
Approximating Event System Abstractions
by Covering their States and Transitions

J. Julliand, O. Kouchnarenko, P.-A. Masson, and G. Voiron

FEMTO-ST, UMR 6174 CNRS and Univ. Bourgogne Franche-Comté
16, route de Gray F-25030 Besançon Cedex France

{jjulliand, okouchna, pamasson, gvoiron}@femto-st.fr

Abstract In event systems, contrarily to sequential ones, the control
flow is implicit. Consequently, their abstraction may give rise to dis-
connected and unreachable paths. This paper presents an algorithmic
method for computing a reachable and connected under-approximation
of the abstraction of a system specified as an event system. We com-
pute the under-approximation with concrete instances of the abstract
transitions, that cover all the states and transitions of the predicate-
based abstraction. To be of interest, these concrete transitions have to
be reachable and connected to each other. We propose an algorithmic
method that instantiates each of the abstract transitions, with heuristics
to favour their connectivity. The idea is to prolong whenever possible the
already reached sequences of concrete transitions, and to parameterize
the order in which the states and actions occur. The paper also reports
on an implementation, which permits to provide experimental results
confirming the interest of the approach with related heuristics.

Keywords: Predicate abstraction; under-approximation; event systems

1 Introduction

Abstracting a program or its specification allows to control the size of its state
space description, at the price of a loss in accuracy. That facilitates their al-
gorithmic exploitation, otherwise limited by the huge if not infinite number of
concrete states. The general idea of abstraction is to gather states that share
common properties into super-states. In predicate abstraction [1] the concrete
states are mapped onto a finite set of abstract ones, by means of a set of pred-
icates that characterizes each abstract state. An abstract transition links two
abstract states when it has at least one concrete instantiation. Such transitions
are called may [2], meaning that they may be instantiated. Still there is no
guarantee that two consecutive may transitions can necessarily be instantiated
as two consecutive connected concrete transitions: their respective target and
source concrete states may differ.

This paper aims at computing connected and reachable concrete paths from a
predicate abstraction of a system formally specified as an event system [3], which
is a special kind of action system [4,5]. We propose an algorithmic method for

2 J. Julliand, O. Kouchnarenko, P.-A. Masson, and G. Voiron

computing an under-approximation that covers all the states and transitions of
this abstraction.

An event in an event system specifies state variable modifications by means of
a guarded action. The actions are activated whenever their guard becomes true,
so that there is no natural control flow as in a program. As a result, paths of the
system may become disconnected and even unreachable in the abstraction. Still,
we are interested in covering the reachable part of the abstraction as best as
possible. This work has been motivated by a testing purpose: our aim is to cover
by tests some selected execution paths of a system, and abstracting it avoids
its state space to blow-up. But the method could also apply for example to the
model-checking of safety properties.

We propose to under-approximate the abstraction by computing concrete in-
stances of the abstract event sequences. The idea behind our method is to favour
the connectivity and reachability of the successive concrete instances by prolong-
ing whenever possible the already reached concrete transitions. Our proposal in
this paper is as sketched:

– we instantiate each of the abstract transitions by enumerating all the possi-
bilities of connecting two abstract states by any event,

– we use heuristics for controlling the order in which the events and states are
enumerated, according to some know-how of the natural flow of the events
succession,

– we use concrete state coloration, similarly to [6], for prolonging preferably
the sequences known to be reachable and connected.

Our contributions allow then generating a concrete transition system from
an event system. We also report on an implementation, which permits us to
provide experimental results confirming the interest of the approach with the
related heuristics.

The technical background of our paper regarding event systems, predicate
abstraction and may transition systems is given in Sect. 2. Section 3 presents
an electrical system as an illustrative example. The algorithm for computing
both an abstraction and its approximation is presented in Sect. 4. The heuristics
that we propose to enhance the coverage achieved by the algorithm are given in
Sect. 5. Our experimental results are presented in Sect. 6. Section 7 describes
related work, and Sect. 8 concludes the paper.

2 Background

In this paper systems are specified by event systems (ES) described in the B
syntax [7,3]1. Notice however that our proposals and results are generic since
event system semantics is defined by concrete labelled transition systems.

In this section we first present the syntax and the semantics of the B event
systems. Then we present the concept of predicate abstraction and formalize the
abstraction of event systems by means of May Transition Systems (MTS).

1 Our experimental models were written in B, but could alternatively be translated
to a syntax with guarded commands [4], such as Abstract State Machines [8,9].

Approximating Event System Abstractions 3

2.1 Model Syntax and Semantics

We start by introducing B event systems in Def. 1. The events are defined by
means of guarded actions [4] by composition of five primitive actions where
a, ai are actions, E, F are arithmetic expressions and P , P ′ are predicates:
skip an action with no effect, x, y := E,F a multiple assignment, P ⇒ a a
guarded action, a1[]a2 a bounded non-deterministic choice between a1 and a2,
and @z.a an unbounded non-deterministic choice az1 []az2 [] . . . for all the values
of z satisfying the guard of a denoted as grd(a). Here grd is defined on the

primitive actions by: grd(skip)
def
= true, grd(x, y := E,F)

def
= true, grd(P ′ ⇒

a)
def
= P ′ ∧ grd(a), grd(a1[]a2)

def
= grd(a1) ∨ grd(a2) and grd(@z.a)

def
= ∃z · grd(a).

Definition 1 (Event System). Let Ev be a set of event names. A B event
system is a tuple 〈X, I, Init,EvDef〉 where X is a set of state variables, I is a
state invariant, Init is an initialization action such that I holds in any initial

state, EvDef is a set of event definitions, each in the shape of e
def
= a for any

e ∈ Ev, and such that every event preserves I.

Following [10], we use labelled transition systems to define the semantics of
event systems. An example of a B event system will be provided in Sect. 3.

Let e
def
= a be an event. It has a weakest precondition [5] and a weakest

conjugate precondition [10] w.r.t. a set of target states Q′ denoted respectively
as wp(a,Q′) and wcp(a,Q′). wp(a,Q′) is the largest set of states from which
applying a always leads to a state of Q′ whereas wcp(a,Q′) is the largest set of
states from which it is possible to reach a state of Q′ by applying a. An event
also defines a relation between the values of the state variables X before and
after the application of the event. It is expressed by the before-after predicate

of the event e
def
= a denoted as prdX(a).

Let us now formally define wp, wcp and prdX following [11]. Classically, we
directly consider the set of states Q and Q′ as predicates of the same name: a
set of states Q defines a predicate Q that holds in any state of Q but does not
holds in any state not in Q.

We define the wp w.r.t. the five primitive actions as:

– wp(skip,Q′)
def
= Q′,

– wp(x := E,Q′)
def
= Q′[E/x] that is the usual substitution of x by E,

– wp(P ⇒ a,Q′)
def
= P ⇒ wp(a,Q′),

– wp(a1[]a2, Q
′)

def
= wp(a1, Q

′) ∧ wp(a2, Q
′),

– wp(@z.a,Q′)
def
= ∀z.wp(a,Q′) where z is only bound by predicates in a.

We define the wcp and prdX w.r.t. wp as:

– wcp(a,Q′)
def
= ¬wp(a,¬Q′),

– prdX(a)
def
= wcp(a, x′1 = x1 ∧ . . . ∧ x′n = xn) that is a predicate on the state

variables X = {x1, . . . , xn} in the source state before a and the target state
variables X ′ = {x′1, . . . , x′n} after a.

4 J. Julliand, O. Kouchnarenko, P.-A. Masson, and G. Voiron

2.2 Predicate Abstraction

Predicate abstraction [1] is a special instance of the framework of abstract in-
terpretation [12] that maps the potentially infinite state space C of a concrete
transition system onto the finite state space A of an abstract transition system

via a set of n predicates P def
= {p1, p2, . . . , pn} over the state variables. The set

of abstract states A contains 2n states. Each state is a tuple q
def
= (q1, q2, . . . , qn)

with qi being equal either to pi or to ¬pi, and we also consider q as the predicate∧n
i=1 qi. We define a total abstraction function α : C → A such that α(c) is an

abstract state q where c satisfies qi for all i ∈ 1..n. By a misuse of language, we
say that c is in q, or that c is a concrete state of q.

Let us now define the abstract transitions as may ones. Consider two abstract
states q and q′ and an event e. There exists a may transition from q to q′ by
e, denoted by q

e→ q′, if and only if there exists at least one concrete transition
c
e→ c′ where c and c′ are concrete states with α(c) = q and α(c′) = q′.
We check predicate satisfiability thanks to SMT solvers. For a predicate P ,

we define the solver call SATc(P) as returning either a model of P , or unsat if P
is unsatisfiable, or unknown if the solver failed to determine the satisfiability of P.
We also define SAT (P) as the predicate that is true iff SATc(P) returns a model

(showing that P is satisfiable). Let e
def
= a be an event definition, q

e→ q′ is a

may transition iff SAT (wcp(a, q′)∧q). We compute a concrete witness c
e→ c′ by

using the before-after predicate: (c, c′) := SATc(prdX(a) ∧ q′[X ′/X] ∧ q) where
q′[X ′/X] is the predicate q′ in which each state variable xi is substituted by x′i.

2.3 May Transition Systems

Let us introduce may transition systems (MTS), which are transition systems
with abstract states, and abstract may transitions. They are related to Modal
Transition Systems [13,14,15], but with only the may modality.

Definition 2 (May Transition System). Let Ev be a finite set of event names

and P def
= {p1, p2, . . . , pn} be a set of predicates. Let A be a finite set of abstract

states defined by {p1,¬p1} × {p2,¬p2} × . . . × {pn,¬pn}. A tuple 〈Q,Q0, ∆〉 is
an MTS if it satisfies the following conditions:

– Q(⊆ A) is a finite set of states,
– Q0(⊆ Q) is a set of abstract initial states,
– ∆(⊆ Q× Ev×Q) is a may labelled transition relation.

Now, Definition 3 associates an abstraction defined by an MTS with an event
system.

Definition 3 (MTS associated with an ES). Let ES
def
= 〈X, I, Init,EvDef〉

be an event system and P def
= {p1, p2, ..., pn} be a set of n predicates over variables

of X defining a set of 2n abstract states A
def
= {p1,¬p1} × {p2,¬p2} × ... ×

{pn,¬pn}. A tuple 〈Q,Q0, ∆〉 is an MTS associated to ES and P if it satisfies
the following conditions:

Approximating Event System Abstractions 5

– Q
def
= {q ∈ A|∃(q′, e).(q e→ q′ ∈ ∆ ∨ q′ e→ q ∈ ∆)},

– Q0
def
= {q|q ∈ A ∧ (SAT (prdX(Init) ∧ q[X ′/X]))[X/X ′]},

– ∆
def
= {q e→ q′|q ∈ A ∧ q′ ∈ A ∧ e def

= a ∈ EvDef ∧ SAT (wcp(a, q′) ∧ q)}.

Further in this paper, in Fig. 2 of Sect. 4, the reader will find an MTS exam-
ple, whose ES is described in Fig. 1(b). The MTS is the part shown in dashed
lines, with the four abstract states named q0 to q3 appearing as rounded rect-
angular dashed boxes. The abstract transitions of ∆ are represented as dashed
arrows labelled by event names.

3 Illustrative Example: an Electrical System

To illustrate our approach, this section describes an electrical (EL) system ex-
ample. It is a finite state control and command system that illustrates the MTS,
as represented in Fig. 2.

(a) Physical representation

X
def
= {H, Sw, Bat}

I
def
= H ∈ {tic, tac} ∧ Sw ∈ 1..3 ∧ (Bat ∈ 1..3→ {ok, ko}) ∧
Bat(Sw) = ok

Init
def
= H, Sw, Bat := tac, 1, {1 7→ ok, 2 7→ ok, 3 7→ ok}

Tic
def
= H = tac⇒ H := tic

Com
def
= ∃(i, j).(i ∈ 1..3 ∧ j ∈ 1..3 ∧ i 6= j ∧ Bat(i) = ok ∧
Bat(j) = ok) ∧H = tic⇒

@ns.(ns ∈ 1..3 ∧ Bat(ns) = ok ∧ ns 6= Sw ⇒ H,Sw := tac, ns)

Fail
def
= ∃(i, j).(i ∈ 1..3 ∧ j ∈ 1..3 ∧ i 6= j ∧ Bat(i) = ok ∧ Bat(j) = ok)⇒

@nb.(nb ∈ 1..3 ∧ Bat(nb) = ok)⇒
(nb = Sw ⇒ @ns.(ns ∈ 1..3 ∧ ns 6= Sw ∧
Bat(ns) = ok ⇒ Sw,Bat(nb) := ns, ko))

[](nb 6= Sw ⇒ Bat(nb) := ko))

Rep
def
= @nb.(nb ∈ 1..3 ∧ Bat(nb) = ko)⇒ Bat(nb) := ok)

(b) Specification

Figure 1. Electrical System and its specification

Figure 1(a) shows a device D powered via a switch to one of three batteries
B1, B2, and B3. A clock H periodically sends a signal that causes a commutation
of the closed switch. The system has to meet the following requirements: one and
only one switch is closed at a time, and a clock signal changes the switch that is
closed. The batteries may break down. If it happens to the one that is powering
D, an exceptional commutation is triggered. We assume that there is always at
least one battery working. When there is only one battery working, the clock
signals are ignored.

The event system in Fig. 1(b) uses three variables. H models the clock and
takes two values: tic to ask for a commutation, and tac when it has occurred. Sw
models the switches by indicating which one is closed. Bat models the batteries
breakdowns by a total function that associates ok or ko (for a broken battery)
to each battery. The state changes occur by applying four events: Tic sends a
commutation signal, Com changes the closed switch responding to a Tic, Fail
breaks down at random a battery, and Rep repairs at random a broken battery.

6 J. Julliand, O. Kouchnarenko, P.-A. Masson, and G. Voiron

The MTS (in dashed lines) of Fig. 2 in the next section abstracts the model

of Fig. 1(b) w.r.t. the set of abstraction predicates P0
def
= {p1, p2}, where p1

def
=

H = tic (meaning that a commutation is asked) and p2
def
= ∃(i, j).(i ∈ 1..3 ∧ j ∈

1..3 ∧ i 6= j ∧ Bat(i) = ok ∧ Bat(j) = ok). p2 means that at least two batteries
are ok, so that a single battery is left working in the states where it is false.

4 Abstraction and Approximated Transition System
Computation

This section presents an algorithm used to compute both an abstraction that
is an MTS, and an under-approximation. The reunion of both is called an Ap-
proximated Transition System (ATS, defined in Def. 4), in which 〈C,C0, ∆

c〉 is
an under-approximation of the labelled transition system that is the semantics
of the event system from which the MTS is deduced.

Definition 4 (Approximated Transition System). Let 〈Q,Q0, ∆〉 be an
MTS. A tuple 〈Q,Q0, ∆,C,C0, α,∆

c〉 is an ATS whose 〈C,C0, α,∆
c〉 is a con-

cretization of the MTS 〈Q,Q0, ∆〉 where:

– C,C0 are sets of respectively concrete states and concrete initial states,
– α is a total abstraction function from C to Q,
– ∆c(⊆ C × Ev × C) is a concrete labelled transition relation.

For example, Fig. 2 shows an ATS of the electrical system of Fig. 1(a). The
MTS appears in dashed lines while the full lines represent its concretization. The
concrete states are showed as big dots.

In the rest of the paper, for the abstract states, we distinguish between
the may-reachability and the reachability. The former is the reachability by the
abstract may transition relation ∆, and the latter is the reachability by the
concrete transition relation ∆c in the ATS. We say that an abstract state q is
reachable if there exists at least one concrete instance of q that is reachable
thanks to the transition relation ∆c. By extension, an abstract transition is
reachable if there exists at least one concrete instance in ∆c whose source state
is reachable.

The ATS computation algorithm that we present concretizes the may tran-
sitions on the fly during the MTS computation. It guarantees that every may
transition between two abstract states is concretized. A total abstraction func-
tion α maps each concrete state of C to an abstract state of Q. The algorithm
comes in two versions, both of them being presented in the same figure. The first
version is the one presented in this section. It is referred to as Alg. 1. The sec-
ond version, referred to as Alg. 2, is enhanced by heuristics that are explained in
Sect. 5. The differences between Alg. 1 and Alg. 2 are highlighted and enclosed
in square brackets. Read the left hand highlighted parts for Alg. 1, and replace
them with the right hand ones for Alg. 2. Notice that since Alg. 2 computes
more things than Alg. 1, some fictive empty parts (the empty highlighted square
brackets []) have been added in Alg. 1.

Approximating Event System Abstractions 7

Tic

c0(1, 111)

c1(1, 101) c8(2, 011)

c6(2, 111)

c9(1, 111)

c5(1, 101)

Rep

Fail

Com

Com

Com

Rep Rep

c10(3, 111)

Fail

Rep

c4(1, 100) c7(1, 100)

c11(1, 110)

Tic

q0 = {¬p1, p2} (h = tac) q2 = {p1, p2} (h = tic)

q1 = {¬p1,¬p2} (h = tac) q3 = {p1,¬p2} (h = tic)

Rep

Fail

Com

Tic

Rep

Fail

Tic

Rep

Fail

c2(2, 110)

Tic

Rep, Fail Rep, Fail

Fail

Rep

Rep

c3(2, 111)

Figure 2. Example MTS and ATS of the Electrical System. The values of the concrete
states are indicated in parentheses right by them. For example with state c8, (2, 011)
means that battery 2 is used, and that battery 1 is ko while batteries 2 and 3 are ok.
The value of h is given globally in the abstract states.

Lines 1 to 8 of Alg. 1 compute the set of initial abstract states Q0, an instance
of each being recorded as a concrete witness in C0 with its association in α.
Lines 9 to 35 compute the may transition relation ∆. Each abstract transition
is concretized by a witness {cw

e→ c′w}, and the concrete states cw and c′w are
recorded in C with their associations in α. For that it computes in the set RQ
the set of may-reachable states. For each may-reachable source state, it checks
for each potential abstract state (line 12) and for each event (line 13) if a may
transition exists (line 14). When it is the case, the algorithm records the witness
transition (see lines 16 and 28), but also possibly another concrete transition
(see lines 17 to 27) whose source state is one of the existing concrete states of
the current source state q when it exists. This last transition is computed first to
improve the reachability of the concrete transition relation. Indeed, the existing
concrete states are more likely to be connected to the initial states than the
witness source state provided by the solver in line 14. Last, line 31 adds q′ as
a may-reachable state that has not been taken into account yet to compute the
may transition relation.

The algorithm terminates because it iterates on a finite number of abstract
states and events. It is sound because the transitions computed are concrete
instances of the semantics of the event system.

8 J. Julliand, O. Kouchnarenko, P.-A. Masson, and G. Voiron

Algorithm: ATS computation [1: without heuristics] [2: with heuristics]

Inputs : 〈X, I, Init,EvDef〉: an Event System where EvDef
def
= {e def

= a | e ∈ Ev}
A: a finite set of abstract states
[] [orderStates: 2A ×Q→ list of Abstract States

(ordering function of the abstract states)]
[] [oEv: ordered list of the events of Ev]

Output : 〈Q,Q0, ∆,C,C0, α,∆
c, [] 〉: [κ]

an ATS [] [provided with a coloration function κ ∈ C → {green, blue}]
Variables : RQ: the set of abstract states remaining to be handled

q, q′: the source and target abstract states of the current transition
c, c′: the concrete source and target states of respectively q and q′

cw, c
′
w: the witness concrete source and target states of a may-transition

GC: the set of [already known] concrete states of q [green C-reachable]
[] [BC: the set of blue concrete states of q]

1 Q := ∅; Q0 := ∅; ∆ := ∅; C0 := ∅; α := ∅; ∆c := ∅; [] [κ := ∅;]
2 foreach q ∈ A do
3 c := (SATc(prdX(Init) ∧ q[X′/X]))[X/X′]
4 if c /∈ {unsat, unknown} then
5 Q0 := Q0 ∪ {q}; C0 := C0 ∪ {c}; α(c) := q
6 [] [κ(c) := green;]

7 end

8 end
9 C := C0; RQ := Q0;

10 while RQ 6= ∅ do
11 choose q ∈ RQ; RQ := RQ− {q}; Q := Q ∪ {q}
12 foreach q′ ∈ [A] do [list orderStates(A, q)]

13 foreach (e
def
= a) ∈ [EvDef] do [list oEv]

14 (cw, c
′
w) := SATc(prdX(a) ∧ q′[X′/X] ∧ q)

15 if (cw, c
′
w) /∈ {unsat, unknown} then

16 ∆ := ∆ ∪ {q e→ q′};
17 GC := {cq | α(cq) = q []} [∧ κ(cq) = green]

18 (c, c′) := SATc(prdX(a) ∧ q′[X′/X] ∧
∨

cq∈GC cq)

19 if (c, c′) /∈ {unsat, unknown} then

20 C := C ∪ {c′}; α(c′) := q′; ∆c := ∆c ∪ {c e→ c′};
21 [] [κ(c′) := green; BC := {c′q | α(c′q) = q′ ∧ κ(c′q) = blue};]
22 [] [(c, c′) := SATc(prdX(a) ∧ (

∨
c′q∈BC c

′
q)[X′/X] ∧

∨
cq∈GC cq);]

23 [] [if (c, c′) /∈ {unsat, unknown}then
24 ∆c := ∆c ∪ {c e→ c′};
25 recursively colour in green from c′;
26 end]

27 end

28 C := C ∪ {cw, c′w}; ∆
c := ∆c ∪ {cw

e→ c′w}; α(cw) := q; α(c′w) := q′;
29 [] [if cw 6∈ domain(κ) then κ(cw) := blue end]

30 [] [if c′w 6∈ domain(κ) ∨ κ(cw) = green then κ(c′w) := κ(cw) end]

31 if q′ 6∈ Q then RQ := RQ ∪ {q′} end

32 end

33 end

34 end

35 end

5 Heuristics for Better Abstraction Coverage

Using Alg. 1, the connectivity and the reachability of the computed ATS might
be weak, depending on which witnesses are exhibited by the solver. This section
provides two heuristics, integrated into Alg. 2, for improving both the connec-
tivity and the reachability. The first heuristic addresses this problem by allowing

Approximating Event System Abstractions 9

the engineer to firstly define an order for the set of events of Ev in an ordered
list oEv (line 13) and, secondly, a custom function ordering the set of abstract
states A (line 12). The second heuristic, exposed in Sect. 5.2, adapts the partial
computation of reachability proposed in [6] to our purpose for integrating it into
Alg. 2. The resulting new algorithm’s complexity is the same as the previous
one. The ATS of Fig. 2 was obtained by applying Alg. 2 to the electrical system
of Fig. 1(a), w.r.t. the set of predicates P0 (defined in Sect. 3). The concrete
states are numbered according to their order of discovery by Alg. 2.

5.1 Events and States Ordering

Our first heuristic consists of providing means to control the order in which the
events and abstract target states are handled by the algorithm.

Indeed, usually in reactive systems, some events can only be fired after other
events have previously been executed. Let us consider the EL system where
no battery repairing (modelled by the Rep event) can occur unless at least
one battery has broken down first (modelled by the Fail event). Since Alg. 1
currently uses an unordered set of events EvDef, it might attempt to concretize
a Rep transition before trying to concretize any Fail transition. In this case, the
concrete source state of the Rep transition would not be a reachable one. To fix
this, we introduce the ordered list of events oEv as an input in Alg. 2. To compute
a complete abstraction, i.e. covering all events and all states, oEv must contain
at least one occurrence of each event of the set EvDef. For example, for the EL
system, in all judicious orders, Fail must precede Rep for the aforementioned
reason, and Tic must precede Com because Com is a response to the event Tic.

Similarly, the orderStates function parameterizes Alg. 2. Thanks to this func-
tion, the order in which the abstract target states are handled can be controlled.
To compute a complete abstraction, the list returned by orderStates must con-
tain at least all the abstract states of A. While being completely customizable
by the engineer, the function used in our experiments presented in Sect. 6 gives
better results for an order in which the first target abstract state handled is
the source abstract state (state q in line 11) and the other states are ordered
arbitrarily. Indeed, treating reflexive abstract transitions first tends to increase
the number of reachable concrete states within the source abstract state. As a
result, the chances that the next abstract transitions can be concretized from a
reachable source state are increased.

When applying Alg. 1 to the EL system with a set of abstraction predicates
(first AP in Table 1), 33.33% of the abstract states and 11.11% (see line 1) of
the abstract transitions are covered by the ATS. Integrating the event and state
ordering without coloration improved these ratios respectively to 66.67% and
44.44%.

These ordering heuristics are integrated into Alg. 2, along with the concrete
states coloration discussed in Sect. 5.2. Even though our results did not focus
on that point, an interesting perspective could be to consider the concretization
of a same abstract transition multiple times. This could be useful for instance
for systems requiring initialization steps that repetitively apply the same event,

10 J. Julliand, O. Kouchnarenko, P.-A. Masson, and G. Voiron

such as a credit card system for example. In fact, this behaviour can already
be implemented using our algorithm by adding the same event to oEv several
times, and by adding the target state of the abstract transition several times to
the list returned by the orderStates function.

5.2 Concrete States Coloration

The reachability of the concrete states of the under-approximation is improved
and computed on the fly in Alg. 2 at no additional cost w.r.t. Alg. 1. The
principle is to associate a colour with each concrete state. A reachable state is
coloured in green and a state whose reachability is unknown is coloured in blue.
While Alg. 1 tried to concretize the abstract transitions from an already known
concrete state, Alg. 2 uses the reachability information when concretizing the
abstract transitions. It first tries to concretize an abstract transition from any
known and reachable state (see lines 17 and 18). If it is indeed possible (line
19), the solver returns a first reachable concrete transition, added to the ATS,
whose concrete target state becomes green (see lines 20 and 21). To improve
the connectivity, the algorithm also tries to join a green source concrete state
to a target blue one, whose reachability is thus currently unknown (line 22). If
it is possible (line 23), its colour becomes green (line 24) since it is a target
of a concrete transition starting from a reachable (green) concrete state. Even
if the concretization from a known green concrete state is not possible, the
abstract transition is still concretized. The corresponding concrete source and
target states may already be known. In this case, their reachability remain the
same. Otherwise, since we have no information about their reachability, they are
coloured in blue (see lines 28 and 29).

When applying Alg. 2 with coloration and without events and states ordering
to the EL system with the first set of abstraction predicates in Table 1, 100%
of the abstract states and 77.78% of the abstract transitions are covered by the
ATS. This is better than with Alg. 1 that gives respectively 33.33% and 11.11%.
Moreover, integrating the two heuristics seen in Sect. 5.1 into Alg. 1 improved
these two ratios to 100%.

These heuristics allow improving the reachability of the ATS for all the sys-
tems that we use in our experiments (see Sect. 6.2).

6 Implementation and Experimentation

This section introduces in Sect. 6.1 our proof-of-concept tool developed to eval-
uate the effects of the heuristics. The experimental results on four examples in
Table 1 are presented in Sect. 6.2. Then, in Sect. 6.3 we analyse these results
and conclude on the contributions of the heuristics presented in this paper.

6.1 About the Tool

The developed tool can be seen as a library for handling abstract and concrete
transition systems as well as event systems. It embeds an event-B parser and al-

Approximating Event System Abstractions 11

lows to manipulate most event-B systems. The two algorithms are implemented
and can be applied to them. The library also provides the user with many fa-
cilities for dealing with event systems. For instance, pre-implemented functions
allow to easily compute an abstraction of a model from a set of abstraction
predicates, as well as the wp, wcp and before-after predicates prdX of events
defined by guarded actions. The library also contains functions to check the
modality of abstract transitions and to find a concretization of an abstract state
or an abstract transition. It can also be seen as a simple API for multiple SMT-
solvers since the tool automatically generates SMT-Lib2 code for checking the
satisfiability of any first order boolean formula. The tool is constituted of more
than 5000 lines of JAVA code (version 8) and uses Z3 [16] as default SMT-solver.
The library can be downloaded at https://github.com/stratosphr/stratest/wiki . This
website also gives information on how to use the tool.

6.2 Experimental Results

This section provides the results obtained when applying Alg. 1 and Alg. 2
to a set of four realistic event systems of increasing size. These event systems,
available in the aforementioned GitHub repository, were taken back from various
previous work without modification so as not to influence the experiment and
threaten the validity of the results. The set of examples contains the electrical
system (EL) presented in Sect. 3, a phone book service (PH), a coffee machine
system (CM), and a car alarm system (CA). For each of them, two different
sets of abstraction predicates have been used (see the AP column).

The following column names appear in Table 1: Sys for the system stud-
ied and an upper approximation of its size between parentheses, #Ev for the
number of events in the event system, AP for an identification of the set of ab-
straction predicates used, #AP for the number of abstraction predicates in AP,
Alg. for the algorithm applied, #AS for the number of may-reachable abstract
states, #ASreach for the number of reachable abstract states computed, τAS for
the abstract state coverage that is the ratio #ASreach

#AS , #AT for the number of
abstract transitions, #ATreach for the number of reachable abstract transitions
computed. Note that we say that an abstract transition is reachable if there
exists a concrete instance of it in the ATS that is reachable. Next, there are
the following column names: τAT for the abstract transition coverage that is the
ratio #ATreach

#AT , #CT for the number of concrete transitions computed, ρCT for

the ratio #CT
#ATreach

which measures the efficiency of the method, by indicating in
average how many concrete transitions have been computed for making an ab-
stract transition reachable, and finally Time for the ATS computation runtime
(in seconds). The connectivity between transitions is indirectly measured via the
coverage and efficiency rates, since a reachable state or transition is necessarily
connected to a concrete initial state.

The main results of our method are the coverage ratios of abstract states
(τAS) and abstract transitions (τAT). For almost identical computation time(s),
an improvement of these ratios indicates a better performance of the method.

12 J. Julliand, O. Kouchnarenko, P.-A. Masson, and G. Voiron

For ρCT , a value between 3 and 1 indicates that the algorithm covers one ab-
stract transition per iteration step. When this ratio decreases that indicates an
improvement of the efficiency. Indeed, for each abstract transition, each iteration
step computes one up to three transitions according to the conditions in lines
19 and 23. For the EL system, with the first set of abstraction predicates, ρCT
decreases from 13 to 2, meaning that the heuristic allowed to compute more
interesting concrete transitions, increasing the abstraction transition coverage
from 11.11% to 100%.

Table 1. ATS computation results
Sys #Ev AP #AP Alg. #AS #ASreach τAS(%) #AT #ATreach τAT (%) #CT ρCT Time

EL
(24)

4
1 2

1 3 1 33.33 9 1 11.11 13 13 00.283
2 3 3 100 9 9 100 18 2 00.297

2 2
1 4 4 100 11 8 72.73 15 1.88 00.429
2 4 4 100 11 11 100 17 1.55 00.449

PH
(210)

4
1 3

1 3 3 100 12 11 91.67 16 1.45 00.261
2 3 3 100 12 12 100 22 1.83 00.287

2 6
1 8 8 100 62 60 96.77 83 1.38 01.994
2 8 8 100 62 62 100 88 1.42 02.204

CM
(216)

8
1 3

1 4 3 75 30 5 16.67 47 9.4 00.753
2 4 4 100 30 24 80 54 2.25 00.854

2 3
1 6 3 50 52 7 13.46 83 11.86 01.639
2 6 6 100 52 25 48.08 77 3.08 01.629

CA
(215)

20
1 6

1 8 5 62.5 31 18 58.065 44 2.44 13.818
2 8 8 100 31 25 80.65 50 2 13.283

2 9
1 9 5 55.56 30 11 36.67 37 3.36 23.978
2 9 9 100 30 28 93.33 52 1.86 25.381

6.3 Analysis of the Obtained Results

This section comments on the results exposed in Table 1.
As expected, the ATS computation times are nearly identical, no matter

which version of the algorithm has been used. Note that for two cases out of eight
the ATS computation time with Alg. 2 is on average slightly faster than with
Alg. 1. Since the formulas whose satisfiability is checked are different between the
two algorithms, the solver may be faster to provide an answer for the formulas
in Alg. 2 than in Alg. 1.

We observe that Alg. 2 improves both the abstraction coverage rates and the
efficiency ρCT compared to Alg. 1. In particular, we point out the CM case with
the first AP where the transition coverage and the efficiency achieved by Alg. 2
is about respectively five and four times better than by Alg. 1.

For all systems and all sets of abstraction predicates, the abstraction coverage
is improved by Alg. 2. Depending on the set of predicates used, the coverage for
states and transitions can reach up to 100%. On most examples however, Alg. 1
covers less than half of the abstract states and transitions. Note for example the
CM case with the second set of abstraction predicates where the abstract states

Approximating Event System Abstractions 13

and transitions coverage(s) are respectively twice and three times better using
the heuristics. All these results empirically confirm the interest of the proposed
heuristics to improve the abstraction coverage.

The heuristics also produced good results concerning the efficiency rate ρCT .
For most cases, its value is decreased by Alg. 2 thanks to the heuristics, which
means that they generally help concretizing abstract transitions by useful tran-
sitions improving the abstraction coverage. For the CM system with the second
AP and Alg. 1 for example, an average of 11.86 concrete transitions need to be
computed in order to cover one abstract transition. When the heuristics are used
however, an average of only 3.08 concrete transitions computation is needed to
cover one abstract transition.

The ordering heuristic alone does not necessarily improve the abstraction
coverage w.r.t. Alg. 1, whereas the coloration heuristic alone always improves
the results. Nevertheless, for four cases out of the eight presented in this pa-
per, combining the ordering and coloration heuristics improves the abstraction
coverage compared to coloration only. For the CM system with the first AP
for example, the ordering heuristic alone covers two abstract states compared to
three with Alg. 1, and six abstract transitions compared to five. The coloration
heuristics alone covered all of the four abstract states, and twenty-two out of the
thirty abstract transitions. When combining both heuristics, the four abstract
states and twenty-four abstract transitions are covered.

7 Related Work

In [17] and in [18], the set of abstraction predicates is iteratively refined in order
to compute a bisimulation of the semantics of the model when it exists. None
of these two methods is guaranteed to terminate, because of the refinement step
that sometimes needs to be repeated endlessly. SYNERGY [19] and DASH [20]
combine under-approximation and over-approximation computations to check
safety properties on programs. As we aim at proposing an efficient method to
build a reachable under-approximation of a system that covers all abstract states
and all abstract transitions w.r.t. a specification and a set of predicates, our
algorithm does not refine the approximation and so always terminates.

The closest methods to ours are those that are proposed in [21] and in [6].
These approaches propose algorithms that compute an under-approximated con-
cretization of a predicate abstraction covering its abstract states and transitions.
Both these methods are exploited for generating tests. The algorithm in [21] does
not traverse nor compute the may abstraction. It builds a partial concretization
of the abstract states that are reached from an initial concrete state by a forward
walk. To improve this method, the algorithm in [6] computes exhaustively the
may abstraction by random abstract state generation. Therefore, some generated
concrete states are not reached. Then Veanes and al. [6] propose to distinguish
between four kinds of abstract transitions: green transitions when there exists
an instance that is reached from an initial concrete state, blue transitions when
there exists instances, but none known to be reachable from an initial state,

14 J. Julliand, O. Kouchnarenko, P.-A. Masson, and G. Voiron

red transitions when there does not exist any instance, and grey transitions for
the transitions that have not been concretized yet. In our method, we compute
and concretize only the part of the may abstraction that is may-reachable by an
abstract transition from an initial abstract state. We do not record the red tran-
sitions that are non-existing transitions in the MTS, and we do not need the grey
transitions that are the ones which remain to be treated. In contrast with [6],
our method colours the concrete states instead of the abstract transitions. This
allows us to distinguish between the reached states (green) and the states for
which we do not know whether they are reached (blue) or not. So for improving
the method, Alg. 2 connects in priority a green source state s to a blue target
state t. That has a “domino effect” because all the blue reached states from t
remain blue, but become reachable.

Some other work under-approximate an abstraction for generating tests. The
tools Agatha [22], DART [23], CUTE [24], EXE [25] and PEX [26] also compute
abstractions from models or programs, but only by means of symbolic execu-
tions [27]. This data abstraction approach computes an execution graph. Its set
of abstract states is possibly infinite whereas it is finite with our method.

Our method can be applied to generate tests as the concolic execution in [24].
The concolic method allows to generate structural tests of systems covering par-
tially the control flow that must be explicited. Our approach allows to generate
tests covering the paths defined by the set of abstraction predicates for systems
whose control flow is implicitly defined.

8 Conclusion and Further Work

This paper has presented an algorithmic method for computing a concrete ap-
proximation of the predicate abstraction of an event system. All of the abstract
states and transitions are covered, but as the control flow is implicit in an event
system, our method focuses on computing concrete sequences that are connected
and reachable. We have presented two heuristics allowing us to better reach and
connect these sequences. One heuristic colours the states that are known to be
reachable, and the other takes a user defined order on the events and abstract
states enumeration as parameters. Experimental results on four case studies are
exhibited to confirm the practical interest of our approach.

As future work, we intend to define other means for guiding the sequences
instantiation, in addition to the events ordering. We could introduce a relevance
function on concrete states, as is done in [21], for targeting peculiar concrete
states considered as more relevant. Also, our intention is to use the concrete
sequences that we compute as model-based tests issued from a formal model of
the specification. Abstracting this model would allow selection criteria such as
paths selection to be used, when the size of the explicit model would prevent it.

References

1. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: CAV.
Volume 1254 of LNCS., Springer (1997) 72–83

Approximating Event System Abstractions 15

2. Godefroid, P., Jagadeesan, R.: On the expressiveness of 3-valued models. In:
VMCAI. Volume 2575 of LNCS., Springer (2003) 206–222

3. Abrial, J.R.: Modeling in Event-B: System and Software Design. Cambridge Univ.
Press (2010)

4. Dijkstra, E.: Guarded commands, nondeterminacy, and formal derivation of pro-
grams. Com. of the ACM 18(8) (1975) 453–457

5. Dijkstra, E.: A Discipline of Programming. Prentice-Hall (1976)
6. Veanes, M., Yavorsky, R.: Combined algorithm for approximating a finite state

abstraction of a large system. In: ICSE 2003/Scenarios Workshop. (2003) 86–91
7. Abrial, J.R.: The B Book. Cambridge Univ. Press (1996)
8. Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L.: Abstract State Machines,

Theory and Applications. Volume 1912 of LNCS. Springer (2000)
9. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.

ACM Trans. Comput. Log. 1(1) (2000) 77–111
10. Bert, D., Cave, F.: Construction of finite labelled transition systems from B ab-

stract systems. In: IFM. (2000) 235–254
11. Bride, H., Julliand, J., Masson, P.A.: Tri-modal under-approximation for test

generation. Science of Computer Programming 132(P2) (2016) 190–208
12. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4)

(1992) 511–547
13. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS. (1988) 203–210
14. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using

modal transition systems. In: CONCUR. (2001) 426–440
15. Ball, T.: A theory of predicate-complete test coverage and generation. In: FMCO.

Volume 3657 of LNCS. (2004) 1–22
16. de Moura, L., Bjorner, N.: An efficient SMT solver. In: TACAS. Volume 4963 of

LNCS. (2008) 337–340
17. Namjoshi, K.S., Kurshan, R.P.: Syntactic program transformations for automatic

abstraction. In: CAV. Volume 1855 of LNCS. (2000) 435–449
18. Păsăreanu, C.S., Pelánek, R., Visser, W.: Predicate abstraction with under-

approximation refinement. LMCS 3(1:5) (2007) 1–22
19. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:

a new algorithm for property checking. In: SIGSOFT FSE. (2006) 117–127
20. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J., Tetali, S., Thakur,

A.V.: Proofs from tests. IEEE Trans. Software Eng. 36(4) (2010) 495–508
21. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state

machines from abstract state machines. In: ISSTA. (2002) 112–122
22. Rapin, N., Gaston, C., Lapitre, A., Gallois, J.P.: Behavioral unfolding of formal

specifications based on communicating extended automata. In: ATVA. (2003)
23. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.

In: PLDI. (2005) 213–223
24. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:

ESEC/SIGSOFT FSE. (2005) 263–272
25. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-

ically generating inputs of death. In: ACM CCS. (2006) 322–335
26. Tillmann, N., de Halleux, J.: Pex-white box test generation for .net. In: TAP.

Volume 4966 of LNCS. (2008) 134–153
27. Păsăreanu, C.S., Visser, W.: A survey of new trends in symbolic execution for

software testing and analysis. STTT 11(4) (2009) 339–353

