
Dynamic Intra-Modal Carpooling with
Transhipment : Formalization and First

Combinatorial Exact Solution
Mohamed Hassine, Philippe Canalda∗, Idriss Hassine

Emails: mohamedhassinef35@gmail.com, philippe.canalda@femto-st.fr, drisshassine@yahoo.fr
∗Institut FEMTO-ST (UMR CNRS 6174) – Centre de Développement Multimédia NUMERICA

1, Cours Louis Leprince-Ringuet, 25200 Montbéliard, France

Abstract—In this work, we propose a modeling and an im-
plementation of an algorithm for the computerization of the N-
intra-modal carpooling with transhipment. It’s a new type of
carpooling that allows modal shifts and subsequently a variability
between the offer and the demand. Another advantage of our
calculator is that it checks the possibility of proposing a return
itinerary for a driver who has already carried out a modal
shift on his outward journey. Also, the calculator guarantees
the good operation for the classic carpooling without modal
shifts. Some dynamic constraints are managed by our proposed
solution. A system modeling work and managed data, multiple
constraints formalization and system multiple objectives as well
as implementing a matching motor will be presented in this paper.
This motor is based on a greedy combinatorial optimization
algorithm. Various tests are run, that prove the possibility of
solving this problem based on an exact approach in a reasonable
time.
Key words: dynamic carpooling, intelligent transport, dynamic
time windows, itineraries with vias, greedy algorithm

I. PROJECT GENESIS

Transport has a great importance in our lives. We move
to work, to study, or to travel Aside public transport
modes, many people use the individual vehicle. In this context,
carpooling presents a solution to reduce the cost’s trip for
different stakeholders, minimize the number of circulating
vehicles and as a consequence ensure an ecological gain
(preserving against pollution). Most carpooling solutions pro-
pose a matching between a driver and same passengers. This
driver uses only his own vehicle to deposit passengers to their
destinations as well as achieving his final destination. In this
paper, we propose a formalization of the dynamic intra-modal
carpooling with transhipment. The N-intra-modality makes it
possible to carry over passengers or drivers for one vehicle
to another vehicle. So, a carpooling’s participant can choose
to use a single means of transport or a maximal number of
modal shifts. To summarize, the transhipment authorizes that
a driver becomes a passengers.
Our mathematical modeling of this problem presents formally
the different stakeholders in the system. It has a multi-
constraints and multi-objectives aspect and is based on an
extended origin-destination matrix. Rows and columns present
different positions of the concerned territory and a matrix cell
gives information on the displacement between two positions,
mainly the shortest travel time and the shortest travel distance.

This formalization is associated with a first Java implemen-
tation of a resolution version of the combinatorial problem.
The implemented calculator validates the correct operation for
carpooling’s real example in the Montbliard-Basel perimeter.

II. STATE OF THE ART

We present the works dealing with issues similar to our
approach. We enumerate and describe relevant characteristics
in order to have an overall idea of the main approaches used to
solve intelligent transport problems, specifically the carpooling
with transhipment (or multi-hops).

A. Synthesis of existing works’ characteristics
[Time Windows (TW):] TW characterize temporality of an

itinerary’s position. It is a time interval, specified by the user,
which consists of two terms (the earliest date of arrival and
the latest date of departure) ([2,4,7]–[11]). A time window
can be static meaning it remains unchanged along the process
of the concerned algorithm ([4,7]–[10]). Also, it can be
dynamic in the case of taking into account advances/delays (
[2]) or if there is a normalization process following itineraries’
generation ([11]). In [14], the time windows’ dynamism arises
from the fact that a passenger has to wait for the parcels
delivery time before continuing on his way (here passengers’
transport and parcels’ transport are performed simultaneously
in the same vehicle).

[Vias:] an itinerary contains vias if it consists of positions
other than origin and destination. On the one hand, vias can
be inter-modal, that means they are performed using the same
vehicle ([8,11,14]). On the other hand, they can be intra-
modal ([5]). Other works only take into account the origin
and the destination ([1]–[4,6,7,9,10]).

[Modal shifts:] a modal shift implies the means of trans-
port’s change during a trip. This aspect is absent in the
majority of our study’s works. It is present only in [5]. In fact,
it is the problem of transporting people with reduced mobility
(PRM) at airports. It is a multimodal problem, for example
a PRM wishes to move along this path: plane1-terminal1-
terminal2-plane2. In this case, there are 4 sections of itinerary
and in each position the PRM will be transported by a suitable
means of transport adequate to its situation. It can be seen here
that modal shifts are mainly related to demand requests.

[Drivers/Passengers:] These two roles constitute a pillar of
the concept of offers and demands for transport ([2,4]–[6,8,
10,11,13]). Other works use the notion of individuality [7] or
the notion of agent [1]. A first observation is that most works
use these notions of roles (driver / passenger, individual, agent
...), but we note the lack of variability of role. Indeed, a driver
can not be a driver and passenger at the same time and vice
versa.

[Multi-constraints and multi-objectives formalization:] this
aspect requires a mathematical formalization of the problem
with respect of certain constraints and aims at optimizing a set
of objectives either academic [2,5,8,10,13] or also operational
[11]. Solutions based on mathematical formalization can be
generated from solvers like CPLEX [12,13] or LocalSolver.
Other works do not adopt this type of formalization ([4,7]).
These works adopts a simple formalization based on the graph
theory.
B. Positioning of our approach to the literature

Our new carpooling approach addresses the concept of
dynamic time windows with 4 terms (earliest arrival date,
earliest departure date, latest arrival date and latest departure
date). The dynamism comes from the normalization process
and propagation carried out on the time windows in order that
they become adaptable to the trips’ generation satisfying all
stakeholders. Such time window gives birth to another notion,
it is the processing time in a position (a single return/position).
So we will be able to offer a return itinerary for a driver
or a passenger. Also, our approach allows Vias inter-modal,
that is to say in Vias we have the possibility to change the
vehicle. This leads us to carry out modal shifts along a trip.
This aspect is present in [5] to plan the movement of the
PRM in an airport, but it is absent in the other works dealing
with the problems of carpooling. To carry out modal shifts,
we introduce a role variability. We then authorize a passenger
to be a driver and vice-versa. The problem’s formalization is
multi-constraints and multi-objectives as in ([2], [5], [8], [10],
[11]) and based on an origin/destination matrix as in [11]. In
the term of resolution’s method, we adopt an exact greedy
approach as in [11] which combines the PDP/DARP/VRP/TSP
problems. Also, we present 8 instances of tests. The first
validates the algorithm’s functional aspect for two proposed
scenarios and others ensure the scaling-up.

III. INTRA-MODAL CARPOOLING’S FORMALIZATION

In this section, we formalize the problem’s input data.
The IM carpooling system involves drivers who present the
service providers. A driver can choose between two modes.
He can be an only driver, that is to say he does not accept to
make a modal shift during a trip. He can also be a rather
driver, that means he can use his own vehicle for a trip’s
portion. After that, he deposits his vehicle and accompany
another driver for another trip’s portion. A passenger can be
just a passenger when he does not own a vehicle or a ≈
passenger when he owns a vehicle 1. Also, we distinguish

1The fact that a passenger can use his own vehicle during a trip gives rise
to variability between offers and demands.

the operator (it is the system administrator that manages
matches). Our formalization is multi-constraints and multi-
objectives. It is also based on an extended origin-destination
matrix Mo−d which returns information on the displacement
between different positions (the shortest distance, the shortest
time ...). Rows and columns of this matrix are the system’s
different positions (origin, destination or Vias). The travel time
can be initialized using the average speed, and for the distance
we use geographic data (Google Maps ...).

A. Drivers and offer requests
Drivers intervene in the system by sending a set

of offer requests O. This list is composed by Ro re-
quests. Each offer request Ro,i consists of a sequence of
{Itino,i,Co,i,Vo,i,ASo,i,initial ,ASo,i,current ,Sto,i,StDo,i,
RMo,i,GCi,i} with :
• Itino,i : indicates the driver’s itinerary 2(formula 1). This

itinerary consists of a positions’ set (source, [vias]*,
destination). Each position contains the earliest departure
date h−−o,i,pos, The date of departure at the latest h−+o,i,pos,
The earliest arrival date h+−o,i,pos, The date of arrival at the
latest h++

o,i,pos, the number of boarding passengers PUo,i,pos
(Pick-Up) and the number of descending passengers
Do,i,pos (Delivery).
The time window consists of 4 terms. However, consid-
ering that the processing time in a position is negligible
(instantaneous PU and D), this window only reduces
in two terms (h+−=h−− and h−+=h++). Also, if we
have a pivot position (single and return), there will be
a processing time (h+− 6= h−− and h−+ 6= h++).

Itino,i = {Poso,i,1[h+−o,i,1,h
−−
o,i,1,h

++
o,i,1,h

−+
o,i,1,PUo,i,1,Do,i,1],,Poso,i,Itino,i

[h+−o,i,Itino,i
,h−−o,i,Itino,i

,h++
o,i,Itino,i

,h−+o,i,Itino,i
,PUo,i,Itino,i

,Do,i,Itino,i
]} (1)

• Do,i presents the driver Drd associated to the offer request
Ro,i. We define the set Driver sush as Driver = {Drd ,d
∈
[
1,Driver

]
} with

Drd=(driver id, driver name, city, postal code, registra-
tion date).

• Vo,i presents the vehicle V hv associated to the offer
request Ro,i. We define the set Vehicle such as Vehicle =
{V hv,v ∈

[
1,Vehicle

]
} with

V hv=(vehicle id, vehicle mark, vehicle capacity, com-
fort type).

• ASo,i,initial (Available Seats) : is the number of available
seats at the initialization of the offer request Ro,i.

• ASo,i,current : is the current number of available seats.
• Sto,i : indicates the offer request’s state (initialized, val-

idated, partially contracted, contracted, I’m leaving now,
I deposit my vehicle, I achieve my destination...)

• StDo,i : indicates the mode chosen by the driver (rather
driver or only driver).

• MSo,i : is the maximum number of modal shift tolerated
by a driver. If MSo,i > 0 so, in a step’s trip, the offer
request will be considered as a demand request.

2this itinerary may contain, in addition to the single itinerary, a coming
itinerary. This case is studied in order to offer a return itinerary to the driver
making a modal shift in his single itinerary, and that to give him the possibility
to recover his vehicle already deposited during the modal shift.

• GCo,i (single and return) : it is a boolean term, it takes a
true value when the driver wants that the system propose
to him a return itinerary. This choice is adaptable with the
modal shift’s scenario to ensure that a driver can recover
his vehicle in a planned return itinerary.

B. Passengers and demand requests
Passengers intervene in the system by sending a deman

requests list D. A passenger can also have a vehicle and
eventually takes a rather passenger’s profile (≈ passenger) .
Otherwise, he has the state ”only passenger”. This list is com-
posed by Rd demand request. Each demand request consists
of a sequence of {Itind, j, [Dd, j,Vd, j],Std, j,StPd, j,MSd, j,SNd, j}
3 with :
• Itind, j : is the passenger’s itinerary. It consists of a source

position, a destination position and Vias.
Itind, j = {Posd, j,1[h+−d, j,1,h

−−
d, j,1,h

++
d, j,1,h

−+
d, j,1PUd, j,1,Dd, j,1],,Posd, j,Itind, j

[h−d, j,Itind, j
,h+−d, j,Itind, j

,h−−d, j,Itind, j
,h−+d, j,Itind, j

,PUd, j,Itind, j
,Dd, j,Itind, j

]} (2)

• Std, j : indicates the demand request state (initialized,
validated, contracted 4)

• StPd, j : indcates the passenger state (only passenger or ≈
passenger). When a passenger chooses the ≈ passenger
mode, there must be a vehicle. In other terms, he can be
a driver for a trip’s step.

• MSd, j : indicates the maximum modal shift number
tolerated by a passenger.

• SNd, j : indicates the seats number reserved by a passenger.

C. Operator and organizations
The calculator provides an organization list Orgs consisting

of Orgs possible organizations. Each present organization
Otrip∈[1,Orgs] in this list is formed by a trip list. Each of
these trips consists of an offer request (contracted or partially
contracted), matched requests list (offer or demand) and a
proposed itinerary (with or without modal shift). Each trip
Tk is a sequence of :
• Itintrip,k : presents the itinerary k of the organization Otrip

affected to an offer request and matched requests.
Itintrip,k = {Postrip,k,1, . . . ,Postrip,k,p, . . .Postrip,k,Itintrip,k

}

• ItinRettrip,k : presents a return itinerary proposed by the
calculator. This itinerary is generated under two condi-
tions. On the one hand, the trip must allow at least a
modal shift. So, we have a driver who deposits his vehicle
along the trip. On the other hand, it is necessary to ensure
the existence of an offer request that satisfies the driver’s
return itinerary.

• Rotrip,k, is the matched offer request in a trip Tk. This
request becomes contracted when the number of reserved
seats in the matched offer request becomes equal to the
initial number of free seats ASo,i,initial .

3Elements in brackets are optional, they will be added in case the passenger
wishes to use his own vehicle (≈ passenger) and they have the same definition
of an offer request but replacing i by j

4In this formalization, we exclude the partially contracted state for a demand
request (that is, our calculator does not satisfy a demand request by several
offer requests, besides it always proposes the chosen destination by the
passenger (for example, it does not propose a position close to the desired
destination))

• lstMRtrip,k : is a list of demand requests or offer requests
matched with the offer request.
lstMRtrip,k = {Rtrip,k,1, ...,Rtrip,k,p,,Rtrip,k,Rtrip,k

}

• Sttrip,k : indicates the trip’s state (partially contracted,
contracted, in progress, realized, not realized, archived...).

• AStrip,k (Available Seats) : indicates the available seats
number in a trip (if AStrip,k¿0, so the concerned trip and
the associated offer request are both partially contracted).

• OStrip,k (Occupied Seats) : indicates the occupied seats
number in a trip.

• MStrip,k : is the modal shifts number in a trip.
• GCtrip,k (single and return) : If this term is true, then we

find a return itinerary in this trip.
D. Multi-constraints and multi-objectives aspect

The intra-modal carpooling system involves several actors.
These actors are linked to several constraints. Thus, the
organizations calculated by the solver have several objectives.
In this section we list some constraints and some objectives
of this system.

Normalization constraint of time windows: A request ini-
tialized by the driver becomes validated after checking time
windows’ consistency. We pose M(Poso,p,Poso,p+1).t the time
move between the position p and the position p + 1. The
addition of the departure earliest date (respectively at the
latest) of the position p with the trip’s time must be less or
equal than the earliest departure date (respectively at the latest)
of the position p+1.
∀ Ro,i∈[1,Ro] ∈ O ∧ Sto,i = ”validated”,∀ p ∈ [1, Itino,i],

h−−p +M(Posp,Posp+1).t ≤ h−−p+1 ∧ h−+p +M(Posp,Posp+1).t ≤ h−+p+1 (3)

This constraint is valid ∀ Rd, j∈[1,Rd]
∈D.It is valid for arrival dates

too.
Capacity constraint: In a proposed organization, the max-

imum number of occupied seats must be strictly less to the
vehicle capacity.

∀ Tk ∈ Otrip, OStrip,k < Vehicle.cap (4)

Constraints of modal shift’s authorization: If a trip contains
a modal shift, the associated offer request must have a driver
with the ”rather driver” state. That means, he accepts to deposit
his vehicle and continue the trip with another driver.
∀ Tk ∈ Otrip and Tk .MS = 1, Tk .Ro.StD = ”rather driver” (5)

Moreover, at least one matched demand request must have a
driver. This happens when its passenger state is ”≈ passenger”.

∀Tk ∈ Ot ∧ Tk .MS = 1,∃r ∈ lstMRt,k |r.StP = ” ≈ passenger” (6)

Identification constraint of a return itinerary: If a trip
includes a return itinerary, the matched offer request in this
trip must contain a position called a pivot position where there
is a processing time. That means, the intersection between the
interval consisting of the earliest and latest arrival dates and
the interval consisting of the earliest and latest departure dates
is equal to the empty set.
∀ Ro,i ∈ O f f er et Ro,i.GC = ”yes”, ∃ poso,i,p ∈ Ro,i.Itin|

[poso,i,p.h+−, poso,i,p.h++]∩ [poso,i,p.h−−, poso,i,p.h−+] =∅ (7)

Dynamic constraint of deposited vehicle’s recuperation:
The proposal of a return itinerary allows the driver who has
deposited his vehicle on outward itinerary to recover it on
return. To guarantee this, the return itinerary must contain
the position of the modal shift executed during the outward
itinerary. It is the first itinerary’s position of the passenger who
have a vehicle (rather passenger).
∀Tk ∈ Ot |Tk .ItinRet 6=∅,∃post,k,p ∈ Tk .ItinRet,

∃r ∈ Tk .lstMR|r.StP = ”≈ passenger”∧ post,k,p = r.Itin.Pos1 (8)

Constraints of inclusion between organization’s trip: Trips
are initialized from requests that have a vehicle (rather driver,
only driver or rather passenger). The matching process in our
transhipment approach can lead to inclusions between trips.
This trips’ inclusion is in fact mainly of an inclusion between
their itineraries as indicated in the figure 1.

Fig. 1. inclusion between organization’s trip

we suppose that the trip j is included in the trip i if the
itinerary of the trip j is included in the itinerary of the trip i
(case of the red and blue trips in the figure). In fact, the red
trip presents a portion of the blue one. This case is conceivable
in the case where a modal shift is made in the itinerary’s first
position of the trip j.
Also, one can have an inclusion relation if the itinerary of a
trip k is included in the return itinerary of a trip i (case of the
black and blue trip in the figure).
∀Ti,Tj ∈ Ot |Tj ⊆ Ti,(Tj .itin ⊆ Ti.itin) ∨ (Tj .itin ⊆ Ti.itinRet) (9)

This inclusion gives a trips’ redundancy. To remedy this
problem, a redundant trip will be removed from the generated
organization.
∀Ti,Tj ∈ Ot |Tj ⊆ Ti,Ot ← Ot \ {Tj} (10)

Maximization of contracted requests number: This objective
aims for maximizing the contracted offer requests number and
contracted demand requests number. That means, maximize
Ro,con et Rd,con and as a result, minimizing Ro,!con et Rd,!con.
This objective must be realized with respect of requests’ list
FIFO.

Occupancy rate maximization: This objective aims for max-
imizing the vehicles’ occupancy rate. That means, maximize
the number Occupancy Rate (OR) of positions’ Pick Up of all
existing itineraries in generated trips.

∀Ot∈[1,Orgs],∀Itint,k∈[1,Ot],OR =

TOt

∑
v=T1

Itinv,k

∑
p=1

Posv,k,p.PU (11)

Occupancy rate maximization must respect the capacity con-
straint.

Minimizing the circulating vehicles’ number: One of the
most important objectives of using the modal shift’s concept
is the minimization of the circulating vehicles’ number (CV)
when realizing trips. So, instead of realizing two trips with
two different vehicles, we prefer realizing one trip using these
two vehicles. The gain here is realizing the common itinerary
between the two initial trips by using a single vehicle instead
of two.

∀ Otrip∈[1,Orgs] ∈ Orgs, CV =

TOtrip

∑
t rip=T1

Rotrip,k .V (12)

IV. ALGORITHM DESCRIPTION

In this section, We describe the algorithm’s process based on
two illustrative examples of displacement between Montbliard
and Basel. The first example validates carpooling with detour
without modal shifts. In the second example, we are going
to study the modal shift. In this second one, the driver and
passengers accept to change the car during the trip.

A. Carpooling with detours without modal shifts
A driver proposes an offer request Ro,1. He moves from

Montbeliard to Mulhouse to work and deposits his son at the
school in Fontaine (black line). The available seats number in
his vehicle is equal to 5. A first passenger sends a demand
request Rd,2 and the reserved seats number SNd,2 is equal
to 3. He wants to move from Hericourt to Altkirch (orange
line). A second passenger sends a demand request Rd,3 with
SNd,2 = 2. He wants to move from Brevilliers to Ballersdorf
(pink line). Stakeholders do not accept a modal shift (MS =
0) and want to be present in their different positions within
specified time intervals. All this is summarized in the figure
2. The first step is to normalize time windows. We apply
the function validateInitializedRequest() This function has
as inputs initialized requests and ensures the respect of the
constraint 3. Thus, we obtain validated requests. 5 with :
• h−o,1,1 = 8 : 05, h+o,1,1 = 8 : 21, h−o,1,2 = 8 : 34, h+o,1,2 = 8 : 50, h−o,1,3 = 9 : 15, h+o,1,3 =

10 : 15
• h−d,2,1 = 8 : 05, h+d,2,1 = 8 : 30, h−d,2,2 = 8 : 45, h+d,2,2 = 9 : 08
• h−d,3,1 = 8 : 00, h+d,3,1 = 8 : 23, h−d,3,2 = 8 : 49, h+d,3,2 = 9 : 14

Algorithm 1 Carpooling Algorithm(Oinit Oinit , Dinit Dinit)
1: Ov←ValidateInitializedRequests(Oi) //constraint 3
2: Dv←ValidateInitializedRequests(Di) //constraint 3
3: Orgs.O1←Concat(Org,OV ,OV,rp)
4: PtripOrgs← Orgs
5: PitinOrgs← SingleItinerary(PtripOrgs.itin) //the single itinerary
6: if PtripOrgs.GC = ”yes” then
7: ItinRet← ReturnItinerary(PtripOrgs.itin) //the return itinerary
8: end if
9: PpositinOrgs← PitinOrgs

10: PDv← Dv
11: while PtripOrgs! = Null && !(PtripOrgs.St = ”contracted”) do
12: while PDv! = Null && !(PDv.St.equals(”contracted”)) do
13: PPosDv← Dv
14: while PPosDv! = Null && PpositinOrgs! = Null do
15: if veri f IsIinserted(PPosDv,PpositinOrgs,PpositinOrgs.next()) //13,14

then
16: validateLocalTimeWindow(PPosDv,PpositinOrgs.next()) //15, 16
17: propagationO f TimeWindow(PPosDv,PpositinOrgs,

PpositinOrgs.next())//constraints 17, 18
18: update(PPosDv,PpositinOrgs,PpositinOrgs.next())
19: PpositinOrgs← PPosDv
20: PPosDv← PPosDv.next()
21: else if PPosDv = Null then
22: Dcon← Dcon +PDv
23: Dv← Dv−PDv
24: PpositinOrgs.Os = PpositinOrgs.OS+PDv.SN
25: PpositinOrgs.AS = PpositinOrgs.AS−PDv.SN
26: PDv← PDv.next()
27: PPosDv← PDv
28: if PpositinOrgs.RM <> 0 et PpositinOrgs 6= ItinRet then
29: listeSubDemandFromOrg(PositinOrgs)
30: goto 16 //with this condition !(PDv.C.equals(””))) //constraints

5 and 6//
31: f usionTwoItinerary(PpositinOrgs.itin, itinSousDemand)
32: if PtripOrgs.GC = ”yes” then
33: PitinOrgs← ItinRet
34: goto 16 //with respecting 8//
35: end if
36: end if
37: else
38: PDv← PDv.next()
39: PPosDv← PDv
40: end if
41: end while
42: PDv← PDv.next()
43: end while
44: PtripOrgs← PtripOrgs.next()
45: PitinOrgs← PtripOrgs
46: PpositinOrgs← PitinOrgs
47: end while
48: return Orgs

5In the following, if the earliest arrival date is equal to the earliest departure
date and the arrival date at the latest is equal to the departure date at the latest,
we present by h− the earliest arrival and departure date and by h+ the arrival
and departure date at the latest.

Fig. 2. Overview of carpooling without modal shifts

Then, organisation’s trips will be constructed from requests
having a vehicle, thus we obtain for our example an
organization consisting of a single trip:
T1 = {Itintrip,1 = {Postrip,1,1 = {(Montbeliard[8h05,8h21],Pu = 2,D = 0),

Postrip,1,2 = (Fontaine[8h34,8h50]Pu = 0,D = 1),Postrip,1,3 =

(Mulhouse[9h15,10h15]Pu = 0,D = 1)},Ro,1, lstMRtrip,1 = ,Sttrip,1 = Valide,AStrip,1 =

5,OStrip,1 = 2,MStrip,1 = 0}

This trip is constructed from Ro,1, It is only validated and it
awaits matching with demand requests.
Now we start browsing demand requests to look for a possible
match. This matching requires a process’s application on the
positions of demand requests and offer requests that can be
matched :

* to insert a position 3 between positions 1 and 2, the
following constraint must be respected :

h−1 +M(1,3).t ≤ h+3 and Max(h−3 ,h
−
1 +M(1,3).t)+M(3,2)≤ h+2 (13)

* concerning distance, we pose M(Poso,p,Poso,p+1).d the
shortest distance between the position p and the position p+1.
We tolerate a detour distance of 10 km. Considering always
the triplet 1, 2 and 3, so that 3 is inserted between 1 and 2, it
is necessary to respect the following constraint :

M(1,2).d− [M(1,3).d +M(3,2).d]≤ 10 (14)

* if, 13 et 14 respected, We proceed to a local validation
of the time windows of triplet 1, 2 and 3 (figure 3).

Fig. 3. Time windows’ local validation

Local validation follows the next process and is performed by
both functions validateLocalTimeWindowsRight() (step 15)
et validateLocalTimeWindowsLeft() (step 16):

I f h+3 +M(3,2.t)> h+2 so h+3 ← h+2 −M(3.2).t
I f h−3 +M(3,2).t > h−2 so h−2 ← h−3 +M(3.2).t (15)

I f h+1 +M(1,1.t)> h+3 so h+1 ← h+3 −M(1.3).t
I f h−1 +M(1,3).t > h−3 so h−1 ← h−3 +M(1.3).t (16)

By respecting 13 and 14 and applying 15, we check the
insertion of requests demand’s positions in the offer request.
The processing described above focuses on the function
verifIsInserted() in the algorithm. In our example, the two
demand requests Rd,2 and Rd,3 will be matched with Ro,1.
Before the new itinerary’s generation, a propagation of time
windows is performed (figure 4).

Fig. 4. Time windows’ propagation
Considering the same triplet of positions, propagation follows
this process: (right and left propagation 17 and 18). If the
earliest date of the current position plus the distance from that
position to the next position is greater than the earliest date of
the next position, that date will be updated. This propagation
is realized recursively on each positions’ triplet.

h−3 + M(3.2).t ≥ h−2 ⇒ h−2 = h−3 + M(3.2).t ∧ h+3 = h+2 − M(3.2).t (17)

If the latest date of the current position to be inserted minus
the distance between that position and the previous position
is less than or equal to the latest date of that position, that
date will be updated. This propagation is realized recursively
on each positions’ triplet.

h+3 − M(1.3).t ≤ h+1 ⇒ h+1 = h+3 − M(1.3).t ∧ h−3 = h−1 + M(1.3).t (18)

The last step is to generate the new route by calling the
function Update(), so our final trip (presented with green in
the illustrative example) takes this form :
T1 = {Itintrip,1 = {Postrip,1,1 = {(Montbeliard[8h05,8h07],Pu = 2,D = 0),

Postrip,1,2 = (Hericourt[8h15,08h17],Pu = 3,D = 0),Postrip,1,3 =

(Brevilliers[8h23,8h26],Pu = 2,D = 0),Postrip,1,4 = (Fontaine[8h46,8h49],Pu =

0,D = 1),Postrip,1,5 = (Ballersdor f [9h06,9h09]Pu = 0,D = 1),Postrip,1,6 =

(Altkirch[9h11,9h45]Pu = 0,D = 1),Postrip,1,7 = (Mulhouse[9h41,10h15]Pu = 0,D =

1)},Ro,1,ListRAtrip,1 = {Rd,2,Rd,3},Sttrip,1 = contractualisée,AStrip,1 = 0,OStrip,1 =

7,RMtrip,1 = 0}
In this generated trip, we notice well the treatment carried

out on time windows, so that they are adaptable to different
positions’ insertion. This insertion respects the shortest times
and the shortest distances between the different positions. The
two matching demand requests become contracted as well as
the offer request. In fact, at the beginning Ro,1 proposes 5 free
seats, 3 are occupied by Rd,2 and 2 are occupied by Rd,3. Since
Ro,1 occupies 2 seats at the beginning, we get 7 occupied seats
in the generated trip (OStrip,1 = 7) and 0 free seats (AStrip,1 =
0) because the vehicle capacity is equal to 7. As a result, this
trip is contracted.

B. Carpooling with modal shifts

In this case, we keep the same illustrative example above,
but by modifying Rd,3 et Ro,1. In fact, the new Rd,3 has a driver
and a vehicle and it provides a link between Dannemarie and

Basel (blue line in the figure). Also, in Ro,1, we evolved the
itinerary to ensure the return (black line between Mulhouse
and Montbeliard). In addition, we added an another offer
request Ro,4. This request connects Mulhouse and Montbliard
via Dannemarie (purple line). Another important detail, is that
all requests allow to make a modal shift (RM =1). also, there
is a small change in the time windows.
The vehicle associated with Ro,1 (black vehicle) has a capacity
7 and the free seats number is equal to 5 (since the driver
reserves 2 seats for him from the beginning). The vehicle
associated with Rd,3 (blue vehicle) has a capacity 5 and the
free seats number is equal to 2 (since the driver reserves 3
seats for him from the beginning).
The vehicle associated with Ro,4 (purple vehicle) has a capacity
6 and the free seats number is equal to 4. It carries the link
between Mulhouse and Montbliard via Dannemarie. All this
is summarized in figure 5 page 5.

At the beginning, the calculator begins by processing Ro,1.
the driver accepts to make a modal shift, since StDo,1 = ”rather
driver” and he also wants to have a return itinerary proposed
by the system (GCo,1 = ”yes”). The request’s itinerary is as
follows:
Montbeliard→ Fontaine→Mulhouse→Mulhouse→Montbeliard
To simplify the task, this itinerary is divided into two sub-
itineraries: a single itinerary and a return itinerary. For this,
we call two functions SingleItinerary() et ReturnItinerary().
These two functions have as input the complete itinerary and
they respectively return the single itinerary and the return
itinerary 6.
The application of these two functions provides two itineraries:

• single itinerary : Mulhouse→ Fontaine→Mulhouse
• return itinerary : Mulhouse→Montbeliard
Subsequently, the treatment will split in two parts. A first

part will executed by considering only the single itinerary of
Ro,1 including a modal shift. A second part will ensure the
proposal of a return itinerary, so that the driver of Ro,1 can
recover his car on a planned return itinerary.
For the first part of the processing, the same time window
normalization treatment described in the previous scenario is
applied, so validated requests are obtained with:

• h−o,1,1 = 8 : 05, h+o,1,1 = 8 : 21, h−o,1,2 = 8 : 34, h+o,1,2 = 8 : 50, h+−o,1,3 = 9 : 15, h−−o,1,3 =

13 : 15, h++
o,1,3 = 10 : 15 , h−+o,1,3 = 13 : 45

• h−d,2,1 = 8 : 00, h+d,2,1 = 8 : 25, h−d,2,2 = 8 : 49, h+d,2,2 = 9 : 15
• h−d,3,1 = 8 : 30, h+d,3,1 = 9 : 03, h−d,3,2 = 9 : 40, h+d,3,2 = 11 : 02

Afterward, the solver generates a first trip that matches
Ro,1 et Rd,2. This is effected by respect of 3, 13 et 14 and by
applying the treatment described in 15, 18 et 17. Since trips
are generated from requests having a vehicle, two other trips
will be initialized from Rd,3 and Ro,4. However, these two
trips will be included at the end of processing in the first trip
(constraint 9). Then they will be eliminated when the final
result is generated (constraint 10). So, in the following, we
focus on the treatment performed on the first trip.
T1 = {Itint,1 = {Post,1,1 = {(Montbeliard[8h05,8h10],Pu = 2,D = 0),
Post,1,2 = (Hericourt[8h18,08h23],Pu= 1,D= 0),Post,1,3 = (Fontaine[8h34,8h45],Pu=
0,D = 1),Post,1,4 = (Altkirch[9h04,9h15]Pu = 0,D = 1),Post,1,5 =
(Mulhouse[9h19,10h19]Pu = 0,D = 1)}, ItinRett,1 = {},Ro,1, lstMRt,1 = {Rd,2},Stt,1 =
partially contracted,ASt,1 = 4,OSt,1 = 3,MSt,1 = 1,GCt,1 = ”yes”,Drt,1 = {name =

(HASSINE),city = (Montbeliard)},V ht,1 = {mark = (Audi),capacity = (7)}}
In this first trip, there are still free seats (ASt,1 = 4). So,
this trip is partially contracted. The occupied seats number

6The division of the single itinerary and return itinerary is based on the
presence of a position called pivot position where there is a processing time.
That means, the intersection between the interval consisting of the earliest
and the latest arrival dates and the interval consisting of the earliest and latest
Departure times is equal to the empty set (constraint 7. In our case, this
position is Mulhouse.

is equal to 3 (OSt,1 = 3) (2 seats occupied by the driver and
another seats reserved by Rd,1).
Another important detail is that modals shift number of T1 is
equal to 1 (MSt,1 = 1). In fact, MSt,1 = Min{(MSo,1,RMd,2}.
In this case, the algorithm triggers a new processing in order
to find a new matching with a modal shift to ameliorate the
trip’s quality. The current trip is divided into sub-demand
requests from the second position. This is guaranteed by
applying the function listSubDemandFromOrg(). This
function takes as input the current organization’s trip and
returns sub-demands from the second position. In our case
from this trip:
Montbeliard→ Hericourt→ Fontaine→ Altkirch→Mulhouse
We generate three sub-demands :
• sub-demand 1 : Hericourt→ Fontaine→ Altkirch→Mulhouse
• sub-demand 2 : Fontaine→ Altkirch→Mulhouse
• sub-demand 3 : Altkirch→Mulhouse

The first sub-demand has a seat’s required number equal to
3 because Ro,1.pos1.PU = 2 and Rd,1.pos1.PU = 1 (2+1=3).
The second sub-demand has a seat’s required number equal to
2 because Ro,1.pos1.PU = 2, Rd,1.pos1.PU = 1 and Ro,1.pos2.D = 1 (2+1-1=2).
The third sub-demand has a seat’s required number equal to 1
because Ro,1.pos1.PU = 2, Rd,1.pos1.PU = 1, Ro,1.pos2.D = 1 and Rd,1.pos2.D = 1

(2+1-1-1=1).
Thereafter, the algorithm browses the demands’ list to

search for a request having a driver and consequently a vehicle.
In our case, this request is Rd,3 (Dannemarie→ Basel). This
request behaves in this phase of the algorithm as an offer
request that looks for matching with one of sub-demands
already cited. If a match is made, we stop the treatment. Rd,3
offers 2 free seats. By respecting the time window constraints
and the tolerated detour distance constraint, it will be matched
with the second sub-demand and we obtain this itinerary:
Fontaine→ Dannemarie→ Altkirch→Mulhouse→ Bale

The last step is to merge this itinerary with the old itinerary
generated in the current organization :
Montbeliard→ Hericourt→ Fontaine→ Altkirch→Mulhouse

This process is guaranteed by the function fusionT-
woItinerary() which takes as input two itineraries and returns
the merged itineraries. The new trip T ′1 have this form :
T ′1 = {Itint′ ,1 = {Post′ ,1,1 = {(Montbeliard[8h05,8h08],Pu = 2,D = 0),

Post′ ,1,2 = (Hericourt[8h15,08h18],Pu = 1,D = 0),Post′ ,1,3 =

(Fontaine[8h42,8h45],Pu = 0,D = 1),Post′ ,1,4 = (Dannemarie[8h55,8h58],Pu =

3,D = 0),Post′ ,1,5 = (Altkirch[9h12,9h15],Pu = 0,D = 1),Post′ ,1,6 =

(Mulhouse[9h42,13h15,10h15,13h45],Pu = 0,D = 1)},Post′ ,1,7 =

(Bale[10h23,11h02]Pu = 0,D = 3), ItinRett,1 = {},Ro,1, lstMRt′ ,1 = {Rd,2,Rd,3},Stt′ ,1 =

partially contracted,ASt′ ,1 = 1,OSt′ ,1 = 6,MSt′ ,1 = 1,GCt′ ,1 = ”yes”,Drt,1 =

{names = (HASSINE,HASSINE),cities = (Montbeliard,Paris)},V ht,1 = {marks =

(Audi,BMW),capacities = (7,5)}}

This trip matches an offer request and two demand requests
and it includes a modal shift in Dannemarie. We also note
the existence of two drivers and two vehicles assigned to
this trip, which is an immediate consequence of the modal
shift’s application. In this trip, the return itinerary is not yet
generated. Now, the treatment’s second part will be executed
in order to propose a return itinerary for the driver of Ro,1.
This proposal for a return itinerary has two advantages. On
the one hand, it is an obvious satisfaction of a system’s
participant. On the other hand, it allows the driver to recover
his already disposed vehicle during the first itinerary.

Fig. 5. Overview of carpooling with modal shifts

The return path of Ro,1 is : Mulhouse→Montbeliard

The strength of our algorithm is that it keeps the single
itinerary’s history. Indeed, the driver of Ro,1 driver desposed
his vehicle at Dannemarie on his first journey. So, the solver
go through the offer requests’ list in order to looking for a
request that has an itinerary that goes through Dannemarie
(so that the driver of Ro,1 takes his way back with his car
disposed at Dannemarie).
It is the case for the request offer Ro,4 (purple line in the
figure) having the following itinerary :
Mulhouse→ Dannemarie→Montbeliard

With respecting constraints 3, 13 et 14 and applying the
treatment described in 15, 18 et 17. The new trip Trip′′1 will
have this form :
T ′′1 = {Itint′′ ,1 = {Post′′ ,1,1 = {(Montbeliard[8h05,8h08],Pu =

2,D = 0),Post′′ ,1,2 = (Hericourt[8h15,08h18],Pu = 1,D =

0),Post′′ ,1,3 = (Fontaine[8h42,8h45],Pu = 0,D = 1),Post′′ ,1,4 =

(Dannemarie[8h55,8h58],Pu = 3,D = 0),Post′′ ,1,5 = (Altkirch[9h12,9h15],Pu =

0,D = 1),Post′′ ,1,6 = (Mulhouse[9h42,13h15,10h15,13h45],Pu =

1,D = 1)},Post′′ ,1,7 = (Basel[10h23,11h02]Pu = 0,D =

3), ItinRett,1 = {Post′′ ,1,8 = {(Mulhouse[13h15,13h45],Pu =

2,D = 0),Post′′ ,1,9 = (Mulhouse[9h42,13h15,10h15,13h45],Pu =

1,D = 1),Post′′ ,1,10 = (Dannemarie[13h50,14h20],Pu = 0,D =

1),Post′′ ,1,11 = (Montbeliard[14h30,15h25],Pu = 0,D = 1),Post′′ ,1,12 =

(Montbeliard[14h30,15h25],Pu = 0,D = 1)},Ro,1, lstMRt′′ ,1 = {Rd,2,Rd,3,Ro,4},Stt′′ ,1 =

partially contracted,ASt′′ ,1 = 1,OSt′′ ,1 = 6,MSt′′ ,1 = 1,GCt′′ ,1 =

”yes”,Drt′′ ,1 = {names = (HASSINE,HASSINE,CANALDA),cities =

{(Montbeliard,Paris,Montbeliard)},V ht′′ ,1 = {marks =

(Audi,BMW,Peugeot),capacites = (7,5,7)}}

In this trip, we note the existence of an offer request Ro,4 in
lstMRt ′′,1. This confirms another time the variability between
offers and demands in our approach. Indeed Ro,4 behaves in
this phase of the algorithm as a demand request that was
matched with the return’s offer of Ro,1. Also the drivers’ list
and the vehicles’list have now the size 3 (single itinerary,
modal shift, return itinerary).
To conclude, the first driver (with a black vehicle of capacity
7) leaves Montbeliard occupying 2 places. He goes through
Hricourt to recover a first passenger. Then, he goes to his
first via Fontaine to dispose his companion of Montbeliard.
The second driver with a blue vehicle of capacity 5 (three

seats are occupied, so only 2 seats are available) waits the
arrival of the first to Dannemarie. When arriving, the first
driver leaves his vehicle in a parking and takes the road (him
and the first passenger of Hericourt) with the second driver.
The next destination is Altkirch to dispose the first passenger
then Mulhouse to dispose the first driver. Then, the second
driver goes to Base (him and their two accompanying of
Dannemarie). Now, a third driver (the one who issues the
offer request Ro,4 having a purple vehicle with capacity 5)
ensure first driver’s return to Dannemarie. The latter takes
back his vehicle and both go to Montbeliard (each with his
vehicle).
The main objective of this second scenario is to minimize
the vehicles’ number traveling in the road (in our example
the road between Fontaine and Mulhouse). The described
itinerary is shown in figure 5 page 7 by the beige color (the
modal shift’s case). Also, the itinerary where there is no
modal shift is presented by the green color. The algorithm
already described in this section is presented in algo 1.

V. NEW INSTANCES AND EVALUATION

In order to evaluate the algorithm, We implemented a
test simulator in java. This simulator generates automatically
both demand requests file and offer request file by varying
the requests number and their characteristics (positions, time
windows, vehicle capacity, etc.)7. The test sets implement,
on the one hand, the execution time necessary for matching
and on the other hand the number of requests according to
their state (contracted : Rc , partially contracted : Rpc or only
validated : Rv). Also, for each test, we calculated the trips’
number including a modal shift TrMS in order to evaluate the
percentage of such trips (which characterize our new type
of carpooling) in an organization. These tests validate the
algorithm’s operation for the two scenarios already described
before. Thus, other scenarios were discussed exhaustively to
ensure scaling up.

We define the folowing configuration : con f igtest = Ro/Rd
with Ro presents the number of offer requests initialized
by drivers and Rd presents the number of demand requests
initialized by passengers. From the second configuration, we

7The request’s generation is done in a way to increase the probability of
matching in order to properly evaluate the algorithm’s performance.

config test Ro,c Ro,pc Ro,v Rd,c Rd,v TrMS %TrMS ms
con f ig1 = 3/4 1 2 0 4 0 1 50% 11

con f ig2 = 30/60 21 4 5 50 10 4 16% 33
con f ig3 = 60/120 41 5 14 90 30 7 15% 70

con f ig4 = 120/240 75 13 32 180 60 15 17% 99
con f ig5 = 240/480 160 23 57 350 130 41 22% 276
con f ig6 = 480/960 330 40 110 801 159 95 25% 677

con f ig7 = 960/1920 639 63 258 1701 219 201 66% 1319
con f ig8 = 1920/3840 1280 183 454 2880 960 366 24% 3566

TABLE I
FUNCTIONAL TEST (8 CONFIGURATIONS) OF N-INTRAMODAL CARPOOLING WITH TRANSHIPMENTS

chose that demand requests’ number presents the half of offer
requests’ number. We varied configurations for con f ig1 = 3/4
(it is the configuration of our two illustrative examples) to
con f ig8 = 1920/3840. The table 1 shows test’ results.8. We
note the trips’ percentage including a modal shift varies
between 15 % and 50 % for the different test configurations.
This percentage shows the rate’s trip that have amelioration on
the term of matching. This validates our choice of adding the
transhipment to the classic carpooling in order to satisfy the
most system’s participants. The figure 6 shows the execution
time evolution.

Fig. 6. Run time execution of our exact combinatorial algorithm solving
N-intra-modal carpooling problem with transhipment

This curve has a linear behavior. This is adequate with the
theoretical complexity of our algorithm (in the order of O
(n)). For our two illustrative examples (3 offer requests and 4
demand requests), the matching execution time is 11 ms. For
5760 requests (1920 offer requests and 3840 demand requests),
the execution time is 3.5s which is acceptable for a matching
algorithm processing a large number of data (in the order of
thousands).

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we discussed the problem of carpooling
with and without modal shifts. Initially, we proposed a new
formalization of this problem presenting on the one hand the
input data (offer requests and demand requests) and on the
other hand the output data (organizations). This formalization
is based on an extended origin-destination matrix which makes
information about displacements between positions mainly the
shortest time and the shortest distance. It is also multicon-
straints (time windows’ constraint, capacity constraints ...) and
multiobjectives (the main objective is to maximize the number
of contracted requests).
Then, we described the matching algorithm by implementing
two real scenarios of displacement between Montbeliard and
Basel. The first scenario validates the carpooling’s classic
behavior without modal shifts, that means there is no vehi-
cle’s change during a trip. The algorithm’s second part was

8The machine used during the tests is an ASUS K56C laptop under
Windows 7 professional 64 bits equipped with an Intel Core i5-3317U (4
core), 1.7GHz and 6GB RAM.

addressed to the second scenario. Indeed, in this case, we note
well the variability between the offer and the demand because
a demand request having a driver can behave like an offer
request. The fact that passengers and drivers agree to make at
least a modal shift gives us the opportunity to ameliorate the
concerned organization by proposing a new trip including a
modal shift. This modal shift increases on the one hand the
number of satisfied requests and on the other hand minimizes
the number of vehicles along a travel.
In parallel with solver’s implementation, we started the cre-
ation of an IOS mobile application. Several interfaces are
already realized. Also, a REST web service is being imple-
mented to try a possible integration between the calculator and
the mobile application.

REFERENCES
[1] Galland and al, Simulation Model of Carpooling With the Janus Multi-

agent Platform, In Procedia Computer Science 19 (2013) 860-866.
[2] Bruglieri and al, PoliUniPool : a carpooling system for universities, In

Procedia Social and Behaviral Sciences 20 (2011) 558-576.
[3] Zhang and al, Research on Strategy Control of Taxi Carpooling Detour

Route under Uncertain Environment. In Journal ”Discrete Dynamics in
Nature and Society”, Volume 2016 (2016), 11 pages.

[4] Cordeau and Laporte, A tabu search heuristic for the static multi-vehicle
dial a ride problem, In Transp. Research Part B 37 (2003) 579-594.

[5] Blander and al, Synchronized dia-a-ride transportation of disabled pas-
sengers at airports, In EJOR 225 (2013) 106-117.

[6] Khande and al, Design and simulation of Carpool Service Problem using
Soft Computing Tools, In International Journal of Recent Trends in
Engineering and Research, Volume 2,Issue 4(04 - 2016).

[7] Knapen, L., Yasar, A., Cho, S. et al, Exploiting Graph-theretic Tools for
Matching in Carpooling Application. In Journal of Ambient Intelligence
and Humanized Computing, (2014) 5: 393.

[8] Iori, M. and Martello, S., Routing problems with loading constraints. In
journal TOP July 2010, Volume 18, Issue 1, pp 427.

[9] Malandraski and al, A restricted dynamic programming heuristic algo-
rithm for the time dependent traveling salesman problem, In European
Journal of Operational Research 90 (1996) 45-55.

[10] Ropke, S. and Cordeau, J.-F. and Laporte, G.. Models and Branch-and-
Cut Algorithms for Pickup and Delivery Problems with Time Windows.
In Networks an Int. Journal, Vol. 49, Issue 4, July 2007, pages 258-272.

[11] Hassine and Canalda, Premire Résolution Combinatoire Gloutonne du
probléme du louage incrémental, dans la Société Franaise de Recherche
Opérationnelle et d’Aide à la Décision, Février 2017.

[12] Chen and all, Multiple crossdocks with inventory and time windows, in
Computers and Operations Research 33 (2006) 43-63.

[13] Berlingerio, M. et al. The GRAAL of carpooling: GReen And sociAL
optimization from crowd-sourced data. In Transp. Research Part C :
Emerging Technologies, Vol. 80, july 2017, pp 20-36.

[14] Baoxiang and all, The Share-a-Ride Problem: People and parcels sharing
taxis, in European Journal of Operational Research 238 (2014) 31-40.

