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Abstract— The Prognostics and Health Management (PHM) can 
be considered as a key process to deploy a predictive 
maintenance program. Since its inception as an engineering 
discipline, a lot of diagnostics and prognostics algorithms were 
developed and furthermore methodologies for health 
management and PHM development established. These solutions 
were applied in a lot of industrial cases aiming a maintenance 
transformation. In the Aerospace and Military systems, for 
example, the PHM has been applied more than 20 years with 
systems and components applications. During this last decade, 
the railway industry focused on maintenance issues and 
expressed a special interest on the PHM systems. The 
maintenance of the railway infrastructure requires considerable 
resources and an important budget. Many of the developed 
algorithms and methodologies can be imported to the Rail 
Transport systems. However, a methodology to develop a PHM 
system for a railway infrastructure must be established. This 
paper provides an overview on the key steps to design a PHM 
system regarding to the specific characteristics of the railway 
infrastructure. In addition, tools and procedures for each level of 
the PHM process are reviewed, as well as a summary of the 
existing monitoring, health assessment and decision solutions for 
the railway infrastructure. 

Keywords- Prognostics and Health Maagement; Railway 
infrastructure; Condition-Ba sed Maintenance; Predictive 
Maintenance; Condition monitoring 

I.  INTRODUCTION 
In recent years, the various actors of the railway sector 

showed a growing interest for services activities, and especially 
for remote monitoring, fault diagnostics, embedded sensors 
techniques and more broadly predictive maintenance solutions. 
This interest is motivated by the will of the railway operators to 
reduce operational expenditures such us maintenance 
operations costs and overhauls, which became a crucial area for 
competitiveness. In this context, efforts are made for the 

development of monitoring systems, diagnostics and 
prognostics algorithms and decision support solutions, based 
on Prognostics and Health Management (PHM) techniques. 
However, some solutions already exist in the market. In 2006, 
ALSTOM launched a preventive maintenance tool called 
TrainTracer which captures data from multiple sensor sources 
allowing monitoring continuously the “health” status of various 
components. This tool was completed in 2008 by “eTrain”, a 
data gathering system. And few years later, ALSTOM 
launched a predictive tool called HealthHub which integrates 
TrainTracer, and supported by various data capture solutions 
for the Rolling Stock, Infrastructure and Signaling [1]. Similar 
to TrainTracer a solution for a predictive maintenance facility 
was developed by Bombardier Transportation called Orbita 
which generates maintenance requirements automatically from 
different sensors [2]. Siemens also proposes a remote 
monitoring solution, the EFLEET system, which provides 
functions such us GPS positioning, faults alarm and operating 
data reviewing, data records downloading, offline analysis, and 
diagnostics of the faults and event records, this solution will be 
completed earlier with RAILability solution for predictive 
maintenance [1]. 

This interest in such technologies is aiming an evolution of 
traditional preventive maintenance (PM) policies, essentially 
based on planned inspections and experts’ knowledge, to a 
predictive maintenance relying on the current condition of the 
asset and the estimated future condition to take maintenance 
decisions and actions. In this way, the PHM can provide 
solutions to achieve high reliability and availability, and 
maintenance cost reductions. Many of these solutions can be 
used in the context of railways by tailoring the existing PHM 
techniques developed for particular applications in the areas of 
rotary machines systems, electronic equipment, aerospace and 
military systems, or even nuclear field or medical field.  

However, the development and the deployment of a PHM 
solution for the railway infrastructure necessitate a good 
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knowledge of the existing techniques in both PHM and railway 
monitoring techniques.  

In addition, the most of the current PHM solutions are 
adapted to complex mechanical systems or components which 
are not compatible with the large-scale distributed systems that 
compose the railway infrastructure. In fact, the railway 
infrastructure is composed of linear assets which span long 
distances and are composed of a large population of 
components. A comparison between a non-liner and a linear 
asset inspired from [3] is given in the table 1. 

TABLE I.  COMPARAISON BETWEEN A LARGE DISTRIBUTED SYSTEM AND 
AN INDUSTRIAL SYSTEM [3] 

Industrial system  
(non-linear assets) 

Large-scale distributed system 
(linear assets) 

Geographically compact 
system 

Geographically extended 
system 

Uniform environement: 
Known and stable 

Different environments 
Changeable environment 

Small number of complex 
components 

Large populations of 
technically unsophisticated 

components 
 

These differences imply to define a clear way to implement 
and design a PHM solution for the railway infrastructure. This 
involves taking into account all the parameters of a large-scale 
distributed system for the different levels of PHM system 
architecture.  

This paper provides a review on methodologies and tools 
used in PHM and a review of technologies and techniques in 
the railway infrastructure monitoring. It is structured as follow, 
the first part concerns a review on the key steps for the 
development of a PHM system. The second part presents a 
review of the different tools and methodologies for each step of 
a PHM program regarding the context of the railway 
infrastructure. Then we conclude and give some perspectives. 

II. DEVELOPMENT OF A PHM SYSTEM 
Any product or system is subject to deterioration and 

failure during its life cycle. A maintenance program is aiming 
to overhaul or replace equipment after its failure and keep an 
industrial system or equipment in a state in which it can 
perform its required function by carrying out periodical 
actions. Therefore, adopting an efficient maintenance policy 
can allow the industrials to achieve requirements such as high 
reliability; maximum availability; enhance safety; and 
minimize the life cycle cost of the asset since the maintenance 
is an important part of the lifetime of a system. To do so, the 
Condition-Based Maintenance (CBM) seems to be an adapted 
strategy for such requirements. In fact, the CBM is a 
maintenance program in which the tasks are planned regarding 
the health status of the physical asset. Set up properly and 
effectively implemented, it can significantly reduce 
maintenance costs by replacing the number of unnecessary 
planned operations by necessary ones, and ensure an 
optimization of service by operating only when the current 
condition of the asset is critical [4]. Gradually, the CBM led to 

the emergence of the field of the PHM due to the use of new 
techniques and its broader framework. 

A. PHM architecture 
Basically, and according to the ISO 13881-1, the 

Prognostics (P) in the industrial field refers to “the estimation 
of time to failure and risk for one or more existing and future 
failure modes”. The Health Management (HM) refers to a 
decision making capability to intelligently perform 
maintenance and logistics activities on the basis of diagnostics / 
prognostics information [5]. Moreover, it can be defined as an 
engineering discipline consisting of technologies and methods 
to assess the reliability of a product in its actual life cycle 
conditions to determine the advent of failure and mitigate 
system risk [6] through the supports and enabling prognostics 
and a condition-based maintenance strategy. Regarding these 
definitions, the PHM can be considered as an enabling 
discipline for the CBM and it is usually described with the 
OSA-CBM architecture [7], which is composed of seven 
layers, as described in the figure 1 adapted from the ISO 
13374. 

Figure 1.  PHM architecture adapted from the ISO 13374 

This architecture can be depicted into two main areas of 
development. The first one is related to the health monitoring 
techniques and includes the Data acquisition (DA), Data 
manipulation (DM), State detection (SD), Health assessment or 
Diagnostics (HA) and Prognostics (P) layers. The second one is 
related to the health management and includes the Decision and 
the Human-Machine interface. The DA and DM modules are 
used to collect useful monitoring data and to process it in order 
to extract features, provide parametric data or build the health 
indicators (HI). Subsequently, the HI and other outputs from 
the DM layer are used to detect abnormalities, estimate the 
current state and perform diagnostics. The prognostics aims to 
predict the future states using the DM outputs. The classical 
prognostics output is the Remaining Useful Life (RUL) which 
is performed with a confidence interval allowing the health 
monitoring system generating for a component or a sub-
system: a failure mode of a subsystem or a component in case 
of failure; a subsystem or component health state; and a 
prediction of the remaining useful life (RUL). The information 
is sent to the decision module which processes them to generate 



2016 Prognostics & System Health Management Conference—Chengdu 
 (PHM-2016 Chengdu) 

recommendations for the support of the maintenance staff or 
logistic. This architecture aims to give the basic pillars for a 
maintenance strategy based on the forecasting of the future 
health state of the monitored asset.  

Nevertheless, the methodologies to develop a PHM solution 
are not systematic and the selection of the prognostics approach 
is hard to perceive.  

B. Methodologies for the development of PHM 
There is no systematic methodology for the development of 

PHM systems and most of the solutions in the literature are 
applied to particular cases. In [8] the authors raised the issue of 
a systematic approach for the research methodology in the field 
of prognostics and provided the key requirements for the 
development of PHM system. Moreover, several attempts have 
been achieved to propose a systematic methodology for 
particular engineering areas. In the field of electronic products, 
[9] proposed a methodology based on a hybrid-approach. The 
5S development process proposed for e-manufacturing by [10] 
is based on data-driven approaches and relies on five steps: 
Streamline, Smart Processing, Synchronize & See, Standardize 
and Sustain. The Streamline step refers to the identification of 
the critical components and the prioritization of the monitoring 
data; the smart processing focuses on the extraction of the 
useful features to assess the asset and provide health indicators; 
the Synchronize & See consist of the implementation of a 
decision tool; then the solution must be standardized and 
sustained. For aircraft engines, an original methodology named 
V3-model is proposed in [11]. In this approach the 
development of the PHM system is done in three steps: 1) the 
first step is the validation of the health indicators extraction 
software by using virtual prototype and physics-based models 
2) the second step consists on the development of a prototype 
of the system in order to test the sensors, command unit etc. 3) 
Then the third step is dedicated to the system deployment, 
verification and validation. The first step of this method has 
been applied to aircraft engines and it can be realized as well as 
the development of the supervised system.  

The different design methodologies presented above are 
related to several prognostics approaches. We can classify the 
prognostics approaches into three main groups: data-driven, 
model-based and hybrid prognostics.  

In the data-driven approach the monitoring data are used to 
fit models to the degradation mechanisms (e.g., see [12]).   
These models are based on two overlapping domain [13]: the 
Computational Intelligence (CI) models such as fuzzy logic 
and neural networks; the Machine Learning (ML) models such 
us support vector machines and Bayesian networks.  The key 
enablers for this approach are the availability of reliable run-to-
failure data and the hypothesis that the features extracted from 
the monitoring data remain unchanged or evolve according to 
the component or sub-system condition. This kind of approach 
can enable the building of prognostics models faster with less 
cost, though the physical behavior of the failure mechanisms is 
neglected which can imply difficulties to explain failures and 
consequently generate the suitable recommendations for the 
maintenance. 

The model-based approach uses physics models built from 
the knowledge of the failure mechanisms of the monitored 
system. The models are often established using Physics of 
Failure models to capture an understanding of failure 
mechanisms and evaluate the useful life of the system under 
actual operating conditions. This approach can be applied at the 
conception stage of the system or when time-to-failure enough 
are not available and a good knowledge of the physics of the 
system and the failure modes is available. A well-known 
approach is the estimation of crack growth. 

The hybrid approach relies on the combination of the data-
driven and model-based approaches and it can be achieved in 
two ways: 1) the fusion of the results of each model-based and 
data-driven approaches, this method is called parallel approach; 
2) data-driven approaches are used to tune input parameters for 
the physics-based method which is used to achieve prediction 
with better accuracy, this method is called series approach.  

Several works discussed the methodologies for the 
development and the deployment of a PHM system and 
selection of the prognostics approach. In recent literature, [14] 
provide a design framework to select the appropriate approach 
for the development of a PHM system regarding the 
requirements and the available means. Furthermore, the 
importance of the prognostics approach selection for the 
development methodology was highlighted. In the context of 
the railway infrastructure, a methodology for the development 
of a PHM system must be defined regarding to the system 
definition and the prognostics approach.  

III. DEVELOPMENT OF A PHM SOLUTION FOR THE RAILWAY 
INFRASTRUCTURE 

The maintenance of the railway infrastructure is a wide 
field and concerns the systems of signaling, the electrification 
system, the Track and ballast, and the artworks. This paper 
discusses the maintenance for the catenary and the Track. The 
next paragraphs aim to introduce a development process for the 
railway infrastructure. 

A. PHM architecture for interoperable systems 
Current maintenance polices for the railway infrastructure 

are based mostly on planned periodic inspections or on experts’ 
knowledge. However, several monitoring solutions were 
considered aiming to enable an evolution of traditional 
maintenance policies to condition-based maintenance and 
predictive maintenance. Due to the large-scale of the railway 
infrastructure, inspection trains or commercial trains equipped 
by remote sensors systems are used to detect defects and faulty 
components of the track and the catenary. Regarding these 
assumptions, the development of the traditional architecture of 
a PHM system must take into account this configuration. 
Indeed, in traditional cases the PHM system is grafted on to the 
supervised system to extract physical parameters in order to 
obtain health indicators by achieving data manipulation step. 
For the railway infrastructure monitoring the sensors are 
integrated on specific train sub-systems, acceleration sensors 
can be mounted on the axle-boxes for example [15], for the 
catenary monitoring instrumented pantographs can be used to 
assess the catenary condition [16]. To illustrate this issue a 
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schematic of the systems configuration is given in the Figure 2. 
In this example HI extraction part (data acquisition and data 
manipulation of the catenary PHM system) is integrated to the 
host system (Pantograph system) which is in interaction with 
the supervised system (supervised system). 

Figure 2.  Relationship between the supervised system, the host system and 
the PHM system 

In this case, the host system is considered in a proper 
operating condition. However, this system is also subject to 
failures (e.g. flat wheel defect can affect acquisition of the axle-
boxes accelerations), this implies that the host system health 
can influence on the feature extraction process. Therefore 
considerations must be taken into account during the design 
and the development of the PHM systems: 

Figure 3.  PHM architecture adapted for interoperable systems 

- The host system parameters must be taken into account 
as input for the different layers of the PHM system as 
well as the supervised system parameters (train speed, 
static force of the pantograph, etc.) 

- Whether the host system has a monitoring system or 
not, criteria regarding the host system condition must 
be applied to the extracted features. 

The underlying idea is that obtainment of the health status 
of the supervised system is done thanks to the host system 
hence the current condition of the latter one must be integrated 

as an input in the design of the PHM system. An example of 
detailed implementation is depicted in figure 3. 

In this example of architecture, the health processing pillar 
receives data from the PHM host system. We can for example 
use these data to evaluate the extracted health indicators 
regarding the health assessment of the host system or it can be 
used as information for decision making step and the validation 
of RUL, diagnostics and state information.  

Furthermore, the design of a PHM system relies on several 
steps. 

- Identification of the critical component of the 
supervised system. 

- Definition of the physical parameters to monitor. 

- Development or selection of associated sensors and 
acquisition systems. 

- Selection of the most appropriate state detection, 
diagnostics and prognostics approach regarding the 
system proprieties, the engineering resources, and the 
studied failure mode. 

- Generation of data from a virtual simulator or a test 
bench to do tests depending on the selected approach.  

- Integration of the developed hardware and software 
solutions to the final system.  

- Validation and verification of the hardware and 
software solution.  

According to the design steps and the proposed 
architecture, the design of such approach must consider the 
interaction of the interoperable systems and the evaluation of 
the extracted features regarding the system operating 
parameters and the host system state. 

B. Prognostics approach for the railway infrastructure 
The selection of the prognostics approach is a key step for 

the design. This question relies more on the researchers’ 
knowledge, system expertise and more general the available 
data and system characteristics.  

For the railway infrastructure the lack of run-to-failure data 
and the changeable environment of the system can constitute an 
obstacle for the application of a data-driven approach. 
However, the data collected using inspection train can lead to 
understand the evolution of failure mechanisms regarding 
systems geometry, environmental conditions, rolling stock type 
and traffic. Moreover, there are several model-based techniques 
for the track and the catenary based on materials, tribology 
studies [17] or physics of failure [18]. These models take into 
account the parameters of traffic, applied load, environmental 
conditions, system parameters, etc. Thereby, the validation and 
integration of the physics models in PHM systems applications 
has to be achieved. 

Based on the above considerations the hybrid-approaches 
can lead to good results for the development of a PHM solution 
for the railway infrastructure. Indeed, the lack of generality of 
the model-based approaches can be powered by fitted 
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measurement data. The fitted data can be processed using data-
driven approaches in order to take into account the 
environmental conditions, systems operational data and other 
parameters. 

IV. PHM SYSTEM FOR RAILWAY INFRASTRUCTURE:  
ENABLING TECHNIQUES AND TECHNOLOGIES 

In order to test the applicability of the proposed design 
approach, the existing techniques and technologies for the 
monitoring and fault diagnostics, in the railway infrastructure 
area must be reviewed regarding the different steps of PHM 
system design. The review is done for the Overhead Contact 
System (OCS) or catenary.  

A. Critical components identification 
The main purpose of this task is to identify the major 

components affecting the performance of the system in term of 
downtime costs, availability and reliability. There are several 
approaches to determine components criticality. The most used 
techniques within the context of the PHM are the FMEA [19], 
Hazard analysis such as Hazard and Operability Study 
(HAZOP) or Preliminary Hazard Analysis (PHA) and expert 
knowledge or experience feedback.  

For systems such as the Track or the Overhead Contact 
System (OCS) the determination of critical components can be 
complicated due to the size of the asset, the environmental 
conditions and the system configurations. This implies that the 
criticality determination for this kind of systems is more 
relying to experts’ knowledge and feedback experiences. There 
are some attempts to apply reliability techniques such as 
FMEA. In [3] a methodology based on FMEA analysis is 
proposed to determine criticality of OCS system based on 
failure records for decision-making. Nevertheless, the 
developed methodology is proposed of inspection intervals 
definition and the failure modes and mechanisms are not 
discussed.  

The OCS is composed of a lot of components: the 
messenger wire, contact wire, steady arm, insulators, droppers, 
etc. However, the monitoring of the OCS mostly concentrates 
on the monitoring of the geometrical parameters of the global 
system and the wear of the contact wire. Indeed, contact wire is 
the part of the system which is subject to wear due to the 
interaction and each of the track components will be affected 
by different factors influencing rail degradation so it’s easier to 
monitor the rail than the complete track. 

B. Parameters to measure 
The parameters to be monitored are usually selected 

according to their relationship with functions affecting safety or 
that may involve a serious failure. We can also select the 
parameters depending on their involvement in the operation of 
the system or even their connection with functions that can lead 
to lengthy downtimes. 

For the railway infrastructure monitoring, data such as train 
speed, localization, and other operational data and systems 
information data must be taken into account for the health 
assessment and prognostics development. 

Currently we can classify the measured data for the OCS in 
three main categories: geometrical, mechanical and electrical 
data. The geometrical data comprise the information about the 
system dimensions, typical geometrical measurement are the 
height, the stagger and wear of the contact wire (CW). In 
addition, the mechanical measurements types characterize the 
dynamical behavior of the catenary allowing the assessment of 
the pantograph-catenary interaction; these parameters are the 
contact force between the catenary and the pantograph, the 
uplift of the contact wire elasticity, etc. The third type of data 
are the electrical measurement, the arcs parameter is often used 
to assess the current collection quality, in fact the loss of 
contact between the pantograph and the catenary implies under 
certain conditions an arcing between pantograph strips and the 
CW. The loss of contact between the CW and pantograph strips 
is problematic because it causes a loss of energy in the train 
and the generated arcs may damage seriously catenary and 
pantograph stripes.  

C. Sensors selection 
In this step, the most appropriate sensors are selected to 

monitor the physical parameters that are suitable for the 
extraction of health indicators. The sensors must be selected 
regarding their accuracy, reliability, dependability and cost 
[20]. In addition, the sensors have to be none intrusive and 
don’t affect the normal operation of the supervised system. 

In the field of the railway industry, the inspection cars are 
equipped with different technologies of sensors; the figure 4 
gives a review of the different types of physical parameters and 
sensors for the OCS system. 

Figure 4.  Sensors for the OCS monitoring 

The different presented above sensors are generally 
installed on the rooftop of an inspection car, on the pantograph, 
or directly on the OCS. This involves taking into account the 
different conditions of work to select the sensors. For example 
a sensor installed on the rooftop must be waterproof, respect 
the aerodynamic and electromagnetic compatibility constraints.  

D. Health indicator extraction 
This step is divided into two main steps, data acquisition 

and data processing step. Data acquisition concerns gathering 
data and signals from the sensors and acquisition chains to 
supervise the critical components.  

In data acquisition step we differentiate two main 
categories of data: event data and condition monitoring data. 
The first category concerns qualitative data which can be 
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related to event (e.g. breakdown, overhaul, failure, etc.) or 
tasks performed during the operation of the monitored 
equipment (e.g. minor repairs, preventive maintenance, change 
oil, etc.) and also concerning the description of the system. For 
the OCS, data such as type of pantograph strips, number of 
poles, overhauls, span length, etc. could constitute event data 
information. The second category of data is usually the 
measurements extracted from the sensors that are related to the 
health status of the monitored equipment. For the OCS system 
these data can be the contact force between the pantograph and 
catenary or the arcing rate. 

The second part of the health indicators extraction is the 
data processing. This step is dedicated to the processing of 
digital data retrieved from the different sensors. The processing 
of these data aims to extract features that characterize the 
current state of the monitored asset in order to build health 
indicators which can be used for the prognostics or achieve a 
diagnostics of the equipment. The features extraction is 
generally based on signal processing algorithms or summary 
statistics.  

There are no general methods to extract the most relevant 
features, however this step can be divided into two stages as 
proposed in the figure 5 adapted from [21]: the feature 
evaluation and the feature extraction. 

Figure 5.  Data processing step for RUL estimation 

The feature evaluation consists of evaluating the validity of 
the measured data since these can be subject to errors (human 
error, sensor failure, etc.). Splitting, sorting and recovering are 
manipulations done during feature evaluation; it can be 
performed automatically by the use of static or dynamic 
thresholds or may require manual intervention. Furthermore, 
tests can be done to evaluate the goodness of the features 
regarding criteria such as separability of features [21] or even 
predictability [22]. In the case of interoperable systems with a 
host system which is different then the supervised system, as 
discussed in section III, evaluation criteria can be set up based 
on the current status of the host system for the evaluation of 
feature extraction. The next step after the evaluation of the 
features consists of features extraction and health indicators 
construction.  

In general, the inspections of the OCS are used to assess the 
current collection quality using the contact force between the 
pantograph and catenary and arc rate. In this context summary 
statistics are calculated on the contact force as features to 
assess the current collection quality. 

E. Health Indicators processing (diagnostics, health 
assesment, and prognostics) 
Achieving diagnostics and prognostics depends on the 

selected approach. For the OCS diagnostics and prognostics 
techniques have to be developed based on the available 
measurement data. Several propositions have been done for 
health assessment of the OCS component in the literature. 
These propositions are based on different approaches and the 
measurement data for the current collection system assessment. 

In recent publication [23], a data-driven approach is 
developed using the power spectral density of arcing signal to 
extract features and a K-means clustering algorithm to classify 
arcs regarding their duration. The methodology has been tested 
on different measured data for multiple train runs. Four clusters 
have been defined, the two first clusters contain data without 
apparition of arcs. The third cluster contains the arcs with 
duration less than 5 ms. The fourth cluster is containing 93% of 
the arcs with duration higher than 5 ms. In this application the 
arcs with duration longer than 5 ms can be associated with both 
catenary and pantograph wear, while shorter arcs might 
indicate contact strip wear.  

Diagnostics methodology is developed for OCS defects 
such as missed dropper, splicers or blocked steady arms in [24].  
The methodology is based on the building of adapted wavelet 
using defect signatures. These adapted wavelets are then used 
to achieve a continuous wavelet transform in order to measure 
the similarity of different signal spans and the defect 
signatures. Later on the methodology was tested with inline test 
data but has not been successful. There are other uses of the 
contact force as a physical parameter for the health assessment 
of the catenary. In [25] the force is used to detect abnormalities 
in overlap sections and correlate the catenary with its 
characteristics such as height and tension. 

Inspection the OCS using vision techniques is also another 
topic of diagnostics. In [26] high speed cameras are used to 
detect and count the droppers. 

The wear of contact wire is also another topic studied for 
the health assessment and the prognostics. In [17] a heuristic 
model of wear is established based on three contributions of 
wear for the contact wire: mechanical contribution due to 
friction, electrical contribution due to energy dissipation 
relative to the current flow and arc contribution during contact 
loss between pantograph and catenary. A data-driven approach 
is proposed in [27], a statistical approach together with an 
artificial neural network (ANN) model is proposed to make a 
prediction of the contact wire wear. The statistical approach 
relies on a large quantity of collected data over a decade. All 
the influencing operating parameters were highlighted and an 
attempt to check the wire wear for different measurement runs 
over the two-year period was done to test the model. 

These different approaches use different sources of data in 
order to assess OCS health. The use of arcs measurement 
allows detecting the welding effect on the contact wires due to 
long arcs. The processing of contact force was used to detect 
geometrical defect or broken component. Furthermore, models 
for the contact wire wear were developed based on data-driven 
approaches or physics based. Combining all these techniques 
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and validate and assess them may led to a validation of contact 
wire wear prediction model and diagnostics methods. 

F. Health Management (Decision and HMI) 
The aim of the previous steps is to provide useful 

information such as RUL or failure modes to help maintainers 
to take different type of decisions regarding activities related to 
logistic supports, maintenance opportunities and maintenance 
activities, etc. In the railway infrastructure case, the decision-
making step for the infrastructure can be integrated with 
information provided from other systems such as point 
machines current state, rolling stock maintenance issues and 
other information. These health management tasks can be 
realized using recent technologies enablers in the field of the 
Big Data, data servers and infrastructure Information Models 
based on relying to Objects-based 3D models.  

V. CONCLUSION AND PERSPECTIVES 
In this paper, an approach for developing a PHM system for 

the railway infrastructure is presented and the associated 
enabling tools were reviewed. Achieving measurement along a 
large-distributed system is a challenging task. The amount of 
data captured is huge regarding the dimension of the railway 
infrastructure. Nowadays, the inspection of the track and 
catenary is achieved by dedicated inspection cars which are 
equipped by different sensors. The use of embedded sensors in 
commercial trains, stream data from in-line fleet of trains and 
the development of online data analytics can be a key enabler 
for an application of PHM system for the railway 
infrastructure.  
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