
1 

Uncertainty quantification/propagation in nonlinear models: robust reduction - generalized 

polynomial chaos 

 

1. INTRODUCTION 

 In order to design large-scale engineering systems, especially in structural dynamics, it is 

necessary to use numerical models including uncertainties that can realistically describe the 

behavior of the system. With special emphasis on probabilistic framework ((Chiang et al. 1987), 

(Soize 2010)) and parametric uncertainties (e.g., material properties, geometry, boundary 

conditions, excitations), one can use stochastic uncertainty propagation methods (UPMs) to 

evaluate the effect of the randomness in structural input parameters, modeled with random 

variables, on the dynamic response of a system which varies also randomly. This randomness is 

quantified through post-process parameters such as static moments, probability density function 

(PDF) and probability of failure for structural reliability analysis and importance measures and 

sensitivity indices for sensitivity analysis. The sample-based UPMs, such as Monte Carlo 

Simulations (MCS) (Rubinstein 2008) and Latin Hypercube Sampling (LHS) (Helton and Davis 

2003), are frequently used and considered as reference since they permit to achieve a reasonable 

accuracy. Nevertheless, they may be computationally unaffordable since the accuracy level is 

proportional to the number of generated deterministic simulations. As an alternative, among other 

non-sample-based UPMs, the generalized Polynomial Chaos Expansion (gPCE) method ((Wiener 

1938), (Xiu and Karniadakis 2002), (Soize and Ghanem 2004)) requires a lower computational 

cost. Its expansion combines multivariate polynomials and deterministic coefficients which are 

computed using intrusive or non-intrusive approaches. The former entails model modifications 

(e.g. Stochastic Spectral FE method (SSFEM) (Ghanem and Spanos 1991)). However the latter 
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proves to be better by considering the FE model as a black box. The regression approach 

(Berveiller et al., 2006) and the Probabilistic Collocation Method (PCM) (Blanchard et al., 2009) 

are the most commonly used non-intrusive methods. Focusing on the former, a set of successive 

evaluations is generated to entail exact analyses of the full FE model. 

gPCE has recently shown a growing emphasis and several works focued on its 

applications, both in uncertainty ((Ben Souf et al. 2015), (Dell’Elce and Kerschen 2015), (Hayes 

and Marques 2015), (Sinou et al. 2015), (Guerine et al. 2016)) and sensitivity analysis ((Dubreuil 

et al. 2014), (Perko et al. 2014), (Sudret and Mai 2015), (Deman et al. 2016)). Many variants 

enhancing the gPCE efficiency are also proposed. For example, a Time-Dependent gPC (TD-

gPC) method was introduced by Gerritsma et al. (Gerritsma et al. 2010) to enhance the 

convergence of the gPC, which tends to break down for long-time integration, by considering that 

the PDF changes as a function of time. The Multi-Element gPC (ME-gPC) approach ((Wan and 

Karniadakis 2005), (Chouvion and Sarrouy 2016)) is based on an adaptive partitioning of the 

stochastic space to solve nonlinear problems with long-term integration difficulties. Recently, a 

non-intrusive metamodel called PC-Kriging has been introduced by Schobi et al. (Schobi et al. 

2015). It is based on a least-square minimization algorithm selecting the optimal sparse set of 

polynomials with Kriging, which manages the local variability of the model output assumed to 

behave as a realization of a Gaussian random process. Recently, a convergence accelerator of the 

first two moments of the gPCE responses based on Aitken’s transformation has been proposed in 

(Jacquelin et al. 2015). The work performed by Jacquelin et al. (Jacquelin et al. 2016) proves that 

fuzzy variables can also be expanded in terms of gPC when Legendre polynomials are used.  

Despite the computational time reduction enabled by these methods with respect to the 

sample-based methods, direct dynamic analysis remains very cumbersome especially when large-
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scale FE models, uncertainties, nonlinearities, etc. are considered. To overcome this challenge, 

this paper is focused on constructing computational metamodels combining UPMs and robust 

reduced order models (ROM) which must be properly used to reach satisfactory robustness 

against both parametric uncertainties and localized nonlinearities. 

Several ROMs were introduced in the literature to deal with structural modifications 

including parameter perturbations and/or localized nonlinearities. A special emphasis is, here, put 

on weakly nonlinear dynamic systems when only localized nonlinearities are considered. In this 

context, the most frequently used ROMs are the Proper Orthogonal Decomposition (POD) 

((Liang et al. 2002), (Kerschen et al. 2005)) and its variants (e.g. Smooth Orthogonal 

Decomposition) (Lulf et al. 2013), the combined approximations method (Kirsh 2000) and its 

variant introduced by Guedri et al. (Guedri et al. 2010), Krylov subspaces methods (e.g. Arnoldi, 

Gram-Schmidt and Lanczos) (Nour and Clough 1983), nonlinear normal modes (NNMs) 

(Kuether et al. 2014), recurrent artificial neural networks (ANN) (Yao and Liou 2012), and 

reduction basis generated by Ritz vectors or/and linear normal modes and enriched using static 

residual vectors (Balmès 1996a), etc. 

This work deals with ROMs which use enriched Ritz or/and normal mode bases with 

static residual vectors. These ROMs can be made within two configurations: first-level ROMs, 

which are based on direct reduction technique, and n
th

-level ROMs, which are extended to the 

component mode synthesis (CMS) approaches (Ohayon and Soize 2014). The later allow 

enriching and reducing the components (substructures) being uncertain and/or containing 

localized nonlinearities independently of the others. In the literature, enriching Ritz basis with 

static contribution of neglected eigenvectors was proposed in ((Balmès 1996a), (Bouazzouni et 

al. 1997)) for accurately evaluating frequency response of modified structures and extended to 
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CMS in (Balmès 1996b) and in (Masson et al. 2006). Bouazizi et al. (Bouazizi et al. 2006) 

associated the equivalent linearization method with a reduction basis enriched by static residual 

vectors accounting for parametric modifications and localized nonlinearities. CMS methods were 

extended by Wenneker et al. (Wenneker and Tiso 2014) to account for geometric nonlinearities 

by adding the properly chosen modal derivatives, describing second order nonlinear contributions 

of vibration modes perturbed with the shapes of some others. Among other CMS approaches, the 

Craig-Bampton CMS (CB-CMS) method (Craig and Bampton 1968) is the most frequently used. 

For instance, the enriched CB-CMS was associated with a hybrid design optimization method 

(Perdahcioglu et al. 2009) to study a fuselage structure with parameter modifications. Its 

efficiency was also proven in (De Lima et al. 2010) through its application to large FE models of 

industrial structures incorporating modified viscoelastic zones. 

The aim of this study is to develop two metamodels combining gPCE and first-level ROM 

and second-level ROM, respectively. The proposed metamodels are tested in the determination of 

the time responses of a frame structure and a periodic coupled micro-beams structure, 

respectively. Both structures contain stochastic parameters and localized nonlinearities. The 

efficiency of the proposed metamodels is evaluated with respect to reference solutions obtained 

by using the LHS method on the whole FE model. Numerical results prove the efficiency of the 

proposed approach. 

  

2. PROPOSED METAMODELS 

Within the context of combining UPMs and ROMs, robust metamodels are introduced in 

this section. In the literature, several researches deal with combining ROMs and UPMs. For 

instance, the enriched CMS method was combined with the SSFEM, in (Guedri et al. 2006), to 
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compute frequency response of linear structures. The POD was combined with Galerkin method 

in (Weickum et al. 2009) to approximate the transient response of linear structures with random 

design parameters. In (Maute et al. 2009), a ROM is integrated into SSFEM using a basis 

spanned by displacements and derivatives of displacements, and implemented to optimize the 

shape of a linear shell structure. The CB-CMS was coupled in (Hinke et al. 2009) with 

perturbation techniques. The authors prove that the further level (component level) allowed by 

the CMS hence additional paths through which uncertainty propagates. Deterministic components 

do not require reanalysis, while stochastic ones can be treated independently. CMS methods were 

coupled with adaptive PCE (Sarsri et al. 2011) in order to investigate frequency transfer functions 

for large FE systems with linear and nonlinear stochastic parameters. Gauvar (Gaurav et al., 

2011) proposed a method which consists on separating the nonlinear and/or stochastic system 

degrees or freedom (dofs) from the linear deterministic ones and, then, on using a non-standard 

form of a Nonlinear Volterra Integral Equation (NVIE) to calculate modification terms added to 

the nominal linear response to obtain the system response. The MCS method was implemented to 

analyze uncertainties. In order to obtain robust and reliable designs of nonlinear trusses problems, 

POD method was incorporated in a Multi-objective optimization (MO) (Afonso and Motta 2013) 

based on MCS and probabilistic collocation method (PCM). Raisee et al. (Raisee et al. 2013) 

developed a non-intrusive stochastic ROM for PC representation based on an adapted POD and a 

modified Karhunen-Loève expansion, in order to solve stochastic steady-state heat diffusion 

problem. Mohammadali et al. (Mohammadali and Ahmadian 2014) associated a linearized ROM 

over localized nonlinear regions to the HBM to solve nonlinear systems with localized 

nonlinearities under periodic motion. MO techniques are combined, in (Motta et al. 2015), with a 
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metamodel coupling the PCM and a reduced basis method (RBM) whose efficiency is evaluated 

through a posteriori error estimators and an effective off-line/on-line computational strategy. 

The two robust metamodels proposed in this paper combine gPCE and two ROMs using 

enriched bases and are introduced in two ways. A first-level ROM is integrated into the gPCE 

regression technique by projecting the successive deterministic responses on an enriched basis 

(Section 2.2). Then, the ROM is extended to the CB-CMS method in order to apply a second-

level ROM limiting the basis enrichment to the components with stochastic parameters and/or 

localized nonlinearities (Section 2.3). 

2.1. Generalized Polynomial Chaos Expansion (gPCE) 

In this study the gPCE method is used to approximate the solution of nonlinear 

mechanical systems which can generally be represented in the time domain by the differential 

equation 

��	�� + �	�� + 	
���� = 	���	���� = ��																														�� ��� = ���																														     (1) 

where the internal forces vector is of the form 

	
�� = �� + 	���, �� ���     (2) 

�, � and � stand for the stiffness, mass and damping matrices of the system while 	��� is the 

exciting forces vector. 

The gPCE of second order random variables approximate the solution � of Eq.(1) using a 

decomposition, practically truncated by retaining only terms of the polynomials with degree up to 

�, of the form 

�� = ∑ ���Φ� �!�"� = #$%& �; 			( + 1 = *+,�!	*!,!    (3) 
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where ��.  are the unknown deterministic coefficients and Φ�  the multivariate polynomials of / 

independent random variables  = 0 
1
"2* . 

Solving the gPCE consists on computing the deterministic coefficients ��3 . Hence, the 

non-intrusive regression method is implemented, in its standard form, minimizing the difference 

between the gPCE approximate solution and the exact solution consisting on a set of computed 

deterministic responses 4�� ���, 5 = 1,… ,7	8  corresponding to 7  realizations of random 

variables Ξ = 4 ��8�"2�
 forming an experimental design (ED). The approximate solution takes, 

consequently, the form 

�� = &:&�;2&:� = &+�     (4) 

where &�� ≡ =Φ�� ���?�"2,…,��"�,…,!  is called the data matrix and &+ is its pseudo-inverse. 

A necessary condition for the numerical stability of regression approximation consists on 

the selection of an ED of size 7 ≥ ( + 1 in order to ensure the well-conditioning of the matrix 

&:&� to be inverted. In the literature, the ED is selected in two ways: (i) randomly with respect 

to probability distribution of random variables; (ii) deterministically among Hermite polynomial 

roots combinations. Some deterministic selection techniques are proposed in ((Berveiller et al. 

2006), (Sudret 2008)). In this work, the roots of the Hermite polynomial of degree � + 1 are at 

first computed, then all their possible combinations � + 1�*  are calculated and finally these 

roots combinations are classified so that the following variable 

A�� ��� = 2C;* D⁄ FG� =− 2D I ��ID?    (5) 

is maximized or I ��ID minimized in order to ensure that they are closest to the origin. The 

classified roots combinations are subject to another selection technique (Blatman and Sudret 
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2010). Indeed, to ensure that the invertible matrix &:&�  is well-conditioned, a condition 

number J defined as 

J = ‖&:&�;2‖. ‖&:&‖     (6) 

must be minimized, where ‖. ‖ is the 1-norm of the matrix. A number 7 of roots combinations, 

which verify Eq. (5), corresponds to the smallest value of J and thus create the ED. 

Once obtained, the coefficient estimates gives the final gPCE, Eq. (3). Statistical 

quantities, such as the first and second moments (the mean and the variance, respectively), could 

then be calculated to quatify the randomness of the stochastic response. 

The 7 successive deterministic evaluations needed for the regression method are the most 

expensive part of the gPCE implementation, especially for large scale FE models, large number 

of uncertain parameters, presence of nonlinearities and number of iterations required for 

computing the structural response. To overcome this problem, the ROMs are incorporated in the 

regression method. In fact, the deterministic responses 4�� ���, 5 = 1,… ,7	8 are projected on 

the enriched reduction basis. 

2.2. First-level metamodel 

 In order to build the first robust metamodel, the gPCE method is combined with a first-

level ROM. Here, we propose to compute the deterministic responses 4�� ���, 5 = 1,… ,7	8, 
needed for the regression method, using an enriched basis (EB). 

 Practically, in stochastic case with localized nonlinearities, using standard truncated 

normal modes basis M = NO may not allow the required level of accuracy to be reached even if 

more eigenvectors are computed. The NO  basis does not contain any information about 

uncertainties and nonlinearities since it is relative to the associated deterministic linear system. 
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Therefore, adding a complementary sub-basis ∆M to enrich NO is necessary. The obtained EB is 

thus of the form  

M = QNO ⋮ ∆MS      (7) 

The complementary sub-basis ∆M contains properly selected static residual vectors according to 

the type of enrichment. 

 In order to account for localized nonlinearities effects, a complementary basis must be 

created (Bouazizi et al. 2006) according to the following form 

∆M���
 = ��;2T
, U = 1,… ,V    (8) 

where �� is the deterministic stiffness matrix and T
 is the residual force vectors containing unit 

values in nonlinear degrees of freedom and zeros otherwise, V is the total number of nonlinear 

dofs. 

 Enriching the basis by taking into account stochastic effects (Guedri et al. 2006) requires 

computing the residual vectors as 

∆MW = XTW      (9) 

where 

X = ��;2 −NOΛO;2NO:     (10) 

is the static residual flexibility matrix and TW is a force basis including stochastic effects. ΛO is the 

spectral one (containing only the first 5O  retained eigenvalues). The force basis is generated 

depending on the stochastic zones of the mass and stiffness matrices. In fact, for each stochastic 

zone Z, the force sub-basis TW� is of the form 

TW� = [T\� ⋮ T]�^ = [∑ ��� ���"2 NO ⋮ ∑ ��� ���"2 NOΛO^  (11) 
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where �
�  and �
�  are the stochastic stiffness and mass matrices taking into account the 

uncertainties in each stochastic zone Z. The different sub-bases are then grouped to form the force 

basis TW and the singular value decomposition (SVD) is needed to ensure its linear independence. 

The sub-basis ∆MW is thereafter obtained using Eq. (9) and added to the standard one. 

 The ROM basis can also be enriched by considering the external loading effects. Thus, an 

additional sub-basis must be computed as 

∆M_ = XT_      (12) 

where T_ are successive unit static loadings imposed on internal excited dofs. 

 Once complementary sub-bases ∆M��, ∆MW and ∆M_  have been calculated, the EB takes 

the following form 

M = QNO ⋮ ∆M�� ⋮ ∆MW ⋮ ∆M_S    (13) 

It should be noted that it is necessary to normalize ∆M��, ∆MW and ∆M_ similarly to the standard 

basis NO  to ensure the orthogonality of the different vectors. Furthermore, a singular value 

decomposition (SVD) must also be carried out to ensure linear independence of the vectors 

forming each complementary sub-basis and also carried out on M  to ensure the linear 

independence of the sub-bases and thus the well-conditioning of M. Consequently, the obtained 

EB contains 5O + 5�  columns, where 5O  and 5�  represent respectively the numbers of retained 

normal modes and enriching static residual vectors. 

2.3. Second-level metamodel 

The second robust metamodel extends the reduction to a second-level ROM based on the 

CB-CMS. The 7  deterministic responses 4�� ���, 5 = 1,… , 7	8 , needed for the gPCE 

regression method are thus computed using an enriched Craig-Bampton transformation (ECBT). 
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In fact, dividing the complete structure into several components is useful when we deal with large 

scale FE models including uncertainties and localized nonlinearities. It permits to apply the 

reduction and enrichment methods to each component with uncertain parameters and/or localized 

nonlinearities independently of the others. Moreover, it permits to exploit component periodicity 

in the case of periodic structures as shown in Section 3.3. 

In the deterministic linear case, the ROM is obtained using standard CB-CMS. The CBT 

is defined, for a component `, as 

�a = b���
ca = d e�� 0g
� h
ia b��j
ca = klma 	ja    (14) 

where �
a are the coordinates of the nodes in the interior of the component reduced to modal 

coordinates j
a, ��a are the coordinates of the nodes located at the interface between components, 

g
�a = −��

a�;2�
�a  is the static sub-basis containing constrained modes, e�� is the identity matrix, 

and h
a  is the truncated basis containing the first 5O  normal modes of the corresponding 

component. However, standard CBT may entail computing even all normal modes to achieve 

accurate results, which may be not affordable computationally. 

In the case of stochastic structural response including localized nonlinearities, enrichment 

of standard CBT Mlm is done similarly to the first-level ROM described in Section 2.2. 

In fact, for each component `, the static residual flexibility matrix is of the form 

X = �

;2 − d 0h
i Λ;2Q0 h
:S     (15) 

and for each stochastic zone Z in `, the force sub-basis TW� is expressed as 

TW� = [T\� ⋮ T]�^ = d∑ �

���  ���"2 d 0h
i ⋮ ∑ �

���  ���"2 d 0h
i Λi  (16) 

The obtained ECBT M_lm, for each component `, is thus of the form  
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M_lma = QMlm ⋮ ∆M�� ⋮ ∆MW ⋮ ∆M_Sa 

= d e�� 0g
� h
 ⋮ 0∆M�� ⋮ 0∆MW ⋮ 0∆M_ia   (17) 

Assembling the ECBT M_lma  allows forming a global transformation matrix M = M_lm  which 

contains 5� + 5O + 5�  columns, where 5� ,	5O  and 5�  represent respectively the number of the 

junction dofs, the number of the retained normal modes and the number of the enriching static 

residual vectors. 

2.4. Nonlinear time analysis 

Projection of the time response on a reduction basis is made using the variable transform 

��� = Mj�� to modal coordinates. Hence, the equation of motion (1) becomes 

nop
oq �O	j� �� + �O	j� �� + M:		
��Mj� = M:		���			j� = M+��																																																														j�� =	M+���																																																																	j�� = �O;2�M:	������ − �O	j�� − M:	
��Mj���	

  (18) 

where the index r is relative to the reduced terms, M+ the pseudo-inverse of M, �O = M:�M and 

�O = M:�M. In this case, the internal forces vector is expressed as 

	
��Mj� = �� + 	��Mj��Mj    (19) 

The time solution of the Eq. (18) can be approximated using the Newmark nonlinear time 

integration scheme ((Newmark, 1959), (Gérardin and Rixen 1997), (Krenh 2009), (Lulf et al. 

2013), (Wenneker and Tiso, 2014)). At time ��+2, this equation is expressed as follows 

�O	j��+2 + �O	j��+2 + M:	
��Mj�+2� − M:	�����+2� = s�+2  (20) 

where s�+2 is the generalized residual force vector which must be minimized using an iterative 

Newton-Raphson algorithm. For the iteration U, the incremental solution ∆j�+2
  is calculated by 

∆j�+2
 = −��tO
�;2s�+2
      (21) 
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where �tO
 is the instantaneous stiffness matrix (Jacobian of the system) defined by 

�tO
 = �:
 + uvw�O + 2vwx �O     (22) 

function of the tangent stiffness matrix 

�:
 = M: yz{|}~�M��{M�� �M�~��} �M    (23) 

In order to illustrate the main features of the proposed metamodels and to evaluate their 

robustness against uncertainties and localized nonlinearities, two numerical examples are 

presented in Section 3. 

 

3. NUMERICAL APPLICATIONS 

3.1. Evaluation criteria 

 To evaluate the efficiency of the proposed metamodels, two main criteria must be 

satisfied: the reduction of computational cost with respect to the reference full model and the 

accuracy of the approximate responses. 

The first criterion is verified by comparing the CPU time required by each method. For the 

second criterion, a set of statistic time indicators must be calculated to assess response accuracy 

in terms of amplitude and periodicity errors. These indicators are function of statistical moments 

similar to the temporal moments ℳ
 used in ((Smallwood, 1994), (Hemez and Doebling, 2003)) 

in the case of transient time responses and defined by 

ℳ
 = � � − ���
	���D/�+∞;∞
     (24) 

where ��� is the transient time response, U the order of the moment and �� the temporal shift. 
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To take into account discrete data and overcome the convergence problem of integral (24) 

encountered when stationary time responses are considered, the U�w  adapted moment V
  is 

computed using a discrete sum which is truncated at time �|: 

V
 = ∑ �
 	���D���"�      (25) 

where the interval [0, �|^ contains a finite number of periods of the stationary response ���. 
To verify the accuracy of the responses in term of amplitude, a first indicator e2 is defined by: 

e2 = V�      (26) 

And in term of periodicity, two indicators eD and e� are defined by: 

eD = V2 V�⁄       (27) 

e� = VD V�⁄ − V2 V�⁄ �D    (28) 

3.2. First-level metamodel example 

3.2.1. Proposed structure and process 

 The performance of the first-level metamodel is evaluated by computing the time 

response of the 2D frame structure shown in Figure 1. The FE model of the frame includes 160 

beam elements with three dofs per node (��, �� , ��) for a total of 474 dofs. The mechanical and 

geometrical properties of the frame structure are: width � = 0.03	V , thickness ℎ� = 0.05	V , 

length � = 1.5	V , Young Modulus �� = 2.1 × 1022	(� , density �� = 7800	`�.V;�  and 

Poisson ratio � = 0.3. The damping of the structure is supposed to be proportional with a modal 

damping � = 0.05. 

Two localized nonlinear Duffing springs of stiffness `�� = 102�	7.V;� are linked to the frame 

structure as shown in Figure 1. The structure is submitted to two forces T27� = 10� × �� ¡¢�� 
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and TD7� = 10£ × �� ¡¢��, applied at the dofs (|2 and (|D , exciting its fifth normal mode 

(¡¢ = 1435.9	r�/.  ;2). Note that the excitation frequency is arbitrarily chosen. 

The Young modulus � and the density � of respectively the left and the right vertical beams of 

the frame structure and the thickness ℎ of its horizontal beam section are considered to be the 

three stochastic parameters such as 

� = ��1 + ¦_ _�� = ���1 + ¦§ §�ℎ = ℎ�1 + ¦w w�     (29) 

where  _,  § and  w are random variables of respectively lognormal, lognormal and exponential 

probability distributions; the considered dispersion values are: ¦_ = ¦§ = 20%  and ¦w =
10%.The time responses computation is done in the time interval [0 – 0.2 s], divided into steps of 

1 × 10;£ , in which the stationary regime is already attained. 

 The obtained results are discussed with respect to the responses considered as reference, 

computed using the LHS method for 1000 samples of random variables. The comparison 

concerns the LHS method implemented on the full FE model (noted LHS-REF) and the reduced 

model (LHS-MB and LHS-EB using respectively modal and enriched basis) model, and the 

gPCE regression method on the full (gPC-REF) and the reduced (gPC-EB) models. The results 

discussed below correspond to two arbitrarily chosen observation dofs (©2 and (©D. 

3.2.2. Results and discussion 

 As mentioned in Section 2.2, in the first-level reduction order model, denoted as EB, 5O 

retained normal modes and 5� enriching static residual vectors are included as the (5O + 5�) dofs 

in the reduced FE model. The number 5O of retained normal modes depends on the frequency 

range of interest and its modal density. Generally, 5O  covers 2, up to 3, times this frequency 
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range. The number 5�  of static residual vectors depends on the number of: uncertainty zones, 

localized nonlinearities and external excitations. This number is known when applying the SVD 

technique. 

In this example, the EB contains 5O = 20 retained normal modes and 5� = 37 enriching static 

residual vectors. At first, 44 static residual vectors are computed which include:  40 uncertainty 

vectors, 2 localized nonlinearities vectors and 2 external excitations vectors. When applying the 

SVD technique, the sub-basis of 44 residual vectors is reduced to 37 vectors. Hence, the full 

model of 474 dofs is transformed to a reduced model of 5O + 5� = 57 dofs leading to a reduction 

ratio of 88 %. Note that refining the initial FE model induces a significant increase in the full 

model size with a slight increase of the reduced one. This can lead to more important reduction 

ratio. 

 The obtained results of different models are compared in terms of accuracy and time 

consuming by means of the time indicators e2, eD and e� and the CPU computation time (Table 1). 

In fact, Table 1 recalls the size of the problems to be solved and the size of the ED (number of 

samples for LHS method and regression points for gPCE) and gives the values of the associated 

time indicators and the CPU computational time values. 

 The effect of uncertainties is shown using the MAC (Modal Assurance Criterion) matrix 

(Figure 2) which compares the normal modes of the deterministic model to the means of the 

modes of the stochastic model computed with correspondence to each random variable using the 

LHS-REF reference model. Indeed, if the MAC
� = 1, the eigenmodes 
 and � are consistent. 

If MAC
� = 0, no correlation between these modes occurs. This criterion decreases, in fact, when 

the modal perturbation level resulting from uncertainties increases and thus modal correlation is 

disturbed. For more clarity, the (1-MAC) matrix is represented. Figure 3 shows also the 
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stochastic effect through the superposition of the deterministic responses and the mean of the 

stochastic responses. 

The levels of uncertainties and nonlinearities are designed to be high in order to show the 

robustness of the enriched basis (EB) compared to the modal basis (MB). This is illustrated 

through Figures 4 and 5 and Table 1. Figures 4 and 5 compare the means of the responses 

(displacements and phase diagrams) computed using these bases of same size (57 vectors) to the 

mean of the reference response obtained using the full FE model. 

 To judge the EB efficiency in term of accuracy and time consuming, the time indicators 

and the CPU time are listed in Table 1. The proposed reduction method allows, in fact, a 

reduction of 46 % of the computational time with small errors on accuracy (Table 1; line 3). 

 Experiments design (ED) to build second, fourth and sixth order gPCE approximations, 

respectively, utilized 17, 57 and 171 combinations of random variables chosen accordingly to 

Eqs. (5-6) among, respectively, 27, 125 and 343 Hermite polynomial roots combinations 

(� + 1�*, where / = 3 is the number of random variables) and then transformed with respect to 

the probability distributions using iso-probabilistic transformations. 

 Figures 6 and 7 compare the means of stochastic displacements and phase diagrams 

obtained by second and sixth order gPCE method implemented on the full FE model at the two 

chosen observation points. It can be seen that increasing the order of the approximation allows 

improving accuracy but also entails a higher computational cost (see Table 1). Furthermore, 

gPCE approximations become less accurate at the dofs for which response is more sensitive to 

nonlinearity. 

The comparison between the means of stochastic displacements and phase diagrams 

obtained by sixth order gPCE method implemented on the full FE model and ROM and those 
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computed using the full FE model is shown through Figures 8 and 9 and the time indicator values 

listed in Table 1, which correspond to the means of response moments computed for all dofs. 

To conclude, the first-level metamodel can replace the reference full model without a 

significant loss of accuracy. It leads in fact to 90 % of computational time gain with only 0.6 % 

of accuracy error for a sixth order gPCE approximation, in spite of the presence of significantly 

localized sources of nonlinearity that result in a globally nonlinear behavior of the frame. As 

suggested in literature (see introduction), using variants of gPCE method is better than increasing 

the order of the gPCE as the latter increases the computational cost of the approximation. 

Table 1. Model size, associated time indicators and CPU time 

Methods 

ED 

size 

Model 

(dofs) 

Time indicators (error %) CPU 

(%) e2 eD e� 

LHS 

REF 1000 474 - - - 100 

MB 1000 57 2.60 0.20 0.30 49.2 

EB 1000 57 0.07 0.00 0.00 53.7 

gPC 

Order 2 

REF 17 474 20.20 2.15 2.13 1.8 

EB 17 57 20.27 2.15 2.13 0.9 

Order 4 

REF 57 474 6.80 1.26 1.52 6.0 

EB 57 57 6.87 1.26 1.52 3.2 

Order 6 

REF 171 474 0.13 0.52 0.61 18.3 

EB 171 57 0.07 0.52 0.61 9.8 

 

Combining gPCE approximation with ROM allowed reducing computational cost by 50% 

with respect to the case of a sixth order gPCE implemented on the full FE model (i.e. from 18.3% 
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to 9.8% of the CPU time required by LHS for the full FE model). Such a gain should become 

more significant for systems including larger FE models and more uncertain parameters. 
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3.3. Second-level metamodel example 

3.3.1. Proposed structure and process 

 Micro/Nano-electromechanical systems (M/NEMS) are microscopic devices operating 

with a power source and with applications in a variety of fields such as biotechnology, bio-

medicine, aerospace, automotive, robotics and manufacturing. MEMS arrays can be formed by 

several coupled resonators for specific applications such as multi-mass or gas sensing (Kacem et 

al., 2010). Designing M/NEMS arrays can present some limitations like coupling between 

components, dispersion and complexity control especially in presence of uncertainties and 

localized or distributed nonlinearities (Liu et al., 2007). The concept of MEMS model reduction 

remains an important challenge in the scientific community and many authors deal with the 

development of ROMs for MEMS design ((Nayfeh et al., 2005), (Lazarus et al., 2012)). Here, we 

propose to apply the second-level metamodel to evaluate the time response of a micro-system 

containing uncertain parameters and localized nonlinearities. The system, Figure 10, is comprised 

of twenty identical micro-beams submitted to transversal vibration. Each micro-beam is 

discretized into 20 elements with two dofs per node (�� , ��) for a total of 800 dofs. The micro-

beams are of rectangular section with � = 3	®V  and ℎ = 1	®V , length �¯ = 50	®V , Young 

modulus �� = 169	±(� and density �� = 2330	`�.V;�. Each beam is submitted to a localized 

excitation force (|7� = 10;� × �� 2C	2��  according to the ��  dof ( �  direction), where 

	2 = 565.53 × 10�²³  is the first eigenfrequency which has been chosen in order to avoid 

parasitic capacitances at higher frequencies (Kacem et al. 2015). The twenty micro-beams are 

coupled using twenty localized dampers such as � = 10;¢7.  .V;2 , twenty linear springs 
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`� = 107.V;2  and Duffing nonlinear springs `�� = 102£7.V;� . Several observation dofs 

(©� 	Z = 1,2, … � are considered to evaluate the efficiency of the proposed metamodel. 

The time responses evaluation is done in the time interval [0 - 5× 10;¢ s], divided into steps of 

10;´ , enough to reach a stationary condition. 

 To apply the CB-CMS method, the complete structure is divided into 20 components. 

Since the structure is periodic, each set of coupling elements (localized damper, linear and 

nonlinear springs) and a micro-beam is considered as a component (Figure 10). The first, the 

third and the fifteenth components are considered as three stochastic zones in which the Young 

modulus of the micro-beam and the linear coupling stiffness are supposed to be the uncertain 

parameters such as 

�
 = ���1 + ¦_} _}�`
 = `��1 + ¦a} a}�      (30) 

where 	U = 1, 3, 15,  _} 	and  a}  are two types of random variables of respectively uniform and 

lognormal probability distributions and ¦_} = ¦a} = 10% are the considered dispersions. 

 The process followed in this configuration, in order to evaluate the efficiency of the 

second proposed metamodel, is the same as the first configuration, with replacing the EB by the 

ECBT matrix. 

3.3.2. Results and discussion 

The effect of the uncertainties is shown using the MAC matrix for the linear structure, 

Figure 11. Differently from the example of Section 3.2, Figure 2, the (1-MAC) matrix is here 

more diagonal dominated since the effect of uncertainties is lower. 

 The ECBT matrix contains 5� = 38  junctions dofs, 5O = 1  retained normal mode per 

component and 5� = 6  enriching static residual vectors corresponding to uncertainties and 
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localized nonlinearities for 3 components; 5� = 17  enriching static residual vectors 

corresponding to nonlinearities for 17 components and 5� = 1 enriching static residual vector 

corresponding to external excitation localized on one component. Consequently, the full model of 

800 dofs is transformed to a reduced model of 82 dofs leading to a reduction ratio of 90 %. Here 

also, if refining the initial FE model is required, this refinement induces a significant increase in 

the full model size with a slight increase of the reduced one. More important reduction ratio could 

be then obtained. 

 As mentioned above, the choice of the gPCE order depends on the level of uncertainty, 

the level of localized nonlinearity and the required accuracy. For this example, which is less 

affected by uncertainties and nonlinearities than the 2D frame example, a second order gPCE is 

sufficient to approximate accurately the time response. In this case, the ED is of size 73 random 

variables combinations chosen accordingly to Eqs. (5-6) among 729 Hermite polynomial roots 

combinations (� + 1�* = 3� = 729 , where / = 6  derives from having defined two random 

variables for each component 1, 3 and 15) and then transformed with respect to the probability 

distributions. Hence, the number of analyses required for building the second order gPCE 

approximation decreased by 92.7% with respect to LHS implemented on the full FE model (only 

73 analyses vs. 1000 analyses). 

 Similar to the first-level metamodel efficiency evaluation, a comparison of the obtained 

results of different methods is illustrated, also in terms of accuracy and time consuming by means 

of the CPU computation time and the time indicators e2, eD and e� (see Table 2). 

 In this case, the responses are presented in terms of velocities in order to illustrate the 

effect of the nonlinearities. Figure 12 illustrates the comparison between the means of stochastic 

velocities obtained by the ECB method and the LHS reference method. 
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 As illustrated in Table 2 and Figure 12, implementing the LHS method on the ECBT 

(LHS-ECBT) compared to its implementation on the full FE model (LHS-REF) results in only 

2.5% error but with a 55% reduction of CPU time. 

Table 2. Model size, associated time indicators and CPU time 

Methods 

ED 

size 

Model 

(dofs) 

Time indicators (error %) CPU 

(%) e2 eD e� 

LHS 

REF 1000 800 - - - 100 

ECBT 1000 82 2.50 0.07 0.14 45.1 

gPC Order 2 

REF 73 800 0.00 0.07 0.14 6.5 

ECBT 73 82 2.50 0.20 0.41 2.8 

 

 Furthermore, Figure 13 compares the LHS approximation built on the full FE model and 

the second order gPCE approximation built using the full model or the ECBT model on only 82 

dofs. The approximate model again yield only 2.5% error but computational cost was reduced by 

97.1% with respect to LHS applied to the full model. The gPCE approximation built on the full 

model is computationally efficient as it requires only 6.5% of the CPU required by the full LHS 

model. 

 The second example fully demonstrates how exploiting structure periodicity to simplify 

the implementation of the Craig-Bampton method. 

To recapitulate, six metamodels were implemented in this work: 

• The LHS method applied on the full model : LHS-REF; 

• The gPCE method applied on the full model : gPC-REF; 

• The LHS method applied on the first-level ROM : LHS-EB; 
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• The gPCE method applied on the first-level ROM : gPC-EB; 

• The LHS method applied on the second-level ROM : LHS-ECBT; 

• The gPCE method applied on the second-level ROM : gPC-ECBT. 

They can be summarized through the following scheme, Figure 14: 

 

4. CONCLUDING REMARKS 

 With the aim of quantifying and propagating parametric uncertainties in models 

containing localized nonlinearities, two robust metamodels were proposed, in this paper. The first 

metamodel combines the gPCE uncertainty propagation method and a first-level ROM based on 

the enrichment of the Ritz basis using residual vectors which take into account both uncertainties 

and localized nonlinearities effects. The second metamodel, which is adapted to the Craig-

Bampton method in the context of the CMS, allows the enrichment of the reduction bases of 

some components containing uncertainties and/or localized nonlinearities independently of the 

others. The proposed metamodels were evaluated in terms of robustness and efficiency by 

solving two structural dynamics problems of a 2D frame and a periodic micro-beams structure. 

For that purpose, a detailed comparison between six metamodels including Latin Hypercube 

Sampling, first and second level condensation applied on the FE model including all dofs or on a 

reduced FE model was carried out. Numerical results proved that the present approach allows to 

approximate stochastic/nonlinear structural behavior at a reasonably low computational cost and 

without losing accuracy with respect to the reference model using the LHS uncertainty 

propagation method applied to the full FE model of the investigated structure. 

 The most frequently encountered issue of the gPCE method is the choice of the 

appropriate order of the expansion according to the complexity of the problem, the number of the 
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uncertain parameters in order to insure the convergence of the solution to the real structure 

behavior. In the case of large scale FE models and great number of uncertain parameters, the cost 

of the gPCE method becomes prohibitive. Therefore, it is interesting to apply the proposed 

metamodels combining the gPCE with ROMs. 
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