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Abstract

This study proposes a new rate-dependent feedforward compensator for compen-
sation of hysteresis nonlinearities in smart materials-based actuators without con-
sidering the analytical inverse model. The proposed rate-dependent compensator is
constructed with the inverse multiplicative structure of the rate-dependent Prandtl-
Ishlinskii (RDPI) model. The study also presents an investigation for the compen-
sation error when the proposed compensator is applied in an open-loop feedforward
manner. Then, an internal model-based feedback control design is applied with the
proposed feedforward compensator to a piezoelectric cantilever actuator. The ex-
perimental results illustrate that the proposed feedforward-feedback control scheme
can be used in micro-positioning motion control applications to enhance the track-
ing performance of the piezoelectric cantilever actuator under di�erent operating
conditions.
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1 Introduction

Smart materials-based actuators such as Shape Memory Alloys (SMAs), piezo-
electric and magnetostrictive actuators are attractive for applications that re-
quire positioning/manipulating objects at micro and nano-scale levels [1�3].
However, these actuators exhibit rate-dependent hysteresis nonlinearities that
increase as the frequency of the applied input increases. Such nonlinearities are
known to cause oscillations and instabilities in open and closed-loop systems
[4, 5]. Di�erent feedback control methods have been used to reduce the hys-
teresis nonlinearities of smart materials-based actuators. However, synthesiz-
ing feedback controllers at high excitations of input frequency is a challenging
task due to the presence of rate-dependent hysteresis nonlinearities. Further-
more, applying high levels of input amplitude to these actuators contributes
asymmetric hysteresis nonlinearities which necessitate adequate consideration
for the e�ects of input amplitude [6, 7].

Implementing a rate-dependent compensator to reduce the e�ects of the rate-
dependent hysteresis nonlinearities of a smart material-based actuator strongly
facilitates the design of a linear or nonlinear feedback controllers. A few studies
have suggested nonlinear control design such as adaptive control [8], energy-
based control [9], hybrid control [10], optimal control [11], robust control
[12, 13], and sliding-mode control [14] to cancel-out hysteresis nonlinearities
of smart materials-based actuators. Compared to other methodologies, a cas-
cade arrangement of a rate-dependent hysteresis model and its rate-dependent
inverse is known as an e�ective methodology for compensation of hysteresis
nonlinearities in real-time system [4, 15]. However, deriving an analytical in-
verse model that is adaptive with the frequency involves di�culties that are
associated with mathematical properties of the hysteresis model itself.

The Preisach and Prandtl-Ishlinskii models are among the most popular hys-
teresis models that have been used with their inverse models for modeling and
compensation of hysteresis nonlinearities of smart material-based actuators
[3,6,15�21]. Because of the exact inversion of the model, the Prandtl-Ishlinskii
model is considered attractive for compensation of hysteresis nonlinearities in
real-time applications [20, 21]. However, the Prandtl-Ishlinskii model is rate-
independent hysteresis model. This problem has been addressed in [22] where
the model and its inverse were extended to new versions that account for the
rate of the applied input. The RDPI model and its inverse were applied for
characterization and compensation of rate-dependent hysteresis nonlinearities
of magnetostrictive [23] and piezoelectric [22] actuators. However, the inverse
RDPI model is available only when the rate-dependent threshold function sat-
is�es the dilation condition [22].

The mathematical conditions that are necessary to formulate an invertible
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RDPI model can be relaxed with the inverse multiplicative structure of the
hysteresis model. Thus, the hysteresis compensator can be obtained by re-
structuring the hysteresis model that characterizes the hysteresis nonlineari-
ties. This technique has been successfully applied to compensate for the hys-
teresis nonlinearities of the Bouc-Wen model [24], the generalized Bouc-Wen
model [25], multivariable Bouc-Wen [26], the Preisach model [27, 28], the
Prandtl-Ishlinskii model [20], the multivariable Prandtl-Ishlinskii model [21]
and recently the RDPI model [29].

Although employing the inverse multiplicative structure is e�ective for com-
pensation of hysteresis nonlinearities in open-loop feedforward manner, syn-
thesizing feedback control techniques is essential to maintain or to improve
the tracking performance in presence of internal and external disturbances
such as: modeling uncertainties and environmental in�uence. However, feed-
back control designs necessitate adequate consideration for the compensation
error of the feedforward compensator and the boundedness of compensation
error. Thus, exploring the compensation error facilitates applying feedback
control architectures such as proportional-integral-derivative controller, in-
ternal model-based feedback, hybrid control, or robust control, as examples,
with the inverse multiplicative structure. This study presents a feedforward
and feedback control scheme to improve the performances of smart materials
based actuators over a wide range of input frequency. The feedforward con-
troller (compensator) is based on the combination of the inverse multiplicative
structure and the RDPI model and a thorough analysis of the tracking error
is developed. The feedback controller is based on the internal model control
scheme which permits to consider remaining compensation errors, model un-
certainties and eventual external disturbance. Finally, the whole is applied to
a piezoelectric cantilever actuator that is characterized by a rate-dependent
hysteresis, a creep phenomenon and badly damped oscillations. The main con-
tributions of the study can be summarized as follows:

• A rate-dependent feedforward hysteresis compensator for compensation of
hysteresis nonlinearities of smart materials-based actuators without formu-
lating inverse rate-dependent models is derived. The compensator is based
on the rearrangement of a rate-dependent Prandtl-Ishlinskii (RDPI) model.
Additionally to the Lipschitz continuity analysis of the model, we also in-
vestigate the bound of the tracking error from the compensation as well as
the condition on the sampling period to make this bound valuable.
• From a linear model with error derived from the previous analysis, we aug-
ment the feedforward control system by a feedback controller. The aim of
this feedback is to cancel the remaining error and to reject eventual distur-
bance that a feedforward would not allow. For that we suggest the internal
model control (IMC) which permits to consider model uncertainties in the
new linear model, additionally to the error and to the external disturbance.
• Finally, the propsoed RDPI-feedforward and IMC-feedback control scheme
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have been applied to a piezoelectric actuator classically used un microma-
nipulation applications. The e�ciency of the feedforward-feedback scheme
is particularly compared with the result from a feedback-only scheme.and
is shown to demonstrate higher bandwidth.

The paper is organized as follows. Section II includes a description for the
proposed compensation scheme and the formulation of RDPI model. In this
section, the discrete RDPI model is also presented with the Lipschitz continu-
ity property. Section III introduces the development of rate-dependent feed-
forward compensator on the basis of the inverse multiplicative scheme. This
section also presents the boundedness of the error between the reference input
and the output of the RDPI model when the proposed compensator is applied.
Section VI is devoted to the application to a piezoelectric cantilever actuator.
Its characterization, RDPI modeling and RDPI compensation are detailed in
the same section. Section V presents synthesizing and applying of an inter-
nal model-based feedback control design to enhance the tracking performance
of the compensated piezoelectric cantilever actuator. The conclusions of the
paper are summarized in Section VI.

2 Background

Among the available smart material-based actuators, SMAs, magnetostric-
tive and piezoelectric types are considered the most popular for micro- and
nano- positioning tasks. Due to their �ne resolution and fast response, piezo-
electric actuators for example, are employed in atomic force microscopy and
also for manipulating small objects at micro- and nano- scale [3]. SMAs are
another example of smart material-based actuators that are attractive for ap-
plications where �exibility and generation of large deformations are required.
These actuators are integrated in the modern aircraft wings and the buildings
structures to resist earthquakes vibrations [1, 30, 31]. These actuators show
rate-dependent hysteresis nonlinearities between applied harmonic input and
output displacement [32]. Such nonlinearities are considered relatively rate-
independent at shallow levels of input frequency. However, applying harmonic
input at high excitations of input frequency contributes a signi�cant increase in
the hysteresis nonlinearities. These nonlinearities cause high positioning errors
and instabilities in the closed-loop control systems. Enhancing the tracking
performance of smart material-based actuators necessitates selecting an ap-
propriate model that can account for the hysteresis nonlinearities that these
actuators exhibit. The Prandtl-Ishlinskii model is a �exible hysteresis model
that can describe rate-independent as well as rate-dependent hysteresis prop-
erties of smart material-based actuators. The mathematical formulation of this
model is presented in this section along with investigation for the Lipschitz
continuity property of the model.
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2.1 The RDPI model

A rate-dependent version of the Prandtl-Ishlinskii model has been proposed
in [22, 23] for characterizing the rate-dependent hysteresis nonlinearities of
magnetostrictive and piezoelectric actuators. The model is represented as a
summation of weighted rate-dependent play operators. Each of these operators
integrates a rate-dependent threshold that is formulated as a function of the
input rate. We deal with real absolutely continuous functions that are de�ned
on the interval (0, T ), such that the space of these functions can be denoted by
AC(0, T ). Let us consider also the input z(t) ∈ AC(0, T ). For i = 0, 1, 2, ..., n,
where n ∈ N is an integer, the ri(ż(t)) ∈ AC(0, T ) are considered as thresholds
such that

0 = r0(ż(t)) ≤ r1(ż(t)) ≤ r2(ż(t)) ≤ · · · ≤ rn(ż(t)). (1)

In addition, Φri(ż(t))[z](t) is a rate-dependent play operator that has an output
ξi(t) if

ξi(t) = Φri(ż(t))[z](t). (2)

Then, for an input z(t) and threshold functions ri(ż(t)) which are piecewise
linear in each interval of a partition 0 = t0 < t1 < · · · < tl = T such that l ∈ N
is an integer, and given an initial condition ξi(0) = max(z(0)−ri(0),min(z(0)+
ri(0), xi)), the output of the rate-dependent play operator for t ∈ [tj−1, tj) is
expressed as [22]

ξi(t) = max{z(t)− ri(ż(t)),min{z(t) + ri(ż(t)), ξi(tj−1)}}, (3)

where xi represent the initial conditions for memory of the rate-dependent play
operator and can be considered as xi = 0. The output of the RDPI model can
be then expressed as a summation of weighted rate-dependent play operators
as [22]

Γ[z](t) := ρ0z(t) +
n∑
i=1

ρiΦri(ż(t))[z](t) (4)

where ρ0 and ρi are the weights. The formulation of a linear rate-dependent
threshold function yields a RDPI model that exhibits a linear increase in
the magnitude of hysteresis with the excitation frequency of the input. The
following rate-dependent threshold function has been selected

ri(ż(t)) := δ1i+ δ2|ż(t)|, (5)

where δ1 and δ2 are positive constants which can be estimated based on the
experimental results. This rate-dependent threshold function has been sug-
gested in di�erent studies to formulate a RDPI model that can characterize
the rate-dependent hysteresis nonlinearities of smart materials-based actuators
[7,22,23,32]. Since the study focuses on the hysteresis compensation in real-
time systems, then it is essential to introduce the discrete form of the RDPI
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model. Considering the sampling time Ts = tk − tk−1, where k = 1, . . . , K,
where K ∈ N is an integer. The output of the discrete RDPI model is ex-
pressed as

y(k) = Γ[z](k) = ρ0z(k) + Ω[z](k), (6)

where

Ω[z](k) =
n∑
i=1

ρiΦri(vz(k))[z](k), (7)

where vz(k) = z(k)−z(k−1)
Ts

is the rate of the applied input in the discrete time
domain. Let

ξ̃i(k) = Φri(vz(k))[z](k)

where

ξ̃i(k) = max{z(k)− ri(vz(k)),min{z(k) + ri(vz(k)), ξ̃i(k − 1)}}, (8)

with

ri(vz(k)) = δ1i+ δ2|vz(k)|. (9)

2.2 The Lipschitz continuity of the RDPI model

The proposed feedforward rate-dependent hysteresis compensator is a model-
based feedforward controller constructed using the RDPI model. Then, it is
essential to investigate the Lipschitz continuity property of the RDPI model
in (6). (i) For k > 1, when the input z(k) increases, the output of the RDPI
model is

y(k) = ρ0z(k) +
n∑
i=1

ρi
(
z(k)− ri(vz(k))

)
, for z(k) > z(k − 1). (10)

Since ri(vz(k)) > 0 and
∑n
i=1 ρi > 0, the output when the input increases,

z(k) > z(k − 1), can be expressed as

y(k)=ρ0z(k) +
n∑
i=1

ρi (z(k)− δ1i− δ2vz(k)) , for z(k) > z(k − 1). (11)

Let σ1(k) = z(k)− z(k − 1) and σ2(k) = z(k − 1)− z(k − 2). Then

y(k)− y(k − 1) =
n∑
i=0

ρi

(
σ1(k) +

δ2(σ2(k)− σ1(k))

Ts

)
. (12)

If σ1(k) > σ2(k), we have

y(k)− y(k − 1)<
(
z(k)− z(k − 1)

) n∑
i=0

ρi. (13)
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If σ1(k) < σ2(k), then −σ1(k) < 0 < σ2(k)− σ1(k), hence

y(k)−y(k−1)>−
(
z(k)− z(k−1)

) n∑
i=0

(
ρi−

δ2
Ts

)
> −

(
z(k)− z(k−1)

) n∑
i=0

ρi. (14)

From (13) and (14), we have

∣∣∣y(k)− y(k − 1)
∣∣∣ < ∣∣∣z(k)− z(k − 1)

∣∣∣ n∑
i=0

ρi, for z(k) > z(k − 1). (15)

(ii) For k>0, when the input z(k) decreases, z(k) < z(k − 1), we have

y(k) = ρ0z(k) +
n∑
i=1

ρi
(
z(k) + ri(vz(k))

)
, for z(k) < z(k − 1). (16)

Then

y(k)=ρ0z(k) +
n∑
i=1

ρi (z(k) + δ1i+ δ2vz(k)) , for z(k) < z(k − 1). (17)

Thus

y(k)− y(k − 1) =
n∑
i=0

ρi

(
σ1(k) +

δ2(σ1(k)− σ2(k))

Ts

)
. (18)

Following the same procedure as in (i), we conclude

∣∣∣y(k)− y(k − 1)
∣∣∣<∣∣∣z(k)− z(k − 1)

∣∣∣ n∑
i=0

ρi. for z(k) < z(k − 1). (19)

(iii) When there is no increasing or decreasing z(k) = z(k − 1), we have
y(k) = y(k − 1). For the RDPI model, we conclude

y(k)− y(k − 1)≤
(
z(k)− z(k − 1)

) n∑
i=0

ρi. (20)

Equation (20) reveals that the change in the output relies on both the weight-
ing constants

∑n
i=0 ρi. Consequently,

∑n
i=0 ρi and the dynamic thresholds ri(vz(k))

should be bounded and positive. This result is useful for the boundedness of
the compensation error in the next section.

3 Inversion-Free Feedforward Rate-Dependent Hysteresis Compen-

sation

The development of the proposed compensator is presented in this section with
boundedness of the compensation error when the proposed model is applied for
compensation of hysteresis nonlinearities. In addition, the section includes the
parameters uncertainty of the RDPI model when the proposed compensator
is applied.
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3.1 The proposed compensator and the compensation error

Restructuring the RDPI model using inverse multiplicative scheme yields the
rate-dependent hysteresis compensator. It is clear that the RDPI model in-
cludes linear reversible term ρ0z(k) and nonlinear hysteretic term Ω(k). Then,

we can write ρ−10

(
y(k) − Ω[z](k)

)
= z(k). In order to obtain a closed-form

output in the real-time system, we consider ρ−10

(
y(k) − Ω[z](k − 1)

)
= z(k).

Then, if we consider the reference input yr(k), the proposed inversion-free
compensator is

z(k) = ρ−10

(
yr(k)− Ω[z](k − 1)

)
. (21)

To demonstrate that (21) can be used as a compensator, we will evaluate in
the next subsection the compensation error. We will demonstrate that this
error is bounded under certain condition on the employed sampling time Ts.

3.2 Evaluation of the compensation error and related condition

To evaluate the compensation error, the suggested rate-dependent compen-
sator is applied as an input to the discrete representation of model in (6)
as

y(k) = Γ
[
ρ−10

(
yr(k)− Ω[z](k − 1)

)]
(k). (22)

Let

η(k) = yr(k)− Ω[z](k − 1). (23)

Consequently, (22) can be expressed as

y(k) = ρ0

[
ρ−10

(
η(k)

)]
+ Ω

[
ρ−10

(
η(k)

)]
(24)

and

y(k) = yr(k) + Ω[z](k)− Ω[z](k − 1). (25)

Hence, the error of the hysteresis compensation with the proposed compen-
sator (21) is

e(k) = y(k)− yr(k). (26)

Let

y(k) = ρ0z(t) +
n∑
i=1

ρiξi(k) (27)

then, the compensation error can be expressed as

|e(k)| = |y(k)− yr(k)| . (28)
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Using Equations (6) and (27), we have

|e(k)| =
∣∣∣∣∣
n∑
i=1

ρi
(
ξi(k)− ξ̃i(k)

)∣∣∣∣∣ ≤
n∑
i=1

ρi
∣∣∣ξi(k)− ξ̃i(k)

∣∣∣. (29)

To �nd an upper bound in (29), �rst, we prove the following result.

Lemma 3.1 ( [33]) For any A,B,C,D ∈ R, the following holds

(i) |max{A,B} −max{C,D}| ≤ max{|A− C|, |B −D|},
(ii) |min{A,B} −min{C,D}| ≤ max {|A− C| , |B −D|}.

Proof. We prove (i) by considering four cases.
Case 1: If max{A,B} = A and max{C,D} = C then

|max{A,B} −max{C,D}| = |A− C| ≤ max {|A− C| , |B −D|} .

Case 2: If max{A,B} = B and max{C,D} = D then

|max{A,B} −max{C,D}| = |B −D| ≤ max {|A− C| , |B −D|} .

Case 3: If max{A,B} = A and max{C,D} = D then

|max{A,B} −max{C,D}| = |A−D| =

{
A−D ≤ A− C if A−D > 0

D −A ≥ C −A = −(A− C) if A−D < 0.

Thus

|max{A,B} −max{C,D}| ≤ |A− C| ≤ max {|A− C| , |B −D|} .

Case 4: If max{A,B} = B and max{C,D} = C then

|max{A,B} −max{C,D}| = |B − C| =

{
B − C ≤ B −D if B − C > 0

C −B ≥ D −B = −(B −D) if B − C < 0.

Thus

|max{A,B} −max{C,D}| ≤ max {|A− C| , |B −D|} .

Same procedure can be used to prove (ii).

�

It follows from (29) and Lemma 3.1 that
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e(k) ≤
n∑

i=1

ρi max {|ri(vz(k))− ri(ż(k))| ,∣∣min {z(k) + ri(ż(k)), ξi(k − 1)} −min
{
z(k) + ri(vz(k)), ξ̃i(k − 1)

}∣∣}
≤

n∑
i=1

ρi max {|ri(vz(k))− ri(ż(k))| ,

max
{
|ri(ż(k))− ri(vz(k))| ,

∣∣ξi(k − 1)− ξ̃i(k − 1)
∣∣}} . (30)

Obviously, if

max
{
|ri(ż(k))− ri(vz(k)| ,

∣∣∣ξi(k − 1)− ξ̃i(k − 1)
∣∣∣} = |ri(ż(k))− ri(vz(k)| ,

then

e(k) ≤
n∑
i=1

ρi |ri(vz(k))− ri(ż(k))|.

Using Backward Euler scheme in vz(k), we have

|ż(k)− vz(k)| ≤MkTs
where Mk is a positive number. Thus

K∑
k=1

|ż(k)− vz(k)| ≤ KMkTs.

When a su�cient small Ts is selected such that KMkTs < ζ for some small
positive number ζ. Let εi > 0, since ri are considered as absolutely continuous
functions, we have

K∑
k=1

|ri(ż(k))− ri(vz(k))| < εi

whenever
K∑
k=1

|ż(k)− vz(k)| < ζ.

Hence, for each k ∈ {1, . . . , K}

|ri(ż(k))− ri(vz(k))| < εi.

Let ε = max {εi}. Then,
n∑
i=1

|ri(ż(k))− ri(vz(k))| < nε.

This yields
e(k) < n2ρmaxε, (31)

where ρmax = max {ρi}. The bound of the error is E = n2ρmaxε. For very small
value of ε, the suggested compensator would yield

y(k) ∼= yr(k). (32)
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z
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Fig. 1. Block diargam of the RDPI compensator based on inverse multiplicative
structure and of the hysteretic plant.

When

max
{
|ri(ż(k))− ri(vz(k)| ,

∣∣∣ξi(k − 1)− ξ̃i(k − 1)
∣∣∣} =

∣∣∣ξi(k − 1)− ξ̃i(k − 1)
∣∣∣,

same procedure as above can be carried out. Consequently, y(k) ∼= yr(k).
Hence, the suggested rate-dependent hysteresis compensator guarantees the
tracking performance of a hysteretic plant that exhibits rate-dependent hys-
teresis nonlinearities. The following condition is suggested to obtain low com-
pensation error

Ts <
1

(nρ0 + 1)(nρmaxi+ 1)(fmax + 1)
. (33)

Figure 1 depicts the block diagram of the proposed rate-dependent hysteresis
compensation methodology. As the �gure illustrates, the hysteresis compen-
sator is formed by restructuring the RDPI model itself using inverse multi-
plicative scheme. The delay block in the �gure represents a one sampling time
Ts delay.

3.3 Discussions

The previous analysis shows that restructuring the RDPI model in (6) con-
tributes a rate-dependent compensator that can be employed for compensation
of the rate-dependent hysteresis nonlinearities of the model. Consequently, the
extra calculations to formulate the inverse model are not required. In addition,
the conditions that have to be satis�ed to obtain an analytical inverse model
can be ignored. The proposed compensator can also be employed to cancel
out the rate-independent hysteresis nonlinearities observed at shallow levels
of input frequency, i.e., for ri(vz(k)) = δ1i (for thresholds independent from
the rate/frequency of the input). It can be concluded that when the control
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signal increases, z(k) > z(k − 1), the error can be expressed as

|eind(k)| ≤
n∑
i=1

ρi max{|∆z(k)|, |∆ξi(k)|}, (34)

where ∆z(k) = z(k)− z(k − 1), ∆ξi(k) = ξi(k)− ξi(k − 1) and

|eind(k)| ≤ nρmaxE . (35)

From (31) and (32), the output of the hysteresis compensation can be repre-
sented using a linear yr(k) and a nonlinear bounded terms e(k):

y(t) = yr(k) + e(k). (36)

Consequently, feedforward-feedback control architecture such as H∞ control
[34�36], sliding mode [37], adaptive [38] and PID structured controllers [39]
techniques can be applied with the formula (36).

3.4 Parameters uncertainty

This section investigates the parameters uncertainty of the RDPI model when
the proposed compensator is applied for compensation of hysteresis nonlinear-
ities. Let us write the output of the estimated discrete RDPI model is assumed
to be slightly di�erent to the real model in (6)

ŷ(k) = Γ̂[z](k) := ρ̂0z(k) + Ω̂[z](k) , (37)

where ρ̂0 is a positive constant and

Ω̂[z](k) =
n∑
i=1

ρ̂iΦr̂i(vz(k))[z](k), (38)

where ρ̂i are positive constants. The proposed compensator constructed with
the estimated RDPI model is

z(k) = ρ̂−10

(
yr(k)− Ω̂[z](k − 1)

)
. (39)

Then, when applying the compensator (39) calculated from the estimate model
(37) to the real model (6), we have the output of the compensation as follows

y(k) = ρ0ρ̂0
−1yr(k)− ρ0ρ̂−10 Ω̂[z](k − 1) + Ω[z](k) (40)
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and the error is

e(k) = yr(k)(1− ρ0ρ̂−10 ) + ρ0ρ̂
−1
0 Ω̂[z](k − 1)− Ω[z](k). (41)

Let ρ0ρ̂0
−1 = τ and

P [k] = ρ0ρ̂
−1
0 Ω̂[z](k − 1)− Ω[z](k),

then

P [k] =
n∑
i=1

(
τ ρ̂iΦr̂i(vz(k−1))[z](k − 1)− ρiΦri(vz(k))[z](k)

)
(42)

and

P [k] =
n∑
i=1

max{|τ ρ̂iz(k − 1)− ρiz(k)

+τ ρ̂iri(vz(k − 1))− ρiri(vz(k))|, |ξi(k)− ξi(k − 1)|}. (43)

For ρ̂i = ρi + λi, we have

P [k] =
n∑
i=1

max{|(τρi + τλi)z(k − 1)− ρiz(k) + (τρi

+τλi)ri(vz(k − 1))− ρiri(vz(k))|, |ξi(k)− ξi(k − 1)|} (44)

and

|P [k]| ≤
n∑
i=1

max{|τρiz(k − 1)− ρiz(k) + τρiri(vz(k − 1))− ρiri(vz(k))|

+τλiz(k − 1) + τλiri(vz(k − 1)), |ξi(k)− ξi(k − 1)|}. (45)

Let max{|τz(k)−z(k−1)|}= ε̄1, max{|z(k−1)+ri(vz(k−1)|}= κ, max |τri(z(k−
1))−ri(z(k))|= ε̄2, and λmax = max{|λi|}, where ε̄1, ε̄2, and κ are positive con-
stants. Then the error is

|e(k)| ≤ |yr(k)(1− τ)|+ nρmax{ε̄1 + ε̄2 + λmaxκ, E}. (46)

Thus

|e(k)| ≤ |yr(k)||(1− τ)|+ nρmax{ε̄1 + ε̄2 + λmaxκ, E}. (47)
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It can be concluded that the tracking error is still bounded when the uncer-
tainties of the RDPI model parameters are considered for compensation of
hysteresis nonlinearities.

4 Application to a piezoelectric cantilever actuator

In this section, the suggested feedforward rate-dependent compensator is ap-
plied for compensation of rate-dependent hysteresis nonlinearities of piezo-
electric cantilever actuator. This actuator exhibits rate-dependent hysteresis
nonlinearities under harmonic excitations and oscillations in the output dis-
placement when subjected to step inputs. Piezoelectric cantilever actuators are
considered attractive for micro-assembly and can be used as micro-grippers for
manipulating small objects at micro level [3, 30, 31,40,41].

4.1 The experimental platform

The piezoelectric cantilever actuator is depicted in Figure 2 within a simple
schematic representation of the experimental platform. The Figure shows a
2-DOF piezoelectric cantilever actuator of 25mm length and 1mm × 1mm
cross section. The actuator exhibits the output displacement (de�ection) y[µm]
when subjected to input voltage z[V ]. The actuator was fabricated to move in
two di�erent axes. However, only the motion in Y -axis was considered in the
experimental study. The maximal operating range of input voltage that can
be applied to the actuator is ±10V . An inductive position sensor was used
to capture the output displacement of the actuator. The sensor is used: i) to
characterize the actuator's hysteresis, creep and step responses, ii) to verify
the performances obtained with the RDPI hysteresis compensator, iii) and
to make a feedback signal for a further feedback controller. The sensor has
a bandwidth of 5kHz and resolution down to 10nm. A computer equipped
with a dSPACE acquisition system of Ts = 50µs sampling time is used for
generating the excitation input voltage and acquiring the measured output
displacement.

4.2 Actuator characterization

In order to characterize the piezoelectric actuator, �rst we apply a sinusoidal
input (driving) voltage. Its amplitude is of 8 V and di�erent excitation frequen-
cies have been used: 1Hz to 100 Hz. Figure 3 shows the obtained displacement
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Fig. 2. 2-DOF piezoelectric cantilever and schematic representation of the experi-
mental platform.

versus the input voltage for three frequencies: 1Hz, 50Hz, and 100Hz. Beyond
the hysteresis nonlinearity property and the fact that its shape changes versus
the frequency (rate-dependency), it shows that the range of displacement is of
about ±40µm for a voltage of ±8V , i.e. the gain is: 5[µm

V
]. Such gain is very

interesting in piezoelectric actuator based on cantilever structure and devoted
to micromanipulation task.

Fig. 3. Measured hysteresis loops of the piezoelectric cantilever actuator under a
sinusoidal voltage with 8V of amplitude and 1Hz, 50Hz, and 100Hz of excitation
frequency.

Then, we apply a step input voltage of 8V to the actuator. The response
response is depicted in in Figure 4 which clearly show the badly damped
oscillations property of the actuator. A quick identi�cation shows that the
�rst resonant frequency is of 1.627kHz.
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Fig. 4. Step response of the actuator with 8V of input voltage.

Finally, we still measure the step response of the actuator but, rather than
measuring for 30ms (see Figure 4), we measure for a long duration period
(several tens of seconds). The response is shown in Figure 5 where we see
that, just after the transitory part characterized above, there is a low rate
drift. This drift is called creep phenomenon and is typical for piezoelectric
actuator. Similarly to hysteresis, the creep phenomenon introduces precision
loss in the tasks to be carried out and should therefore be controlled. In this
paper, the hysteresis will be controlled in a feedforward manner and the creep
will be considered as additional error that will be considered in the feedback
controller.

60
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-10
0 5 10 15 20 25 30
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displacement [µm]
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Fig. 5. Creep phenomenon observed in the step response during a long duration
period.
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4.3 Hysteresis modeling and parameters identi�cation

The formulation of the rate-dependent hysteresis compensator that can com-
pensate for the hysteresis nonlinearity of the piezoelectric actuator necessitates
formulating a rate-dependent model. We use therefore the RDPI model de-
scribed in Section II. The measured data that are illustrated in Figure 3 can be
employed to identify the parameters of the RDPI model. The characterization
error can be de�ned as

ec(k) = Γ[z](k)− y(k), (48)

where y(k) represents the measured displacement of the piezoelectric cantilever
actuator when an input voltage z(k) at a particular excitation frequency is
applied, and Γ[z](k) is the output of the RDPI model with z(k). The index k
(k = 1, 2, . . . , K) refers to the number of data points considered in computing
the error for one complete hysteresis loop. The parameter vector Π ={δ1,
δ2, ρ0, ρ1, ρ2, . . ., ρ10} of the RDPI model Γ is identi�ed through solving
the least-square problem of the characterization error function in (48) over
di�erent excitation frequencies as

min

(
K∑
k=0

e2c(k)

)
= min

(
K∑
k=0

(Γ[z](k)− y(k))2
)
, (49)

where Γ[z](k) is the response of the discrete RDPI model in (6).

The MATLAB constrained optimization toolbox subjected to δ1 > 0 and
δ2 > 0 constrains is used to estimate the parameters. The number n has been
chosen as n = 10. The identi�ed parameters of the model are: δ1 = 1.0136,
δ2 = 3.9486× 10−4, ρ0 = 0.6214, ρ1 = 0.1351, ρ2 = 0.1079, ρ3 = 0.0862, ρ4 =
0.0689, ρ5 = 0.0550, ρ6 = 0.0439, ρ7 = 0.0351, ρ8 = 0.0280, and ρ9 = 0.0224,
and ρ10 = 0.0179. Figure 6-a, b and c depict the model simulation plotted
with the experimental result for di�erent frequencies (1Hz, 50Hz and 100Hz)
which show the good convenience of the identi�ed model. Furthermore, the
maximum percentage characterization errors are presented in Figure 6-d with
more frequencies between 1Hz and 100Hz band which con�rms that the error
of tracking is less than 3%.

4.4 Linear dynamics modeling

Beside the rate-dependent hysteresis nonlinearity, the piezoelectric cantilever
actuator exhibits a high dynamics under step inputs. Consider the scheme in
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Fig. 6. Comparison between the measured hysteresis loops and the output of the
RDPI model at 1Hz (a), 50Hz (b), and 100Hz (c). (d): The characterization error
maximum percentage of the RDPI model.

Figure 7-a to represent the plant with its dynamics. It is composed of the
RD hysteresis model and a linear dynamics related to the mechanical part.
In the literature, it is usual to use a rate-independent hysteresis followed by
a linear dynamics for piezoelectric actuators. In our case, rather than using a
rate-independent hysteresis, we use rate-dependent (RD) which permits more
model precision. Thus, the RD hysteresis model can be modeled and identi�ed
with a RDPI of the previous sections and the approximate model Ĝ(s) of the
real dynamicsG(s) (see Figure 7-b) can be identi�ed by using the step response
in Figure 4.

The step input voltage of Aγ[V ] is applied to the piezoelectric cantilever,
where A is the desired step input voltage and γ is a constant used to eliminate
the e�ects of the rate-dependent hysteresis nonlinearties. The output of the
model considering the increasing output of the model with u(t) = Aγ and
ri(ż(t)) = σi is:

Γ[Aγ] = ρ0Aγ +
n∑
i=1

ρiΦσ1i[Aγ] (50)

and

Γ[Aγ] = ρ0Aγ +
n∑
i=1

ρi(Aγ − ri) (51)
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Fig. 7. Block diagram of the plant with its dynamics.

and Γ[Aγ] =
∑n
i=0 ρiAγ −

∑n
i=1 ρiri. Then to obtain Γ[Aγ] = A, we have

γ =
A+

∑n
i=1 ρiri

A
∑n
i=0 ρi

. (52)

For A = 8V ,
∑n
i= ρi = 1.614,

∑n
i=1 ρiri = 2.3047, and γ = 1.0558. Then, in

order to eliminate the hysteresis e�ects from the response of the actuator when
the step input voltage 8V is applied, we consider the gain of 1.0558 to obtain
the output of the linear dynamics only. Figure 8 shows the simulation results.

The identi�cation of Ĝ(s) has been carried out with a Box-Jenkins parame-
ters identi�cation technique with di�erent orders and with standard deviation
which indicates the model precision for each suggested order. It is shown that
beyond an order of 4, the standard deviation stops decreasing substantially.
We therefore choose the following fourth order model

Ĝ(s) =
10854(s+ 1146)(s2 − 1452s+ 2.7e8)

(s+ 9200)(s+ 1095)(s2 + 312s+ 6.7e7)
, (53)

where eθ denotes ×10θ, for instance 2.7e8 = 2.7 × 108. Figure 9 presents a
comparison between the step response of the actuator and Ĝ(s) under 8V
input voltage and shows a good convenience between them.

4.5 Compensation of the rate-dependent hysteresis of the actuator

The identi�ed RDPI model is restructured to obtain the corresponding in-
verse multiplicative scheme as illustrated in Figure 1. The e�ectiveness of
the proposed compensator was subsequently examined at di�erent excitation
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Fig. 8. Block diagram of the plant with its dynamics when the step input voltage of
8V .

frequencies. The output displacement of the actuator when the proposed rate-
dependent compensator is applied as a feedforward compensator are given in
Figure 10. The �gure shows the output displacement y[µm] versus the de-
sired displacement yr[µm] at di�erent excitations of input frequency: 1Hz,
50Hz and 100Hz. The compensation results demonstrate that the proposed
compensator can indeed reduce the rate-dependent hysteresis of the actuator.
However, the results reveal slight compensation errors at high excitations of
input frequency.

In order to verify the e�ciency of the RDPI compensation to handle minor
loops as well as biased minor loops, we compare the hysteresis with and with-
out the suggested compensator. For that, we apply the following driving volt-
age to the actuator (without compensator): z(t) = 3V sin (2× π × 8Hz × t)+
8V sin (2× π × 1Hz × t), where t = kTs. The time-domain output displace-
ment y is displayed in Figure 11-a: the experimental result and the RDPI
model simulation. The related hysteresis is displayed in Figure 11-b in which
we can observe biased and unbiased minor loops. After implementing the com-
pensator, a desired displacement yr with the same shape than above z has been
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Fig. 9. A comparison between the step response of the piezoelectric actuator and
the identi�ed linear dynamics model Ĝ(s).

applied in order to have similar minor loops. Figure 11-c provides the input-
output map (yr, y) where we observe that the hysteresis even for biased minor
loops have been removed.

The RDPI compensator does not account for the creep. Indeed, for this ac-
tuator, the creep phenomenon acts at very low frequency (much lower than
1Hz), whilst the RDPI model and thus the compensator has been identi�ed
from 1Hz. Two ways are possible to compesate for the creep phenomenon ad-
ditionally to the hysteresis: i) identifying the RDPI model and compensator
from very low frequency (much less than 1Hz), ii) or cascading a creep com-
pensator [42] with the actual RDPI compensator. However, since we further
add an internal model-based feedback controller, the creep phenomenon can
comfortably be considered as additional error that will be rejected by this
latter, like the compensation error and like eventual external disturbance.
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Fig. 10. Input-output map of the piezoelectric actuator when the proposed compen-
sator is applied in a open-loop manner at excitation frequency of 1Hz (a), 50Hz (b)
and 100Hz (c).
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5 Internal model-based feedback control design for the piezoelec-

tric cantilever actuator

Feedback control techniques can be used to enhance the performance of piezo-
electric actuator under step and harmonic inputs. In this section, an internal
model-based control architecture will be synthesized. The controller will be af-
terwards applied with the proposed hysteresis compensator to a piezoelectric
cantilever actuator.

5.1 Synthesizing an internal model-based feedback controller

Control systems that integrate smart material-based actuators might experi-
ence internal or external perturbations that yield substantial errors and sub-
sequently reduce the e�ciency of the system in performing the desired tasks.
Consequently, the compensation error e(k) in (36) can be assumed as an in-
ternal perturbation to the compensated system. Introducing the dynamics
behavior in (53) and working back in the continous domain, the static model
of (36) becomes the following dynamic model:

y(s) = Ĝ(s)yr(s) + e(s). (54)

The linear model with disturbance in (54), derived from the RDPI feedfor-
ward hysteresis compensation, is augmented in this section with a feedback
controller that can enhance the tracking performance of the piezoelectric can-
tilever actuator under various conditions. Notice that additionally to the com-
pensation error, eventual external disturbance could occur during a microma-
nipulation task, such as the manipulation force. Furthermore, the linear model
Ĝ(s) might be uncertain as we shown in section 3.4. This is particularly true if
the actuator is intended to work in an environment where the ambient temper-
ature varies, knowing that the hysteresis of cantilever structured piezoelectric
actuators like the one in this papers are very sensitive to the environment
[43,44]. It is therefore essential to use a feedback controller that consider the
error e(s), eventual external disturbances and eventual model uncertainties.
One of the techniques that could consider such speci�cations is the internal
model control (IMC). In our case, its advantage over other robust techniques
such as H∞ is obvious: the controller is very simple to synthesize since it is
based on the model and on a low order �lter, as we will see.

The internal model-based feedback design is implemented as a feedback con-
troller that permits the consideration of the external perturbation and ad-
dresses the modeling errors as well as model uncertainties. Let Figure 12-a
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illustrate the suggested combination of the RDPI compensation (feedforward
control) and of the internal model control (feedback control). The exogenous
reference input signal in the �gure is denoted by ry, C(s) is the feedback

controller to be designed while Ĝ(s) represents the approximate model of the
dynamics that we have identi�ed previously and that should be su�ciently
close to the real dynamics G(s) of the piezoelectric cantilever actuator. In the
ideal case where Ĝ(s) = G(s) and the RDPI model exact matches the hystere-
sis, Figure 12-a would be similar to Figure 12-b. Otherwise, considering that
Ĝ(s) 6= G(s) and the RDPI compensator has compensation error e(t), Figure
12-a results in Figure 12-c. In this, the internal disturbance e(s) rassembles
the compensation error as described previously.

It is worth to note that the scheme in Figure 12-a is a combination of a
(cascade) feedforward controller and of a feedback controller. Di�erently from
feedforward plant-injection (FFPI) and from feedforward closed-loop injection
(pre�lter) combined with feedback, the cascade feedforward combined with
feedback controller which is proposed in this paper permits to obtain a linear
system with the compensator and then to use a linear feedback controller.
Such architecture has been applied in various applications [5, 45�48].

As Figure 12 illustrates, we have

y =
GC(

1 + C
(
G− Ĝ

))ry +

(
1− ĜC

)
(
1 + C

(
G− Ĝ

))e (55)

Selecting the controller

C(s) =
1

Ĝ(s)
(56)

will yield a zero steady-state error, and will completely reject the disturbance
irrespective to a constant error e(t), for any constant reference ry(t) as well as

any approximated model Ĝ(s). Although this choice can enhance the steady-
state response, the transient response is ignored. In order to address the tran-
sient part with a desired settling time tr in the output of the closed-loop
system, the controller C(s) can be selected such that

C(s) = F (s)
1

Ĝ(s)
(57)

where

F (s) =
1

1 + tr
3
s
. (58)

This �lter is directly associated with the desired closed-loop response [49]. It
can be noted from the previous assumption that if the internal model Ĝ(s) is
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Fig. 12. (a): block-diagram of the feedforward-feedback control scheme. (b): block-di-
agram of the feedforward-feedback control scheme with model which exact matches
with the real plant. (c): equivalent diagram.

exact (Ĝ(s) = G(s)), then

y(s) = F (s)ry(s) + (1− F (s)) e(s). (59)

Consequently, the desired transient part can be addressed, the zero steady-
state error and the disturbance rejection requirements are ful�lled.

If the estimated linear dynamic model G(s) is not exact, then

y =
G
Ĝ
F(

1 + F
(
G
Ĝ
− 1

))ry +
(1− F )(

1 + F
(
G
Ĝ
− 1

))e. (60)

In this case, both the zero steady-state and the disturbance rejection are still
guaranteed. However, the transient part is ignored which is mostly attributed
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to the di�erence with the desired transient part F (s). This di�erence signi�-
cantly increases if Ĝ(s) has not been identi�ed properly. It is worth to summa-
rize that the compensation error and the creep phenomenon can be rassembled
in the signal e(s) of Figure 12 while the mdoel uncertainty is considered in
the di�erence between Ĝ(s) and G(s).

5.2 Application of the internal model-based feedback control design to the
piezoelectric actuator

After estimating the system Ĝ(s) that can represent the real dynamic model
G(s) of the compensated system, a desired feedback behavior F (s) has to
be given. A transient response without overshoot and with a settling time
of tr = 10ms was considered as desired speci�cations for the closed-loop.
These speci�cations were selected to obtain a better tracking compared to
the response obtained from the initial system Ĝ(s) (and G(s)) in Figure 9.
Constructing F (s) based on desired requirements was employed to yield the
controller C(s) such that C(s) = F (s) 1

Ĝ(s)
= 1

(1+3.7×10−3s)Ĝ(s)
, where Ĝ(s) is

given by (53). As illustrated in the previous section the internal model-based
feedback controller is composed of the controller C(s) and also the Ĝ(s) which
are placed in parallel with the compensated system as depicted in Figure 12.

In order to examine the e�ectiveness of the proposed controller, a step input
ry was �rst applied to the compensated system augmented with the internal
model closed-loop control, i.e. to the feedforward-feedback scheme. The mea-
sured output displacement of the actuator when the reference input ry = 40µm
is applied is shown in Figure 13. As the �gure illustrates, the desired speci-
�cations are fully respected: there is no overshoot and the badly damped os-
cillations in Figure 4 are completely removed, while the settling time is found
to be tr ≈ 10ms, see Figure 13-a. Furthermore, when we observe the step re-
sponse over a long period, we see that the drift due to the creep phenomenon
in Figure 5 is also completely removed.

The next experiment consists in applying a varying input reference displace-
ment ry to the feedforward-feedback scheme. The reference variation is gen-
erated by manually moving a slider in the software (Controldesk) that serves
as graphical interface in the computer. The range of the reference is still lim-
ited within ±40µm, which is the range of characterization and identi�cation.
The response is given in Figure 14-a where we can see that the controlled
actuator tracks successfully the desired displacement. Figure 14-b depicts the
tracking error (ry − y) which remains around zero, except for some peaks
that occur at the brusque change of the reference and despite the noise due
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Fig. 13. Experimental step response of the closed-loop with the proposed feedfor-
ward-feedback control: (a) the transient part, (b) the response over a long period.

to the sensor. The root-mean-square value of the error has been calculated
(RMSerror = 1

Nx

∑Nx
k=1 (ry(k)− y(k))2), where Nx is the number of experimen-

tal points. We obtained RMSerror = 0.2µm which is negligible relative to the
range of displacement (±40µm).
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Fig. 14. (a): experimental response with varying input ry. (b): tracking error.

The last experiment deals with the harmonic response of the suggested rate-
dependent Prandtl-Ishlinskii (RDPI) feedforward controller combined with the
internal model feedback controller (IMC). To demonstrate its interest, a IMC
feedback-only scheme was also implemented. Furthermore, a feedforward com-
bined with feedback scheme is also tested but, rather than using the RDPI
compensator, we employ a rate-independent Prandtl-Ishlinskii (RIPI) com-
pensator in the feedforward. To calculate the IMC feedback controller, the
same speci�cations are used for the three schemes. These speci�cations are
described above: settling time of tr = 10ms, which corresponds to a desired
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bandwidth of 300 rad
s
. The experiments were carried out with a sine input

reference ry with an amplitude of 40µm and a frequency ranging from less
than 0.1Hz where the creep is dominant to in excess of 1kHz (in excess of
6300 rad

s
). Figure 14 displays the results. We observe that the suggested RDPI

feedforward with IMC feedback scheme provides more bandwidth than the
feedback only and than the RIPI feedforward combined with IMC feedback.
In fact, the proposed rate-dependent hysteresis compensation permitted to
handle both the nonlinearity and the dynamics of the actuator until certain
frequency and thus helped the IMC feedback to have more bandwidth. In
counterpart the rate-independent hysteresis compensation (RIPI) reduced the
nonlinearity at one single frequency only (low frequency in this case: 1Hz).
Hence, the RIPI combined with feedback behaves almost like the a feedback-
only. We also checked the margins of the three schemes. All of them provided
an in�nite gain margin. However we observed that the suggested RDPI feedfor-
ward with IMC feedback scheme provided a larger phase margin relative to the
two others schemes. Also, the RIPI feedforward with IMC feedback scheme
provided a slight larger phase margin relative to the feedback-only scheme.
Table 1 summarizes the bandwidths and the stability margins of the three
schemes where it is evidenced that the suggested RDPI feedforward combined
with the IMC feedback provides the best performances.

bandwidth gain margin phase mar-
gin

RDPI feedforward + IMC feedback
(suggested scheme)

327 rads ∞dB 180deg (at
11.1 rads )

RIPI feedforward + IMC feedback 177 rads ∞dB 178deg (at
10.9 rads )

feedback-only 164 rads ∞dB 176deg (at
11 rads )

Table 1
Performances evaluation.

6 Conclusions

This paper dealt with the feedforward control of the rate-dependent hystere-
sis in smart materials based actuators. The RDPI (rate dependent Prandtl-
Ishlinskii) model and compensator were therefore developed for that. A thor-
ough analysis of the compensation error is afterwards developed. Then, we
suggest to augment the feedforward scheme with a feedback control that is
designed on the basis of this compensation error and of eventual model uncer-
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Fig. 15. Frequency responses.

tainties. The internal model control scheme is suggested for this aim. Finally,
the feedforward-feedback control scheme was applied to a piezoelectric actua-
tor devoted to micromanipulation tasks. The experimental tests demonstrate
the e�ciency of the approach relative to feedback.
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