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ABSTRACT
This paper presents the modelling of an actuator based on

Magnetic Shape Memory Alloys (MSMA). The actuation princi-
ple relies on the ability of the material to change its shape under
the application of a magnetic field. Previous models proposed
by authors were based on canonical (symplectic) Hamiltonian
modeling and thermodynamics of irreversible processes. These
models, though physically cogent, are non-minimal differential
algebraic dynamical models and hence less adapted for control
purposes.This paper therefore proposes a modified and system-
oriented modeling procedure which lends itself naturally to a
port-Hamiltonian model. The latter is found to be a minimal re-
alization of the above whereby interconnection between subsys-
tems is clearly visible. Using Lagrange multipliers, constraints
which arise due to causality and interconnection are expressed.
In the last section, Differential Algebraic Equations (DAE) re-
sulting from previous models are reduced to Ordinary Differen-
tial Equations (ODE) and by using coordinate transformations,
constraints are decoupled from the system input/output. The re-
sulting model is well-suited for control.

INTRODUCTION
In the context of miniaturization and performance improve-

ment, actuators based on active materials are becoming very

∗Address all correspondence to this author.

competitive because of compactness, high integration capabil-
ity and precision. The range of applications and the area of
new possibilities opened by these new devices are increasing
rapidly [1, 2]. Among the variety of active materials, piezo-
electric materials are the most widely used as they have the de-
sired properties needed for miniaturization, dynamics and con-
trol [3–6]. Nevertheless, some other materials are appearing
based on electromagnetic actuation. Among them, the most
promising is the Magnetic Shape Memory Alloys (MSMA) espe-
cially the Ni2MnGa alloy. Its crystallographic structure changes
depending on the intensity of the magnetic field applied. These
changes produce a strain which alters the material dimension. A
model of such MSMA based mechatronic device can be found
in [7]. It was based on canonical (symplectic) Hamiltonian mod-
eling and thermodynamic of irreversible processes. These mod-
els though physically cogent and well-adapted for simulation
purposes are non-minimal differential algebraic dynamical mod-
els and hence less adapted for control purposes. Based on this
material, this paper will extend these works to suggest reduced
order models that are better adapted for control. The new ap-
proach adopts a system-oriented point of view to manage multi-
physic and mechatronic devices. This approach highlights the
derivation of a port-Hamiltonian model of a MSMA based ac-
tuator from causal graph as it has been done in [8, 9] and [10].
The final objective is to obtain a minimum size model usable for
control design using passivity techniques [11, 12]. In the first
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part of the paper, the main characteristics of the MSMA are pre-
sented followed by some explanation about previous modeling
works using ”canonical” Hamiltonian method. Afterwards the
advantages of an interconnection structure for multi-components
system are presented. The interconnection and the associated
port Hamiltonian model are obtained using linear graph theory
and causality considerations. The system is divided into 2 sub-
systems, namely the ”magnetic field generator” and the ”energy
converter (MSMA) + load”. The two subsystems are then con-
nected and the complete port-Hamiltonian model derived. A final
step is devoted to model reduction. The objective is to transform
the initial DAE system into a set of ODEs which could be used to
implement new control strategies such as IDA-PBC for example.

MSMA PROPERTIES AND CHARACTERISTICS
Magnetic shape memory effect

MSMA can be seen as a mixture of a classical shape mem-
ory alloy (SMA) and a magnetostrictive material. In short, the
microscopic behaviour of MSMA is similar to the one of SMA
[13, 14] but strain can not only be due to a martensite/austenite
phase transformation but also due to a martensite reorientation
under magnetic fields. In this second mode of working – marten-
site rearrangement –, MSMA can be assimilated to magnetostric-
tive materials (Terfenol-D) [15] except that it presents a much
larger magneto-mechanical coupling (6 % of maximal strain for
Ni2MnGa instead of 0.16 % for Terfenol-D). The magnetic ac-
tuation significantly increases the dynamical bandwidth of the
crystallographic changes because it uses a magneto-mechanical
energy conversion process instead of a thermo-mechanical pro-
cess for classical SMA actuation. Since the first results fifteen
years ago, MSMA materials have known some important im-
provements, namely the working temperature range and the max-
imum available strain. When actuated by magnetic fields, these
materials now allow a large strain (up to 6 %) with a response-
time in the range of milliseconds as compared to tenth of sec-
onds or even seconds for SMA (see [16, 17] for reviews). Cur-
rently, the most used MSMA are non-stoichiometric Ni2MnGa
monocrystals but a lot of studies are also being conducted on
thin films deposition and polycrystal samples [18,19]. Neverthe-
less, these latter types are less adequate for actuation applications
because of a lower magneto-mechanical coupling. In this paper,
only Ni2MnGa monocrystal is considered.

In this alloy, the martensite phase can appear in three dif-
ferent martensitic variants corresponding to the three possible
crystallographic directions in the sample (see Fig. 1 (a)).

At high temperature, the MSMA sample is in austenitic
phase (A) but after a cooling process, the austenite phase is trans-
formed into a martensite phase without any favoured variants
(M1, M2 and M3). If a mechanical stress is applied in a spe-
cific direction, then the fraction of variant with its short axis in
this direction grows. If this stress is high enough then the sample
will only contain this variant (for example M2 in Fig. 1 (b)). If
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Figure 1. MSMA BEHAVIOR: (a) AUSTENITE PHASE AND THE
THREE MARTENSITE VARIANTS, (b) MARTENSITIC REORIENTA-
TION: EFFECTS OF MECHANICAL STRESS, MAGNETIC FIELD AND
TEMPERATURE.

the stress decreases, the volume fraction of the M2 variant will
also decrease but with a large thermo-magneto-mechanical hys-
teresis. In a similar way, if a magnetic field is applied, the vari-
ant with its easy magnetization direction in the field direction, is
favoured. For Ni2MnGa MSMA, the easy magnetization direc-
tion is the same as the short axis of the martensite variant. In
Fig. 1 (b), if magnetic and stress fields are orthogonal, they both
favour a different variant of martensite (M1 or M2). The dis-
tribution between the magnetic field and the mechanical stress
allows then to control the macroscopic strain. With a mechani-
cal pre-stress, it is also possible to design an actuator driven by
the magnetic field only. It should be stressed that by heating,
austenite phase is recovered. More details about the structural
properties of MSMA can be found in [16].

Hamiltonian modeling of MSMA based actuators
The MSMA based actuator considered in this paper is a sim-

ple device described in [7]. As depicted in Fig. 2, it is constituted
by four components: (i) a control/supply electronic device (con-
trol board + PWM power supply, not depicted on the Fig. 2), (ii)
a magnetic field generation device (coil + core), (iii) a MSMA
sample and (iv) a mechanical load.

This mechatronic device was modeled in previous works us-
ing “canonical” Hamiltonian modeling and thermodynamics of
irreversible processes [7, 20]. This system is thermodynamically
open because it posses a time-dependent external generalized
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Figure 2. DESCRIPTION OF THE SIMPLE ACTUATOR USING MSMA.
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Figure 3. ELECTRICAL LUMPED PARAMETERS MODEL OF THE
COMPONENTS i, ii AND iii OF THE MSMA ACTUATOR. R IS THE ELEC-
TRICAL RESISTANCE OF THE COIL. COIL INDUCTANCE AND MAG-
NETIC PATH ARE SEPARATED INTO EXTERNAL (L2), CORE (LFe),
LEAKAGE (Ll ), AIR-GAP (La−g) AND MSMA CONTRIBUTIONS.

force fext(t) = uext(t): the component i is considered as an exter-
nal voltage source uext(t). The component ii, coil + core, is mod-
eled using an electrical lumped parameters model (see Fig. 3).
This component contains conservative (inductance) and dissi-
pative (resistance) parts. The component iii, MSMA, is mod-
eled using thermodynamics of irreversible processes (Helmholtz
free energy and dissipativity function) and contains conservative
(elastic and magnetic), energy conversion (magneto-mechanic)
and dissipative (thermodynamic irreversibility) parts. The com-
ponent iv contains finally conservative (kinetic) and dissipative
(viscous friction) parts.

The interconnection between these components was taken
into account using Lagrange multipliers technique applied to the
3 interconnection constraints (the supply current iext must flow
into the coil, the magnetic field into MSMA is generated by the
coil and the MSMA strain ε drives the load displacement). A
conservative Hamiltonian function H and an extented Hamilto-
nian function H ′ depending on the time t, n generalized coordi-
nates q and n generalized momenta p was used in the modeling
procedure:

The external generalized forces fext(q, t) was taken into ac-
count in the variation of H ′ by adding the influence of their
virtual works δWext = fext(q, t) ·δq.
Dissipations by static and viscous frictions was taken

into account by adding their dissipated energies variations
δQs(q) and δQv(q̇). The dissipation by viscous friction
Qv(q̇) was computed with a Rayleigh dissipation function
R (q̇) as Qv(q̇) =

∫ t2
t1 R (q̇)dt.

The holonomic interconnection constraints c(q) = 0 was
taken into account with a Lagrange multipliers technique by
adding the term λ ·δc(q) to the variation δH ′.

δH ′ = δH − fext ·δq−δQs−δQv +λ ·δc (1)

As explained in [21], the dynamical equations can be computed
using the Hamilton principle applied to the extented Hamiltonian
function:

δ

∫ t2

t1
pq̇−H ′ dt = 0 (2)

Using variational calculus on this expression, it results in the fol-
lowing 2n Hamilton equations (1≤ k ≤ n):


q̇k =

∂H
∂pk

ṗk =−
∂H
∂qk
− ∂R

∂q̇k
+

∂Qs

∂qk
+ fext,k−λk ·

∂ck

∂qk

(3)

As the device comprises 8 generalized coordinates, the Hamilton
equations are a set of 16 equations, 8 associated with q̇ and 8
associated with ṗ. Details about these equations and correspond-
ing physical parameters can be found in [7]. These 2n differen-
tial equations must be completed by nc = 3 algebraic constraint
equations :

c j(q) = 0 1≤ j ≤ nc (4)

The model of this actuator using “canonical” Hamiltonian mod-
eling is then a set of 2n + nc Differential Algebraic Equa-
tions. Simulations had been performed using the aforementioned
model with load mass m = 1.44 kg, length of MSMA sample
l0 = 20 mm, number of turns of coil N = 1500, and resistance
R = 61.8 Ω. A maximum strain of γ = 0.055 due to marten-
site rearrangement can be obtained and this corresponds to an
increase in length of the material of x = 1.1 mm. Magnetic sat-
uration of the material (easy magnetization axis) and core, ob-
tained from experiments, were 0.65 T and 2.03 T respectively.
Figure 4 shows the current and displacement for a step input of
60V obtained by simulation and also the experimental measure-
ments performed on the device at the Femto-ST Institute [7].

In the following section, it will be shown that if we adopt
a system-oriented formalism as the port-Hamiltonian formalism,
it will allow to drastically reduce the number of these model-
ing equations which are better suited for analysis, simulation and
control.
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Figure 4. DYNAMIC BEHAVIOUR OF THE SYSTEM: VOLTAGE, CUR-
RENT AND DISPLACEMENT VERSUS TIME (SIMULATION: DOTTED
LINE, EXPERIMENTAL RESULTS: SOLID LINE).

PORT-HAMILTONIAN MODELING
The previous modelling procedure – “canonical” Hamilto-

nian modeling – gives 2n + nc DAE in the case of n general-
ized coordinates constraint by nc interconnections. This model
is physically cogent because it was experimentaly validated. It
can adequately be used for simulation purposes using numeri-
cal tools. But, as noticed previously, as a non-minimal differen-
tial algebraic dynamical model, it is usually inadequate for con-
trol purpose. In the latter case, it is necessary to reduce them
to gain insight into the design and control issues. This sec-
tion will present how graph-oriented Port-Hamiltonian modeling
allow to extend the “canonical” Hamiltonian formalism into a
system-oriented modeling procedure well-suited for control is-
sues [8–10].

The Port-Hamiltonian modeling [22–24] requires the sys-
tematic description of interconnections between each elemen-
tary component. For the lumped elements of the electrical net-
work (see Fig. 3), this can be done using the linear graph the-
ory [8, 25, 26]. For dipole/one port components, the linear graph
theory proposes a systematic way to build the interconnection
matrix Jio linking external power-conjugated variables of each
components according to their appearance in the tree T or the co-
tree T̄ of the graph. Depending on their causality, these external
power-conjugated variables can be considered as output (o) or
input (i) of this component. In this section, the complete actuator
will be divided into two main subsystems: subsystem I corre-
sponds to the grouping of previous component i and ii (electric
and magnetic parts) ; subsystem II corresponds to the grouping of
previous components iii and iv (thermodynamics and mechanics
parts). The corresponding graph of subsystem I is depicted in the
Fig. 5. In standard (sympletic) models of circuits (or Lagrangian
models), states are written by first considering the (co-)energy
variables of the (inductors) capacitors as independent. Then, the
constraints between them induced by loops or cutsets are relaxed
by introducing leakage currents or voltages (Lagrangian multi-

1 2 3 4

0

ER EL2 ELl

E
L

F
e

E ex
t2

E L a−
g

Eext

Figure 5. LINEAR GRAPH CORRESPONDING TO THE ELECTRICAL
LUMPED-PARAMETERS MODEL OF THE COMPONENTS i AND ii
(SEE FIG. 3: EXTERNAL VOLTAGE SUPPLY, COIL + CORE, EXTERNAL
VOLTAGE 2: APPLIED TO MSMA). THE Ek EDGE CORRESPONDS TO
THE LUMPED PARAMETER k.

pliers). In our model, there is such kind of dependence because
during the choice of a tree for the graph in the Fig. 5, the close
inspection of prefered causality associated with each lumped el-
ements shows that one state variable was not independent of oth-
ers (L2, Ll , LFe forms a cutset). To formulate this dependence, a
Lagrange multipliers technique associated with a leakage current
iλ1 into a virtual additional branch/edge Eλ1 was then adopted as
depicted in Fig. 6. The constraint associated with this additional
component/edge is:

iλ1 = iL2 − iLFe − iLl = 0 (5)

Using the graph of Fig. 6, Eq. (6) gives the interconnection
structure of subsystems I:

(
iT
uT̄

)
︸ ︷︷ ︸

i

=

(
0 −QT̄
−BT̄ 0

)
︸ ︷︷ ︸

Jio

·
(

uT
iT̄

)
︸ ︷︷ ︸

o

(6)

where

BT =−QT
T̄ =


1 1 0 1
0 0 0 −1
0 0 1 −1
0 0 −1 0

 ,

uT =
(
uR uext uext2 uλ1

)T
,

uT̄ =
(
uL2 uLFe uLl uLa−g

)T
,

iT =
(
iR iext iext2 iλ1

)T
,

iT̄ =
(
iL2 iLFe iLl iLa−g

)T
.

In the Port-Hamiltonian formalism, a distinction between
conservative (H ), dissipative (Qs +Qd), external/source (Wext )
and Lagrange multipliers (λ · c) terms is preserved: i 7→
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Figure 6. MODIFIED LINEAR GRAPH OF THE FIG. 5 WITH A LEAK-
AGE CURRENT iλ1 INTO A VIRTUAL ADDITIONAL BRANCH/EDGE
Eλ1 (TREE T : BOLD LINE; CO-TREE T̄ : DOTTED LINE) TO RE-
SPECT THE PREFERED CAUSALITY FOR INDUCTANCES IN PARAL-
LEL.

(
ic id iext iλ

)T , o 7→
(
oc od oext oλ

)T . For conservative parts, ic
is the time rate of state variables ic = d x(t)

dt and oc is the gradi-
ent of the conservative Hamiltonian function oc =

∂H
∂x . In our

example, it comes to the following equations:

Subsystem I
The conservative elements (inductances) are all grouped into the
co-tree T̄ :

icI = uT̄ =
(
uL2 uLFe uLl uLa−g

)T
=

dxI

dt
,

ocI = iT̄ =
(
iL2 iLFe iLl iLa−g

)T
=

∂HI

∂xI
.

The state variables xI are then defined as magnetic flux linkages
in each inductance of the Fig. 3: xI =

(
φL2 φLFe φLl φLa−g

)T .The
tree T contains only dissipative, external or Lagrange multipliers
terms:

odI = uR,

oextI =
(
uext uext2

)T
,

oλI = uλ1.

As described in [24], when we consider a quadratic dissipative
function, the corresponding Port-Hamiltonian equation of sub-
system I for this device is:

dxI

dt
= (JI−RI) ·

∂HI

∂xI
+GI ·

(
uext

umsma

)
+AI ·uλ1 (7)

where in our case JI = 0 and,

RI =


R 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , GI =


−1 0
0 0
0 −1
0 1

 , AI =


−1
1
1
0



Subsystem II
The subsystem II of this MSMA based actuator contains the parts
iii and iv of the complete device (msma and load). The energetic
behavior of MSMA will not be described in this paper and can
be found in [20, 27], its state is determined by 4 variables: the
magnetic flux linkage φmsma into MSMA, two thermodynamic
internal variables z and pz and its mechanical strain ε. The load
is considered as a rigid body and contains only kinetic energy,
function of the momentum pload . In a similar way as subsystem
I, we find for subsystem II:

xII =
(
φmsma z pz ε pload

)T
,

ocII =
∂HII

∂xII
=
(

imsma
∂HII

∂z
∂HII
∂pz

∂HII
∂ε

∂HII
∂pload

)T
,

oextII = uext3 (voltage applied to msma, see Fig. 3).

The resulting Port-Hamiltonian equation is

dxII

dt
=


0 0 0 0 0
0 0 1 0 0
0 −1 ? 0 0
0 0 0 0 1
0 0 0 −1 0


︸ ︷︷ ︸

JII−RII

·∂HII

∂xII
+


1
0
0
0
0


︸ ︷︷ ︸

GII

·uext3 (8)

with ? =
(∂Physt/∂ż)

ż where Physt is the dissipated power due to
the irreversibility of msma (see [7]). It can be shown, from the
2nd law of thermodynamics (Clausius-Duhem Inequality), that
∂HII
∂xII

T
·RII · ∂HII

∂xII
≥ 0 and hence subsystem II is passive.

Interconnection between subsystems I and II
These two subsystems are interconnected where subsystem II
corresponds to uext2 source for subsystem I and/or subsystem I
correspond to uext3 source for subsystem II. We therefore have:

uLa−g = uext2 = uext3 = umsma

This interconnection produces a second causality problem, be-
cause MSMA and air-gap modeling present both an inductive be-
haviour and they have to be connected in parallel: one of the two
corresponding states is dependent on the other. In a similar way
as previously for subsystem I, this explicit dependence between
state variables can be formulated using a Lagrange multiplier
technique associated with a constraint defined by a second leak-
age current iλ2 parallel to the airgap and MSMA branch/edge:

iλ2 =−iLl + iLa−g + imsma = 0 (9)
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Finally the Port-Hamiltonian equation for interconnection of
subsystems I and II is:

d
dt

(
xI
xII

)
︸ ︷︷ ︸

x

=

(
JI−RI 0

0 JII−RII

)
︸ ︷︷ ︸

J−R

·

(
∂HI
∂xI

∂HII
∂xII

)
︸ ︷︷ ︸

∂H
∂x

+



−1
0
0
0
0
0
0
0
0


︸ ︷︷ ︸

G

· uext︸︷︷︸
u

+



−1 0
1 0
1 −1
0 1
0 1
0 0
0 0
0 0
0 0


︸ ︷︷ ︸

A

·
(

uλ1
uλ2

)
︸ ︷︷ ︸

uλ

(10)

With two constraint equations:

{
iλ1 = iL2 − iLFe − iLl = 0
iλ2 =−iLl + iLa−g + imsma = 0

These two constraint equations can be assigned in the Port-
Hamiltonian formalism:

(
iλ1
iλ2

)
︸ ︷︷ ︸
yλ=iλ

=

(
−1 1 1 0 0 0 0 0 0
0 0 −1 1 1 0 0 0 0

)
︸ ︷︷ ︸

AT

·

(
∂HI
∂xI

∂HII
∂xII

)
︸ ︷︷ ︸

∂H
∂x

= 0 (11)

For quadratic dissipative systems, a Port-Hamiltonian output y
power-conjugated with the external input u may be defined such
as [28]:

d H
dt

=−∂H
∂x

T

·R · ∂H
∂x

+yT ·u≤ yT ·u (12)

For the device considered in this paper, the computation gives:

d H
dt

=
∂H
∂x

T

· dx
dt

=
∂H
∂x

T

·
[
(J −R) · ∂H

∂x
+G ·u+A ·uλ

]
=

∂H
∂x

T

· J · ∂H
∂x
− ∂H

∂x

T

·R · ∂H
∂x

+

(
GT · ∂H

∂x

)T

·u+

(
AT · ∂H

∂x

)T

·uλ

Because J = −J T (antisymmetric in accordance with Tellegen
principle [29]) and AT · ∂H

∂x = 0 (constraints), the first and the
last parts of the second hands are nul and we obtain:

d H
dt

=−∂H
∂x

T

·R · ∂H
∂x

+

(
GT · ∂H

∂x

)T

·u (13)

The output y of this Port-Hamiltonian system is then defined as:

y = GT · ∂H
∂x

= iL2 (14)

The number of state variables is 9 in this Port-Hamiltonian
modeling whereas it was 16 in the “canonical” Hamiltonian mod-
eling. This system-oriented modeling procedure already allows
to reduce the size of the dynamical problem by keeping only state
variables instead of generalized coordinates and momenta. We
also obtain a minimal realization of the system.

MODEL REDUCTION
The “canonical” Hamiltonian modeling procedure gives

2n+nc DAE in the case of n generalized coordinates constraint
by nc interconnections. The Port-Hamiltonian modeling proce-
dure gives nx + ncx DAE in the case of nx conservative compo-
nents constraint by ncx equations. As previously noticed, it is
still necessary to reduce them to gain insight into the design and
control issues and especially to transform the DAE system into
an ODE system. This section will present the reduction of DAE
Port-Hamiltonian equations into a set of ODE Port-Hamiltonian
equations by using changes of variables and state space projec-
tion according to [30]. The first step consists in decoupling the
ncx Lagrange multipliers to nx− ncx states of the system. It is
done by the following change of coordinates: x̃ = TA · x with
TA =

(
S A
)T s.t. AT · S = 0. S being a real matrix of size

(nx,nx− ncx). In our case the following matrix presents the re-
quired characteristics:

ST =



1 1 0 0 0 0 0 0 0
0 −1 1 1 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


(15)

Because of the dissipative term R this first coordinate trans-
formation is not sufficient. Indeed after this change of vari-
ables the Lagrange multipliers only act on the two last states of
the system but these states remain connected to the other ones
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through TA (J −R)TT
A due to the dissipative term R. Further-

more the input is still coupled to the constraints as: TA ·G =(
−1 0 0 0 0 0 0 1 0

)T . Hence, after the first coordinate trans-
formation TA a second transformation TG is applied to remove
this residual coupling coming from the dissipation term:

˜̃x = TG · x̃ = TG ·TA︸ ︷︷ ︸
T

·x (16)

with the following matrix transformations:

TG =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


, T =



1 1 0 0 0 0 0 0 0
0 −1 1 1 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 2 1 0 0 0 0 0 0
0 0 −1 1 1 0 0 0 0



The change of states x 7→ ˜̃x gives the following Port-Hamiltonian
equations:



d ˜̃x
dt

= T · (J −R) ·TT · ∂
˜̃H

∂ ˜̃x
+T ·G ·u+T ·A ·uλ

y = (T ·G)T · ∂
˜̃H

∂ ˜̃x

yλ = (T ·A)T · ∂
˜̃H

∂ ˜̃x
= 0

(17)

With the following state vectors and matrix:

˜̃x =



φL2 +φLFe

−φLFe +φLl +φLa−g

φLa−g −φmsma
z
pz
ε

pload
2φLFe +φLl

−φLl +φLa−g +φmsma


, T ·A =



0 0
0 0
0 0
0 0
0 0
0 0
0 0
3 −1
−1 3



T · (J −R) ·TT =



−R 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 −1 ∗ 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


, T ·G =



−1
0
0
0
0
0
0
0
0


This model reduction procedure allows finally to isolate the two
constraint equations (algebraic) from the rest of the other equa-
tions (ordinary differential) as it can be seen in the last two rows
of T · (J −R) ·TT , T ·G and T ·A: the corresponding 7 ODE can
be solved independently of the 2 AE. The final 7 order model
usable for control can be derived by using projection.

This reduced model can now be used in further steps to de-
sign an efficient control law for this smart material based actu-
ator. These further steps will be detailed in subsequent publica-
tions.

CONCLUSIONS
This paper presents the modeling of a smart material based

actuator. This device uses the strain of a Magnetic Shape Mem-
ory Alloys sample activated by magnetic fields to generate con-
trolable motions. In the first section, the working principle of
this device is explained and, based on previous works of authors,
a “canonical” Hamiltonian model is summarized. In the sec-
ond section, limits of this modeling are explained and advantages
of system-oriented modeling are stressed for design and control
purposes. A Port-Hamiltonian modeling is then proposed for the
device. This one is a minimal realization of the previous model
and allows to express explicitly the interconnections between
subsystems with a Lagrange multipliers technique. Finally, in
the last section, the paper explains how DAE resulting from pre-
vious models can be reduced to an ODE Port-Hamiltonian mod-
els. This model reduction leads to a well-adapted model for con-
trol. They could be used to design efficient control law based on
recent works on the control of Port-Hamiltonian systems such as
IDA-PBC and similar strategies [11, 12].
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