contrary to the related works, we
can see clearly that this grouping will not depend on the
number of things because the things store different num-310

bers of items. Therefore, this grouping depends on the

list L of the memory spaces of things that hold the items.
The procedure is to divide the things into k groups. In
each group there are k agents. The role of each agent in
a given group is to receive the elements that belong to a315

given group (one group of the k groups). In the first step
each node sends its items to the agents and in the second
steps the agents broadcast the items to their final desti-
nations. Note that each agent in each group may be the
destination of all things in its group, because the items in320

group of things G(1) may have all destinations in group of
things G(2). Based on this, we can observe that an agent
should have a memory capacity to store a set of elements
of a group. Therefore its memory space must be equal to
a size of a group. To satisfy this we can choose:325

k ≤


√√√√ T∑

i=1

(Mi)

 . (2)

This condition depends on the memory capacities of
things. With this condition an agent will use in the worst
case O(nk ) of memory space because in each group the over-

all number of items will be

⌊√∑T
i=1(Mi)

⌋
k = n

k items. How-
ever, the problem occurs in grouping procedure. Given330

that the things store different number of items, thus, any
grouping procedure based on the number of things will not
give always groups with equal sizes. Even, if the grouping
procedure is based on the memory spaces it will not give
always groups with equal sizes, because it is a matter of335

impossibility or NP-complete problem. The inequation (1)
allows to have k groups and in each group there is at most
O(nk ) items.

This protocol is composed of three steps: Grouping,340

Broadcast to agents and Broadcast to the final destina-
tions. Next we give the details of each step.

3.1.1. Grouping

The first step is to partition the network into k groups,
G(1), G(2), ..., G(k), such that G(j), 0 < j ≤ k. In each345

group G(j) will be δj things. A size, s(j), of a group is
defined as the sum of all Mi, i ∈ {1, 2, ...., T}, that a group
G(j), 0 < j ≤ k, contains. We use Grouping Algorithm
presented in Fig. 3 to apply the grouping of the things
in the network. This algorithm takes in input a list of350

memory spaces L = {M1,M2, ...,MT } which represents
the memory spaces that contain the items and an integer
k which represents the number of channels and the number
of groups. It outputs the groups G(1), G(2), ..., G(k). Each
group contains a set of things.355

The algorithm, firstly, puts in G(1), MAX (Mi) of L, in
G(2), MAX (Mi) of L − G(1), and so on until it puts in
G(k), MAX (Mi) of L−{G(1) ∪ .... ∪G(k − 1)}. After, at
each step it adds the maximum in the new list Ln, that
does not contain the elements already added into the k360

groups, to the group G(j) that has the current minimum
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Figure 2: An example of IoT before and after the permutation routing

s(j). By applying this algorithm, each group will have at
the end a size s(j).

Definition 3.1. Let a set of T positive integers be in L =
{M1,M2, ...,MT } and let a set of k positive integers be365

K = {m1,m2, ...,mk}, with:

• k < T ,

• K ⊂ L,

• ma ≥ mb, a < b, 0 < a, b ≤ k,

• for all 0 < i ≤ k, mi ≥Mj ∈ L−K, 0 < j ≤ T and370

• k ≤
∑T

i=1(Mi)

m1
.

By applying Grouping Algorithm in Fig. 3 on L and
k, we name a full iteration when an or several integers
Mi, 1 ≤ i ≤ T from a set H ∈ L are added into each mj,
1 ≤ j ≤ k.375

ITL‖K(γ) is the full iteration number γ by applying the
grouping algorithm on L and k.

Lemma 3.1. By applying the grouping algorithm, what-
ever the values Mi, i ∈ {1, 2, ...., T} and k satisfies in-
equation (1), then the minimum size s(j) is always:380

s(j) ≥ MAX(Mi)× (k − 1)

2k − 3
. (3)

Proof ITL‖K(1) is the maximal full iteration that allows
having the minimum of s(j) because if there is ITL‖K(γ),
with γ > 1 this means that to all mi was added one or sev-
eral Mi, including MAX(Mi). Therefore, this means that
there was in some previous step all mi +Ci ≥MAX(Mi),385

where Ci is the sum of all values from L added to mi. Con-
sequently, ITL‖K(γ), γ > 1 will not give the minimum s(j).

To apply ITL‖K(1), the sum
∑T
i=1(Mi) must be the mini-

mum as possible and satisfies inequation (1). This sum is∑T
i=1(Mi) = MAX(Mi)× k because (MAX(Mi)× k)− ε390

does not satisfy inequation (1). ∀mi, no integer will be

added to m1 because
∑T
i=2(Mi) = MAX(Mi)(k − 1).

Therefore, by applying the grouping algorithm, the sum∑T
i=1(Mi) = MAX(Mi)× k will give the minimum s(j).
To have the minimum we should find the k-tuple395

(m1,m2,m3, ...,mk) wherem2 is the minimum, that if cho-
sen, no number from L−K will be added to it. That is, the
k-tuple allows, following the grouping algorithm to add the
L−K to m3, ...,mk without adding any value to m2. Note
that m1 is the maximum and it is invariable, so it is out of400

computation. To let the difference maximal between m2

and m3, ...,mk after adding the sum, say X, to m3, ...,mk,
we must have m2 = m3 = ... = mk. This means that, the
sum X, to be add to m3, ...,mk divided by m2 must be
inferior than or equals to k − 2. Because if X

m2
> k − 2,405

following the grouping algorithm a positive value will be
added to m2. To assemble our conclusions, the condition
to not add any element to m2 is:

1. INPUT : A set L and k
2. OUTPUT : A list of groups,
3. LG← {G(1), G(2), ..., G(k)}
4. begin
5. X ← L; b← 1;
6. while (b ≤ k) do
7. G(b)←MAX(X);
8. X ← X −G(b− 1);
9. b← b+ 1
10. end while;
11. Ln← L− {G(1), ..., G(k − 1), G(k)} ;
12. LG← {G(1), G(2), ..., G(k)} ;
13. while (Ln 6= �) do
14. MIN(LG)←MIN(LG) ∪MAX(Ln);
15. Ln← Ln− {MAX(Ln)}
16. end while;
17. Return (LG)
18. end

Figure 3: Grouping Algorithm
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X

m2
≤ (k − 2). (4)

As X = (m1 × k)− (m1 − (k − 1)m2), we can write:410

(m1 × k)− (m1 − (k − 1)m2)

m2
≤ (k − 2). (5)

(5) ⇔ (MAX(Mi)×(k−1))
2k−3 ≤ m2. �

Lemma 3.1 does not give always integer values. To
deal with each case to have the exact size we give the
following equations that can be deduced from inequation
(3):415

if k is odd:

s(j) ≥MAX(Mi)− (
MAX(Mi)

k
× k − 1

2
),

if MAX(Mi)mod k = 0,
(6)

or

s(j) ≥MAX(Mi)− (

⌊
MAX(Mi)

k

⌋
× k − 1

2
+
k − 1

2
),

if MAX(Mi)mod k ≥ k − 1

2
,

(7)
or

s(j) ≥MAX(Mi)− (

⌊
MAX(Mi)

k

⌋
× k − 1

2
),

if MAX(Mi)mod k <
k − 1

2
.

(8)

if k is even:

s(j) ≥MAX(Mi)− (
MAX(Mi)

k + 1
× k

2
),

if MAX(Mi)mod (k + 1) = 0,

(9)

or

s(j) ≥MAX(Mi)− (

⌊
MAX(Mi)

k + 1

⌋
× k

2
),

if MAX(Mi)mod (k + 1) ≤ k

2
,

(10)

or

s(j) ≥MAX(Mi)− (

⌊
MAX(Mi)

k + 1

⌋
× k

2
) + 1),

if MAX(Mi)mod (k + 1) >
k

2
.

(11)

Lemma 3.2. Let a set of positive integers be in
L = {M1,M2, ...,MT } and let a set of positive integers be
in K = {m1,m2, ...,mk} as in Definition 3.1. And let mk
be the maximum value of k that can be chosen with respect
to inequation (1).420

Then, if we apply the grouping algorithm on L, with
mk, the largest group, lg, will be with a size of S(lg) ≤
2MAX(Mi)− 1.

Proof Given that, from inequation (1),
∑T

i=1(Mi)

m1
≥ k. If

k chosen is the maximum as possible, mk =
⌊∑T

i=1(Mi)

m1

⌋
.425

To let mk maximum we may add until u = MAX(Mi)−1

to
∑T
i=1(Mi). If u > MAX(Mi)−1, the value

∑n
i=1(Mi)+u

MAX(Mi)
≥

(k + 1), therefore mk will not be the maximum, which
represents a contradiction. Therefore, we conclude until
now that: to let mk maximum we may add until u =430

MAX(Mi)− 1 to
∑T
i=1(Mi).

We obtain the largest group if MAX(Mi) = m1 = m2 =
...,= mk because, following the grouping algorithm, the
value u will be added to MIN(Mi). Therefore, the largest
group will be MAX(Mi)+MAX(Mi)−1 = 2MAX(Mi)−435

1. Consequently, for different values of m1,m2, ..., andmk,
S(lg) ≤ 2MAX(Mi)− 1. �

Lemma 3.3. Let a set of positive integers be
L = {M1,M2, ...,Mm} and a set of positive integers be
K = {m1,m2, ...,mk} as in Definition 3.1440

Then, if we apply the grouping algorithm on L, with
k < mk the largest group, lg, will be with a size of:
Case 1: S(lg) ≤ (mkk +1)×MAX (Mi)−1, if mkmod k = 0,
or
Case 2: S(lg) ≤ (

⌊
mk
k

⌋
+1)×MAX (Mi), if mk mod k 6=445

0.

Proof We first proof the Case 1: for mk = k, the size is
(1 + 1) ×MAX (Mi) − 1. This is true, from the previous
lemma. From the previous lemma, to let mk maximum we
may add until u = MAX (Mi)−1 to

∑m
i=1(Mi). Let G(j),450

1 ≤ j ≤ k, initialized to 0. Each G(j) will contain one mi

and the values to be added to mi. If mkmod k = 0, to
each G(j) will be added (mkk )×MAX (Mi) except intk that

will be added to it (mkk ) × MAX (Mi) + MAX (Mi) − 1.
Therefore, in this case the largest group will be of size455

(mkk )×MAX (Mi)+MAX (Mi)−1 = (mkk +1)×MAX (Mi)−
1. Consequently, for different values of m1,m2, ..., and
mk, S(lg) ≤ (mkk + 1)×MAX (Mi)− 1, if mkmod k = 0.

For the Case 2: this second case can be observed di-
rectly from Case 1. In this case, to each G(j) will be added460

mk−mkmodk
k × MAX (Mi), as mk mod k 6= 0. And re-

mains (mk − k) × MAX (Mi). Given that (mk − k) <
k. So to each (mk − k) of the group G(j), 1 ≤ j ≤
k, will be added MAX (Mi). Therefore, in this case the
largest size is mk−mkmodk

k × MAX (Mi) + MAX (Mi) =465

(
⌊
(mkk )

⌋
+ 1) × MAX (Mi). Consequently, for different

values of m1,m2, ..., and mk, S(lg) ≤ (
⌊
(mkk )

⌋
+ 1) ×

MAX (Mi), ifmk mod k 6= 0. �
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G(1) G(2) ........................................... G(k)

t2(G(1)) t2(G(2)) .............................. t2(G(k))

.

.

.
tk(G(1)) tk(G(2) ............................. tk(G(k))

RT1,k+1 RT2,k+1 ................................ RTk,k+1.
.
..

RT1,δ1 RT2,δ2 ................................. RTk,δk

Figure 4: A model for the grouping step

Example
470

We run the grouping algorithm on the network of Fig-
ure 2 (b), assuming the number of channels is 2 ( k = 2).
We have X = L = {M1,M2, ...,M15} (line 5). As k = 2
the algorithm will create two groups, G(1) and G(2) (line
3).475

As k = 2, the algorithm first adds into G(1) the thing
MAX(X), which is the thing t9 that has M9 = 8 (line
7). After it adds t14 into G(2) (line 7). We have now
ln = L − {M1,M2} (line 11). After, in instruction 14
the algorithm adds into G(2) the max in Ln so G(2) =480

{t14, t1}. So at line 15 ln = L − {t14, t1, t9}. After, in
line 14 we add t4 into group G(1) because |G(1)| < |G(2)|.
So G(1) = {t9, t4}. After we add t10 into group G(2) be-
cause |G(2)| < |G(1)| (line 14). So G(2) = {t14, t1, t10}.
After we add t6 into group G(1) because |G(1)| < |G(2)|.485

So G(1) = {t9, t4, t6}. After we add t2 into group G(2)
because G(2) < G(1). So G(2) = {t14, t1, t10, t2}. After
we add t3 into group G(1) because |G(1)| < |G(2)|. So
G(1) = {t9, t4, t6, t3}. After we add t5 into group G(2)
because G(2) < G(1). So G(2) = {t14, t1, t10, t2, t5}. Af-490

ter we add t11 into group G(1) because |G(1)| < |G(2)|
(line 14). So G(1) = {t9, t4, t6, t3, t11}. After we add
t12 into group G(2) because |G(2)| < |G(1)| (line 14).
So G(2) = {t14, t1, t10, t2, t5, t12}. After we add t13 into
group G(1) because |G(1)| < |G(2)| (line 14). So G(1) =495

{t9, t4, t6, t3, t11, t13}. After we add t15 into group G(2)
because |G(2)| < |G(1)| (line 14).
So G(2) = {t14, t1, t10, t2, t5, t12, t15}. After we add t7
into group G(1) because |G(1)| < |G(2)| (line 14). So
G(1) = {t9, t4, t6, t3, t11, t13, t7}. After we add t8 into500

group G(2) because |G(2)| < |G(1)| (line 14). So G(2) =
{t14, t1, t10, t2, t5, t12, t15, t8}. At this point the list ln is
empty and the algorithm ends by giving two groups :
|G(1)| = 28, |G(2)| = 29.

3.1.2. Broadcast to agents505

Once the grouping is finished and the communication
channels are assigned to groups. The next step is identify-
ing the agents in each group. The role of each agent is to
receive in its local memory all elements that belong to a

(one) group, (i.e. one group of k groups, G(1)...G(k)). The510

probability that a given thing ti1 having a memory Mi1 has
already items belongs to a given group G(j), 1 ≤ j ≤ k, is
Mi1

s(j) . It is greater than the probability that another thing

ti2 having Mi2, with Mi2 < Mi1, has already items belong
a given group G(j), 1 ≤ j ≤ k, which is Mi2

s(j) . Therefore,515

to perform less number of broadcast rounds in each group,
we choose, as agents, the k things that have the k max-
imum memory spaces for items in L in each group. The
algorithm of agents election is shown in Fig. 5. This al-
gorithm is executed by each thing node in each group. It520

chooses the first k things that have the largest memory ca-
pacities as agents. In the first iteration (i = 1) of the loop
for the nodes elect an agent for the group G(1), in the
second the nodes elect an agent for the group G(2) and so
on until the group G(k). As the nodes in each group are525

at single hop and as the algorithm on each node receives
the same entrees the algorithms output the same results
in each group.

Let t1(G(j)), t2(G(j)), ..., tδj (G(j)) the things in a group
G(j), 1 ≤ j ≤ k, where t1(G(j)), t2(G(j)), ..., tk(G(j)) are530

the agents in this group. Each item of the n items is writ-
ten under the form ITEM(s, a, d), with s is the source
group of the item and a is the destination group and d is
the final destination. In the Broadcast to agents algorithm,
agent tr(G(j)), 1 ≤ r ≤ k, copies the items destined to the535

group G(r). Namely, each agent tr(G(j)) has to store in
its memory the items ITEM(s, a, d), with a = r. The de-
tails of this procedure are in the algorithm in the Fig. 6.
This algorithm is executed in parallel in the groups using
a channel C(j) for each group G(j).540

Fig. 4 presents a model for the grouping procedure
where things tf (G(j)), 1 ≤ f, j ≤ k, will be the agents
and RTI,j are the remaining things (not agents).

Algorithm for each group G(j):
// executed in parallel for the groups
G(1), G(2), ...., G(k)
begin
for (i = 1; i ≤ k; i++) do

NwAgnt for G(i) = tz(G(j)) with z ∈ {1, δj} ∧
M(tz(G(j))) ≥M(th(G(j))),∀h ∈ {1, δj} ;

end for
end

Figure 5: Agents election algorithm
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Algorithm for each group G(j):
begin
for i ∈ {1, ..., δj} do

// executed in parallel, not ordered
Thing s = ti(G(j) broadcasts on the channel C(j)
the items ITEM(s, a, d) one by one;
The agent tr(G(j)) copies in its local memory the
item ITEM(s, r, d)

end for
end

Figure 6: Broadcast to agents algorithm

Using Broadcast to agent algorithm, things in each
group G(j), broadcast in parallel their items one by one545

on the channel C(j). At each step, the agent that acts for
a group copies in its local memory, from C(j), the items
that have as destination things in this group.

Lemma 3.4. As the thing nodes in each group G(j) broad-
cast one by one on the channel C(j), and as the broadcast550

takes place in parallel in the groups, the largest group is the
one that performs more broadcast rounds. Consequently,
the number of broadcast rounds for this step is:
≤ (mkk + 1)×MAX (Mi)− 1, if mkmod k = 0,
or555

≤ (
⌊
(mkk )

⌋
+ 1)×MAX (Mi), if mkmod k 6= 0. �

Example :
In the network example of Fig. 2 (a). The thing t9

is the agent for group G(1) in group G(1). This means it
stores in its local memory the items broadcast by things560

in group G(1) and destined to things in group G(1). The
thing t4 is the agent for group G(2) in group G(1). This
means is stores in its local memory the items broadcast
by things in group G(1) and destined to things in group
G(2). The thing t14 is the agent for group G(1) in group565

G(2). This means is stores in its local memory the items
broadcast by things in group G(2) and destined to things
in group G(1). The thing t1 is the agent for group G(2) in
group G(2). This means it stores in its local memory the
items broadcast by things in group G(2) and destined to570

things in group G(1).

3.1.3. Broadcast to the final destinations

The aim of this step is to broadcast the items sorted
by the agents to their final destinations. Namely, broad-
cast each ITEM(s, a, d) to its destination node d in the575

group G(a). At this stage, the agents in different groups
hold the items of nodes that are not in the agents groups.
Therefore, the main concern is managing the broadcast
on each channel C(j), 1 ≤ j ≤ k, because this last will
be the destination of different agents in different groups.580

This step is decomposed into two phases. The aim of the
first phase is to let each agent to know the exact moment
when it should broadcast. In the second phase, the agents
use the result of the first phase to broadcast correctly the

items. The details are next in Phase 1 and Phase 2.585

A) Phase 1
Given that each agent cannot monitor the channel con-

tinually, because this will prevent it from receiving rele-
vant information on any other channel. To let each agent590

tj(G(j)) know the exact moment when it should broad-
cast on the channel C(j), we use this mechanism: let the
agents that act for a group G(j) be ordered in a list H(j) =
{t1(G(j)), t2(G(j)), ..., tk−1(G(j))}. The algorithm for Broad-
cast to the final destinations step is presented in Fig. 7.595

This algorithm is executed in parallel, using a channel C(j)
for each set of agents H(j).

Taking turns, agents t1(G(j)), t2(G(j)), ..., tk−1(G(j))
broadcast on the channel C(j), the number of items (i.e
|ITEM (1 , j , d)| , |ITEM (2 , j , d)| , ..., |ITEM (k − 1 , j , d)|).600

We note that only these agents need to broadcast the num-
ber of items. The last agent tk(G(j)) does not need to
broadcast, this agent is the thing t in the group G(j) that
stores more items in its Mt. That is, because its proba-
bility to have already elements that belongs to it is high605

compared to other things, and therefore there is a high
probability to perform less number of broadcast rounds
and high probability to prevent other nodes to wait for
rounds that in really there was no broadcast operations
during them. After, each agent tx(G(j)) can know its turn610

to broadcast by calculating the sum of number of items to
be broadcast by agents t1(G(j)), t2(G(j)), ..., tx−1(G(j)).

Lemma 3.5. This phase, clearly, takes k − 1 broadcast
rounds. Because in each group, k− 1 agents broadcast the
number of items on the channels in parallel. �615

B) Phase 2
As in Phase 1, a channel C(j), 1 ≤ j ≤ k is assigned
to a group H(j), to let the agent broadcast the items
to the final destinations. With the sums computed by
each agent in Phase 1, each of them broadcasts in the620

appropriate time its items on the channels. For each item
ITEM(s, a, d) broadcast in the channel of group G(a), the
final destination thing t = d, copies it in its memory.

Algorithm for each list H(j), 1 < j < k:
begin
for a ∈ {1, ..., k − 1} do

ta(G(j)) broadcasts |ITEM(k − 1, j, d)| on
C(j)
end for
a← 1
while(a < k) do

Thing ta(G(j)) broadcasts at time T ime(a);
Thing td copies in its local memory the item
ITEM(s, j, d);
a← a+ 1

end while;
end

Figure 7: Algorithm Broadcast to the final destinations
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Procedure : Time(a)
begin
X ← 0;h← 1;
while(h < a) do
X ← X + |ITEM(h, j, d)| ;
h← h+ 1

end while;
Return(X)

end

Figure 8: Procedure Time(a)

Lemma 3.6. As the broadcasts take place in parallel for
the k groups, therefore, the group that contains more items625

will be the last group to finish the broadcast. Consequently,
from lemma 3.3, the number of broadcast rounds for Broad-
cast to the final destinations is:
≤ (mkk + 1)×MAX (Mi)− 1, if mkmod k = 0,
or630

≤ (
⌊
(mkk )

⌋
+ 1)×MAX (Mi), if mkmod k 6= 0. �

Theorem 3.7. From lemma 3.2, lemma 3.3, lemma
3.4, lemma 3.5 and lemma 3.6, the total number of broad-
cast rounds for this protocol using O(nk ) memory has an
upper bound:635

≤ 2(mkk + 1)×MAX (Mi) + k, if mkmod k = 0,
or
≤ 2(

⌊
(mkk )

⌋
+ 1)×MAX (Mi) + k − 1, if mkmod k 6= 0.

Theorem 3.8. From lemma 3.1, lemma 3.4, lemma 3.5
and lemma 3.6, the total number of broadcast rounds for640

this protocol using O(nk ) memory has an lower bound:

≥ 2MAX (Mi)− (
⌊
MAX (Mi)

k

⌋
× (k − 1)), if k is odd

or
≥ 2MAX (Mi)−((

⌊
MAX (Mi)

k+1

⌋
−1)×k+3), if k is even.

3.2. Protocol with O(Mi) memory, 1 ≤ i < T for each ti645

in IoT(T, n)

In this section, we present an agent-based broadcasting
solution for the permutation routing problem in IoT (T, n)
that uses an optimal memory space. In this protocol, each
thing of memory space for items Mi uses O(Mi) of memory650

space.
In this protocol an agent Xj1,j2 may be composed of a

single thing or a set of things. Xj1,j2 is the agent in group
G(j1) and acts for group G(j2). Xj1,j2 stores only items
ITEM(j1, j2, d) that have G(j1) as the source group and655

G(j2) as a destination group. In this protocol, each agent
Xj1,j2 that has Mi of memory space for items does not
stores more than 3Mi of items.

Let x(j1, j2)1, x(j1, j2)2, ....., x(j1, j2)β(j1,j2),
be the β(j1, j2) memory spaces for items of things com-660

posing the agent Xj1,j2 if |Xj1,j2| > 1.
The main idea to implement the protocol with O(Mi)

of memory space is to set up in each group, a relief agents.
These relief agents are called to store the items when the
agent became full. Each agent Xj1,j2 may have one or665

several relief agents. Zj1,j2,N , 1 ≤ N ≤ J − 2, is a relief
agent number N for agent Xj1,j2 in group G(j1), where J
is the number of groups after applying the grouping algo-
rithm (section 3.2.1). Each relief agent Zj1,j2,N , is called
to store the items that have G(j1) as source group and670

G(j2) as destination group if the agent Xj1,j2 is full (i.e.
it stores 3Mi items). Zj1,j2,N is also composed of a single
thing or a set of things.
Let z(j1, j2, N)1, z(j1, j2, N)2, ....., z(j1, j2, N)β(j1,j2,N), be
the β(j1, j2, N) memory spaces for items of things com-675

posing the relief agent Zj1,j2,N if |Zj1,j2,N | > 1.
Observe that J −2 relief agents for each agent are nec-

essary and sufficient in each group. Because if there are J
groups, there are J agents in each group. Let us assume
that in a given group G(j), all items have G(1) as destina-680

tion group. X(j, 1) will be able to store its items and the
items of X(j, 2), because following the grouping algorithm
X(j, 2) < 3X(j, 1). Notice that it remains J − 2 agents
that have G(1) as destination group. Therefore, J − 2
agents are necessary and sufficient for the agent X(j, 1).685

Definition 3.2. Let a set of m positive integers be in S,
S = {int1, int2, ..., intm}, where inta ≥ intb, a < b, 0 <
a, b ≤ m

and let X1 and X2 be two subsets from set S, where
X1 ∩X2 = ∅.690

We say that sf (X1) ≥ s(X2) if there is
X1 = {e1 ∪ e2 ∪ ... ∪ ev}, with, v ≤ m and e1 + e2 + ... +
ev ≥ s(X2) and e1 + e2 + ...+ ev−1 < s(X2), where s(X2)
is the size of X2 (the sum of the elements in X2).

This protocol is composed of three algorithms: Group-695

ing and agents assigning, broadcast to agents and broadcast
to the final destinations. The details of each algorithm are
discussed next.

3.2.1. Grouping and agents assigning

The algorithm of grouping, assigning of agents and re-700

lief agents is presented in Fig. 9. This algorithm groups
the things to have a protocol that uses an optimal memory
space for the permutation routing. Indeed, this protocol
requires O(Mi) memory space for each thing ti. The algo-
rithm assumes that there are enough memory spaces for705

items to have at least two groups (two groups is the min-
imum number that allows broadcasting in parallel). Fig.
10 depicts the model of grouping and agents assigning,
where there are agents, relief agents and remaining things.
The algorithm sets at the beginning the number of groups710

j = 2 (instruction (2)). From instruction (3) to instruc-
tion (12) the algorithm makes the first two groups. From
instruction (13) to instruction (58), the algorithm at each
time, checks if it is possible to add a new group. If the rest
of memory spaces for items is not enough to make a new715

group, the algorithm proceeds to distribute these memory
spaces for the current j groups following the Grouping Al-
gorithm in Fig. 3. This is done from instruction (60) to
instruction (61).
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We detail the explanation of the algorithm of grouping, as-720

signing of agents and relief agents using the memory spaces
for items of 42 things, in IoT (42, 326) presented in Fig.
11.
Example:
Within the example of memory spaces for items in Fig.725

11, we have:
L = {15, 15, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 11, 11, 11, 10}
∪{10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 4, 4, 3, 3, 3, 3}
∪ {3, 3, 3, 3}. Applying the algorithm, we add into G(1),
the agent X1,1, which is the thing having the maximum730

memory space, which is the first thing ti that has Mi = 15,
so G(1) = {15} (instruction 4). After, we add the agent
X1,2 = {15}, because sf (X2,1) ≥ s(X1,1). So G(1) =
{15, 15} (instruction (6)). In the next instruction (6) we
add the first agent, X2,1 = MAX (L−{X1,1 ∪X1,2}) = 13735

into groupG(2). SoG2 becomes G2 = {13}. After, we add
the second agent X2,2 = {13} because sf (X2,2) ≥ s(X2,1)
(instruction (9)). Therefore, we have G(2) = {13, 13}.
The list L becomes L = L − {15, 15, 13, 13} (instruction
10). So, at this stage, the grouping into two groups is pos-740

sible. Because, for each group there are two agents that
act for it, one agent in G(1) and the other in G(2). At this
stage, relief agents are not needed, because each agent can
store all items that are in its group.

In the next step, we enter into the loop while to check745

if we may add a new group (instruction (13)). If that is
possible, we add it and in the next iteration of the loop,
we check if the grouping into four groups is possible and so
on, as long as the updated list L is not empty. Typically,
we can add a new group if there is enough memory spaces750

for items that allow saving items for the new group. This
is by setting up agents for the new group in each group.

In instruction (14), we assume that adding a new group
G(3) is possible, so we increment the number of groups.
Therefore, in our example j = 3. Also, we record the list755

L in another list S, because if the grouping into j group
is not possible we need the memory spaces that cannot
make a new group to distribute them on the current j − 1
groups.

From instruction (15) to instruction (25), we add the760

agents into the new group G(3). We add 3 (y ≤ 3) agents,
in instruction (17) and (21) (to each group an agent that
acts for it). At the last iteration of loop for (instruction
(25)), we get G(3) = X3,1 ∪X3,2 ∪X3,3 = {13, 13, 12, 12},
where X3,3 = {12, 12} and we get S = L−{13, 13, 12, 12}.765

For each memory space added we delete it from the list S
(instructions (18) and (22)). If the memory space for items
cannot make agents in the new group the algorithm jumps
to label A to get out from the loop because the grouping
into j groups is not possible (instruction (23)).770

From instruction (26) to instruction (34), we add to
each agent in group G(j), j−2 relief agents. At the end of
the loop for (instruction (34)), we get Z3,1,1 = {12, 12},
Z3,2,1 = {12, 12}, Z3,3,1 = {11, 11, 11}, therefore, G(3) =
G(3) ∪ Z3,1,1 ∪ Z3,2,1 ∪ Z3,3,1 and S = S −G(3).775

From instruction (35) to instruction (43), we add to

each agent in each group G(u), u < j of the previous
groups a relief agent which may be called from an agent to
store the items that have as destination group G(j). These
relief agents are: Z1,1,1 = {10, 10}, Z1,2,1 = {10, 9, 9},780

Z2,1,1 = {9, 8}, Z2,2,1 = {8, 8, 7}. From instruction (44)
to instruction (56), to each group G(u), u < j, an agent
which acts for the group G(j) is added. And for each agent
added, we add its relief agent. From instruction (44) to
instruction (56), we get:785

For G(1):
X1,3 = {7, 7, 7}, so S = S−{7, 7, 7}, Z1,3,1 = {6, 6, 6, 6, 6},
so S = S − {6, 6, 6, 6, 6}

For G(2):
X2,3={5, 4, 4}, Z2,3,1= {3, 3, 3, 3, 3, 3, 3, 3},790

Z2,2,1= {5, 5, 5, 4}, Z2,3,1 = {4, 4, 4, 4, 4}.
So the grouping into three groups, G(1), G(2) and G(3)

is possible, where there are 3 agents in each group and each
agent has 2 relief agents.

The instruction (60) is executed if the grouping into j795

group is not possible. In this case, the remaining of mem-
ory spaces for items, which is in L (recovered in instruction
(57)) is distributed on the groups following the algorithm
3 (instruction (61)). RTc,d is the remaining thing number
d added into the group c, 1 ≤ c ≤ j, see Fig. 10.800

3.2.2. Broadcast to agents

Let J be the final number of groups after applying
the grouping algorithm of the previous step. In this step,
each thing in each group G(j), 1 ≤ j ≤ J , broadcasts its
items in the channel C(j). In each group, the agent Xj,j2805

copies from the channel C(j) the items ITEM(j, j2, d)
that have G(j) as source group and have as destination the
group G(j2). Proceeding sequentially, the things in each
group broadcast one by one on the channel, each agent
that has |Xj,j2| = 1 copies without any problem the items.810

However, in each agent that has |Xj,j2| > 1, the things in
this agent should know the time at which each thing should
start copying the items from the channel C(j).

The mechanism used for agents that have |Xj,j2| > 1
to know the exact moment when each thing x(j, j2)i, 1 ≤815

j, j2 ≤ J , 0 ≤ i ≤ β(j, j2) it should start copying the items
from channel C(j) is the following: Let M(x(j, j2)i) be
the memory capacity of x(j, j2)i. Each thing x(j, j2)i ∈
Xj,j2, 1 ≤, j, j2 ≤ J , has a counter c(j, j2)i. For each
item ITEM(j, j2, d) broadcast in the channel, x(j, j2)i820

increments c(j, j2)i. The station x(1, j)1, 1 ≤ j ≤ J , is the
first to start copying the items. Each thing x(j, j2)i, f1 6=
1, starts copying the items ITEM(j, j2, d) after c(j, j2)i =
3(M(x(j, j2)1)+M(x(j, j2)2)+.....+M(x(j, j2)i−1)), with,
0 ≤ i ≤ β(j, j2), x(j, j2)i ∈ Xj,j2.825

We recall that for each group G(j), relief agents Zj,j2,h,
1 ≤ j2 ≤ J , 1 ≤ h ≤ J − 2, takes turn of copying
when the agent Xj,j2 is full. Therefore, firstly, each Zj,j2,h
should know when the agent Xj,j2 and the relief agents
Zj,j2,h1, 1 ≤ h1 < h are full. That is, each relief agent830

Zj,j2,h should know the exact moment when it starts copy-
ing and therefore each z(j, j2, h)i, 0 ≤ i ≤ β(j, j2, h) in
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1. begin algorithm

2. j ← 2;

3. if (|L| ≥ 4) then

4. Add X1,1 = MAX (L) into group G(1);

5. if (∃X1,2 = x(1, 2)1 ∪ x(1, 2)2 ∪ .... ∪ x(1, 2)β(1,2) in L−X1,1, with sf (X1,2) ≥ s(X1,1)) then

6. Add X1,2 into G(1); Add X2,1 = MAX (L− {X1,1 ∪X1,2}) into group G(2)

7. end if

8. if (∃X2,2 = x(2, 2)1 ∪ x(2, 2)2 ∪ .... ∪ x(2, 2)β(2,2) in L− {X1,1 ∪X1,2 ∪X2,1}, with sf (X2,2) ≥ s(X2,1)) then

9. Add X2,2 into G(2);

10. L← L− {X1,1 ∪X1,2 ∪X2,1 ∪X2,2}
11. end if

12. end if

13. while (L 6= ∅) do

14. j ← j + 1; S ← L;

15. for (y = 1toy = j) do
16. if ((|S| ≥ 2) and (y == 1)) then

17. Add Xj,y = MAX (S) to G(j);

18. S ← S −Xj,y
19. end if

20. if (∃Xj,y = x(j, y)1 ∪ x(j, y)2 ∪ .... ∪ x(j, y)β(j,y) in S, with sf (Xj,y) ≥ s(Xj,y−1)) then

21. Add Xj,y into G(j);

22. S ← S −Xj,y ;

23. else GOTO A;

24. end if

25. end for

26. for (e = 1toe = j) do

27. for (y = 1toy = j − 2)

28. if (∃Zj,e,y = z(j, e, y)1 ∪ z(j, e, y)2 ∪ .... ∪ z(j, e, y)β(j,e,y) in S, with sf (Zj,e,y) ≥ s(Zj,e,y−1)) then

29. Add Zj,e,y into G(j);

30. S ← S − Zj,e,y ;

31. else GOTO A

32. end if

33. end for

34. end for

35. for (y = 1toy = j − 1) do

36. for (e = 1toe = j − 1) do

37. if (∃Zy,e,j−2 = z(y, e, j−2)1∪z(y, e, j−2)2∪ ....∪z(j, e, y)β(y,e,j−2) in S, with sf (Zy,e,j−2) ≥ s(Zy,e,j−3))

38. Add Zy,e,j−2 into G(y);

39. S ← S − Zj,e,j−2

40. end if

41. else GOTO A

42. end for

43. end for

44. for (y = 1toy = j − 1) do

45. if (∃Xy,j = x(j, y)1 ∪ x(y, j)2 ∪ .... ∪ x(y, j)β(y,j) in S, with sf (Xy,j) ≥ s(Xy,j−1)) then

46. Add Xy,j into G(y);

47. for (e = 1toe = j − 2) do

48. if (∃Zj,e,y = z(j, e, y)1 ∪ z(j, e, y)2 ∪ .... ∪ z(j, e, y)β(j,e,y) in L, with sf (Zj,e,y) ≥ s(Zj,e,y−1)) then

49. Add Zy,j,e into group G(y);
50. S ← S − Zj,e,y ;

51. else GOTO A

52. end if

53. end for

54. else GOTO A

55. end if
56. end for
57. L← S
58. end while;
59. GOTO B;
60. A: j ← j − 1;

61. B: if (L 6= �) then Grouping(L, j, LG = {G(1), G(2), .....G(j)});
62. end algorithm

Figure 9: Grouping and Agents Assigning Algorithm
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G(1) G(2) .................................................................... G(j)

X1,1 X2,1 .......................................................... Xj,1

. . .

. . .

. . .

X1,j


x(1, j)1
x(1, j)2.
.
.
x(1, j)β(1,j)

X2,j


x(2, j)1
x(2, j)2.
.
.
x(2, j)β(2,j)

............................ Xj,j


x(j, j)1
x(j, j)2.
.
.
x(j, j)β(j,j)

Z1,1,1


z(1, 1, 1)1
z(1, 1, 1)2.
.
.
z(1, 1, 1)β(1,1,1)

Z2,1,1


z(2, 1, 1)1
z(2, 1, 1)2.
.
.
z(2, 1, 1)β(2,1,1)

..................... Zj,1,1


z(j, 1, 1)1
z(j, 1, 1)2.
.
.
z(j, 1, 1)β(j,1,1)

. . .

. . .

. . .

Z1,1,j−2


z(1, 1, j − 2)1
z(1, 1, j − 2)2.
.
.
z(1, 1, j − 2)β(1,1,j−2)

Z2,1,j−2


z(2, 1, j − 2)1
z(2, 1, j − 2)2.
.
.
z(2, 1, j − 2)β(2,1,j−2)

..... Zj,1,j−2


z(j, 1, j − 2)1
z(j, 1, j − 2)2.
.
.
z(j, 1, j − 2)β(j,1,j−2)

. . .

. . .

. . .

. . .

. . .

. . .

Z1,j,(j−2)


z(1, j, j − 2)1
z(1, j, j − 2)2.
.
.
z(1, j, j − 2)β(1,j,j−2)

Z2,j,(j−2)


z(2, j, j − 2)1
z(2, j, j − 2)2.
.
.
z(1, j, j − 2)β(2,j,j−2)

..... Zj,j,(j−2)


z(j, j, j − 2)1
z(j, j, j − 2)2.
.
.
z(j, j, j − 2)β(j,j,j−2)

RT1,1 RT2,1 ..................... RTj,1
. . .
. . .
. . .

RT1,n1 RT2,n2 ..................... RTj,nj

Figure 10: A model for the grouping and agents assigning

15, 15, 13, 13, 13, 13, 12, 12, 12, 12, 11, 11, 11,
10, 10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6,

5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3

Figure 11: An example of memory spaces for items of IoT(42, 326)

Zj,j2,h should know the moment when it should start copy-
ing. The mechanism used for this purpose is the fol-
lowing: Each relief agent Zj,j2,h, 1 ≤ h ≤ J − 2 for835

the agent Xj,j2 has a counter C(j, j2, h). For each item
ITEM(j, j2, d) broadcast in the channel C(j), Zj,j2,h in-
crements C(j, j2, h). Each agent Zj,j2,h, starts copying
after Cj,j2,h = 3(M(Xj,j2) + M(Zj,j2,1) + M(Zj,j2,2) +
.......+M(Zj,j2,h−1)). Now, we give the moment when each840

thing z(j, j2, h)i ∈ Zj,j2,h, 1 ≤ h ≤ J − 2, has a counter
c(j, j2, h)i. For each item ITEM(j, j2, d) broadcast in the
channel C(j), z(j, j2, h)i increments c(j, j2, h)i. The sta-
tion z1,j2,h ∈ Zj,j2,h is the first to start copying the items
at the time C(j, j2, h). Each thing z(j, j2, h)i, i 6= 1, starts845

copying after c(j, j2, h)i = C(j, j2, h)+3(M(z(j, j2, h)1)+
M(z(j, j2, h)2) + .....+M(z(j, j2, h)i−1)).

3.2.3. Broadcast to final destinations

Using a principle similar to the one in section 3.1.3, in
this step the agents broadcast each item ITEM(j, j2, d)850

to its final destination td. To implement this step, we
put now the agents that store items with same destination
group in new group.
Let H(j), 1 ≤ j ≤ J , be the group of agents that store
items that have as destination the group G(j). Namely,855

H(j) = {X1,j ∪ Z1,j,1 ∪ ... ∪ Z1,j,J−2} ∪
{X2,j ∪ Z2,j,1 ∪ ... ∪ Z2,j,J−2 ∪ ...} ∪
{XJ,j ∪ ZJ,j,1 ∪ ... ∪ ZJ,j,J−2} is the set of agents and re-
lief agents that act for group G(j). In this last step, each
channel C(j) is assigned to the agents that have items to860

be broadcast to destinations in group G(j). The principle
of this step is to allow each agent in H(j) to know the
exact time at which it should broadcast its items in the
channel C(j). The algorithm for this step is presented in
Fig. 12. This algorithm is executed in parallel in each865

group, using a channel C(j) for each set of agents H(j),
1 ≤ j ≤ J .
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Algorithm for each set H(j), 1 < j < J:
begin

for i ∈ {1, ..., J} do
if (|Xi,j | = 1) then

Broadcast items one by one on C(j);
Thing td copies ITEM(i, j, d) in its local memory;
else
v ← 1
while (v < β(i, j)) do
Agent x(i, j)v ∈ Xi,j broadcasts items
ITEM(i, j, d) on C(j);
Thing td copies ITEM(i, j, d) in its local memory;
v ← v + 1

end while;
end if
t← 1
while (t ≤ J − 2)

if (|Zi,j,t| = 1) then
Broadcast items one by one on C(j);
Thing td copies ITEM(i, j, d) in its local memory;
else for (v = 1, v < β(i, j, t), v + +)

Agent z(i, j, t)v ∈ Zi,j,t broadcasts items
ITEM(i, j, d) on C(j);
Thing td copies ITEM(i, j, d) in its memory

end for
end if
t← t+ 1

end while;
end for

end

Figure 12: Broadcast to final destinations algorithm

4. Experimental results
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Figure 13: Number of broadcast rounds with k = 3

To demonstrate the effectiveness and the performance870

of the proposed protocols and to compare them to the
related works, we implemented them using C + +. We
simulated the two protocols on a laptop with processor
Intel(R) Core(Tm) i5, 2.53 Ghz with 4 GB of memory. The
following simulation results are the average of 100 tests (for875

each number of nodes) on the topology of connected and
randomly generated networks of 100, 200, 400, 600, 800
and 1000 things in 50 x 50 (m2) simulation area.

The points addressed in this section are:

• Demonstrate through different tests the number of880

broadcast rounds with the theorems theoretically proved,
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Figure 14: Number of broadcast rounds with k = 6

• Comparison of the two protocols together and with
other protocols that use other grouping procedures,

• Comparison of the protocols with other protocols ex-
isting in the state of the art, applied for the permu-885

tation routing in IoT.

Fig. 13, Fig. 14, and Fig. 15 present the number
of broadcast rounds for our first proposed algorithm with
k = 3, k = 6, k = 7 respectively. With a simulation on
1000 things for diffrent values of MAX (Mi) (35, 60, 45,890

55, 65, 75, 85, 95, 105), where f1(MAX (Mi)) = 2(mkk +
1) ×MAX (Mi) + k, if mkmod k = 0, f2(MAX (Mi)) =
2(
⌊
(mkk )

⌋
+ 1)×MAX (Mi) + k− 1, if mkmod k 6= 0, and

f3(MAX (Mi)) = 2MAX (Mi)−((
⌊
MAX (Mi)

k+1

⌋
−1)×k+3).

These results come to confirm our theoretical studies895

on the number of broadcast rounds. We see in Fig. 13,
Fig. 14, and Fig. 15 that for different experiments, the
number of broadcast rounds is always greater or equals to
f1(MAX (Mi)) or f2(MAX (Mi)) and inferior or equals to
f3(MAX (Mi)).900

Given that the number of broadcast rounds depends on
the group that has the highest number of items (from The-
orem 3.8). Therefore, to show the superiority of our group-
ing procedures in the first step of our protocols (abbrevi-
ated as MaMG, for MAX MAX Grouping, with MaMG1 is905

for the protocol that usesO(nk ) memory space and MaMG2
is for the protocol that uses O(Mi) memory space for each
thing ti. We compare the number of broadcast rounds of
our protocols and the number of broadcast rounds with
other protocols that use other grouping procedures. The910

principle of the first grouping to compare with is to add
randomly the memory spaces that contain the items to
the k groups (abbreviated as RRG, for Random Random
Grouping), this protocol is important to compare with, be-
cause it adds directly the elements in the groups, without915

spending a time to seek the min or the MAX. The principle
of the second grouping procedure is to add at each step to
the minimum of the k groups the maximum of the memory
spaces (abbreviated as MiMG, for MIn MAX Grouping).
Fig. 16 compares the number of broadcast rounds of our920

protocols and other protocols that use different procedures
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of grouping. We see that, using our grouping algorithm
optimizes the number of broadcast rounds because this
grouping is the nearest to give groups with same sizes in
order to balance the loads.925
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Figure 15: Number of broadcast rounds with k = 7

(100, 4)   (200, 5)   (400, 6)  (600, 7)       (800, 8)      (1000, 9)
0

20

40

60

80

100

120

140

(number of things, k)

A
ve

.#
 B

ro
ad

ca
st

 r
ou

nd
s

 

 

MaMG1
MaMG2
MiMG
RRG

Figure 16: Comparison of the number of broadcast rounds with
other protocols that use other procedures of grouping

To show the advantages of our solutions and the need
to them, we compare the results of our works and the re-
sults of the literature works on the broadcast for the per-
mutation routing applied on the broadcast for the internet
of things (these protocols are applied as such they are on930

IoT). This comparison is shown in Fig. 17 and Fig. 18.
Fig. 17 depicts a comparison with a protocol in [17] that
uses O(nk ) of memory space and Fig. 18 compares with
a solution in [17] that uses O( nT ) memory space, which is
optimal in term of memory space used as our solution that935

uses O(Mi) memory space. The result shown are based on
the number of things and the number of channels used k.

We see in these figures that our proposed protocols
achieve the broadcast for the permutation routing problem
in IoT using less number of broadcast rounds compared to940

the protocol in [17]. This is because the grouping method
used in the protocols of [17] are based on the number of
nodes and not on the number of items. As consequence,
they do not give groups with moderate differences in the
sizes and the number of broadcast rounds depends directly945

on the grouping algorithm. If the items are distributed
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Figure 17: Comparison of the number of broadcast rounds of proto-
cols that use O(n

k
) memory space, our protocol and the protocol in

[17]
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Figure 18: Comparison of the number of broadcast rounds of our
protocol that uses O(Mi) memory space and the one in [17] that
uses O( n

T
) memory space

on the groups with a few differences then the number of
broadcast rounds will be near to the optimal. That is, the
grouping in [17] is not suitable for heterogeneous nodes,
that store different number of items as the internet of950

things. We remark that our protocol with O(Mi) mem-
ory space for each thing ti, uses more broadcast rounds
compared to our protocol that uses O(nk ) memory space.
That is, the first one must use less number of channels,
because each agent in this protocol needs to have other955

agents (relief agents) in order to help it to store the el-
ements to have a protocol that achieves the permutation
routing with an optimal memory space complexity.

5. Conclusion

In this work, we presented a root research paper for the960

broadcast of information in the Internet of things. We pro-
posed two agent-based memory and energy-efficient per-
mutation routing protocols for single hop network com-
posed of heterogeneous nodes. The first performs less
number of broadcast rounds compared to the second pro-965

tocol and uses O(nk ) memory space, where n is the total
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number of packets and k is the number of communication
channels. The second protocol uses less communication
channels number compared to the first one and it is opti-
mal in term of memory usage complexity. It uses O(Mi)970

memory space for each thing ti that stores at the begin-
ning Mi items. These protocols perform efficiently with
respect to the number of broadcast rounds using a paral-
lel broadcasting. Both protocols use a few communication
channels to achieve the broadcast operations and achieve975

the permutation routing without conflict and collision at
the communication channels. Consequently, the proposed
protocols permit in real application to be tolerant to chan-
nel faults.

However, some open problems remain to be investi-980

gated in the future, such as:

• Studying a fault tolerance permutation routing for
IoT

• Proposing a dynamic solutions (appearing and dis-
appearing of things)985

• Proposing solutions that deal with the sleep/wakeup
states for things to save energy

• Studying of the different attacks that may occur and
propose secure protocols
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