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Abstract— Further results on hysteresis compensation us-
ing the inverse multiplicative structure of the rate-dependent
Prandtl-Ishlinskii (RDPI) model are presented. The proposed
model-based feedforward controller is used to compensate for
the hysteresis nonlinearities at different operating conditions
without formulating the inverse model. The study investigates
the compensation error and parameters uncertainties when the
proposed compensator is applied for compensation of the rate-
dependent hysteresis nonlinearities. The compensation results
show that better performance can be achieved with low sam-
pling time. The proposed compensator is further examined in a
closed-loop control system to improve the tracking performance
of a piezoelectric cantilevered actuator.

I. INTRODUCTION

Several control methodologies have been suggested to
cancel out the hysteretic effects of smart material-based
actuators, these include adaptive control [1]–[5], energy-
based control [6], sliding mode control [5], H∞ control
[7], [8], and inverse hysteresis models [9]. Among the

available control methodologies, using the inverse of the
hysteresis model is considered an attractive approach allows
compensation of hysteresis nonlinearities of smart material-
based actuators in an open-loop manner. [2], [9], [10].
However, this approach necessitates selecting an appropriate
hysteresis model that permits the formulation of an inverse
compensator.

The Prandtl-Ishlinskii model is considered an attractive
choice for modeling and compensation of hysteresis non-
linearities due to its simplicity and suitability for real-time
applications [11]. The classic version of this model has
been extended in [12], [13] to account for the rate effect
of the applied input. The RDPI model can describe the
hysteretic behaviour of smart material-based actuators which
incorporates rate-independent hysteresis at shallow levels of
excitation frequency, as well as rate-dependent hysteresis
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nonlinearities at high rates of input [14]. In addition, the
RDPI model is analytically invertible which allows compen-
sation of rate-dependent hysteresis nonlinearities. However,
the inverse RDPI model is available under mathematical con-
ditions restricts formulating an accurate model for describing
hysteresis nonlinearities.

Recently [11], a new methodology that considers restruc-
turing the model itself in an inverse multiplicative scheme
has been suggested for compensation of hysteresis nonlin-
earities of smart material-based actuators. The inverse multi-
plicative scheme has been successfully applied to reduce the
hysteresis nonlinearities characterized by the classical Bouc-
Wen model [15] and the Prandtl-Ishlinskii model [11]. This
approach has been extended in [16] for compensation of
rate-dependent hysteresis characterized by RDPI model. Al-
though this methodology can effectively compensate for the
rate-dependent hysteresis without formulating rate-dependent
inverse model as in [16], investigating the boundedness of
compensation error is essential for applying feedback control
designs. Thus, synthesizing robust H∞ and internal model-
based feedback control designs for example to enhance
the performance of a dynamic plant necessitates adequate
consideration for the boundedness of the compensation error
when the inverse multiplicative scheme is applied.

In this paper, the boundedness of the tracking error when
the inverse multiplicative structure of the RDPI model is
applied as a compensator is investigated. This aims at fa-
cilitating the implementation of the feedback control design
to enhance the performance of a hysteretic dynamic plant
that is associated with parameters uncertainty. A piezoelectric
cantilevered actuator that exhibits rate-dependent hysteresis
nonlinearities is employed to examine the effectiveness of
the proposed control design.

II. THE RATE-DEPENDENT PRANDTL-ISHLINSKII
MODEL

The proposed compensator is a model-based controller that
is constructed using the RDPI model without formulating an
inverse model. In this section, we remind the mathematical
formulation of the RDPI model that is used to describe
the rate-dependent hysteresis nonlinearities. The model is
presented in this section along with the associated discrete
form. The RDPI model [12] has been suggested to describe
the rate-dependent hysteresis loops between input (voltage
or current) and output displacement of piezoelectric and
magnetostrictive actuators.



The discrete form of the RDPI model can be represented
with the sampling time Ts, where Ts = tk − tk−1, k =
1, 2, . . . ,K, and K ∈ N is an integer. With the applied input
z(k) and the rate of the input v(t), the output of the discrete
RDPI model is

y(k) = Γ[z](k) := ρ0z(k) + Ω[z](k) , (1)

where

Ω[z](k) =

n∑
i=1

ρiΦri(v(k))[z](k),

ρ0 and ρi represent the weights, while the discrete rate-
dependent play (RDP) operator ξi(k) = Φri(v(k))[z](k) and

ξi(k) = max{z(k)−ri(v(k)),min{z(k)+ri(v(k)), ξi(k−1)}},

where
ri(v(k)) = δ1i+ δ2|v(k)|,

where δ1 and δ2 are positive constants.

III. AN INVERSION-FREE FEEDFORWARD
RATE-DEPENDENT COMPENSATOR

A. The proposed compensator and the maximum compensa-
tion positioning error

A new rate-dependent feedforward compensator based on
the inverse multiplicative scheme is presented in this section
for compensation of rate-dependent hysteresis nonlinearities
of the RDPI model without formulating an inverse model.
The major advantage of the proposed methodology is that no
additional calculations are required to obtain the compensator
parameters. Thus, as long as the model is identified, the
compensator is yielded. Furthermore, no condition has to
be satisfied in order to ensure the invertibility of the RDPI
model. The output of the proposed compensator is

u(k) = Π[z](k) = ρ−10

(
z(k)− Ω[u](k − 1)

)
. (2)

Applying the output of the proposed compensator as an input
to the discrete RDPI model in (1) yields

y(k) = Γ
[
ρ−10

(
z(k)− Ω[u](k − 1)

)]
(k). (3)

Let η(k) = z(k) − Ω[u](k − 1). Then y(k) = ρ0

[
ρ−10

(
η(k)

)]
+Ω
[
ρ−10

(
η(k)

)]
and

y(k) = z(k) + Ω[u](k)− Ω[u](k − 1). (4)

ρ−10 Γ

Ω

z u− y

Fig. 1: The structure of the proposed compensator in cascade
arrangement with the RDPI model Γ.

Then the error of compensation is e(k) = Ω[u](k) −
Ω[u](k − 1), and

e(k) =

n∑
i=1

ρi

(
Φri(v(k))[u](k)− Φri(v(k−1))[u](k − 1)

)
. (5)

To show the maximum compensation positioning error when
the proposed compensator is applied for compensation of
hysteresis, we obtain

|e(k)| = |Ω[u](k)− Ω[u](k − 1)|. (6)

(i) When the input u(k) increases, u(k) > u(k− 1), and for
A,B,C,D ∈ R, we have [17]

|max{A,B} −max{C,D}| ≤ |max{|A− C|, |B −D|}.
(7)

Then

|e(k)| ≤
n∑
i=1

ρi max{|u(k)− u(k − 1) + ri(v(k))

−ri(v(k − 1))|, |ξi(k)− ξi(k − 1)|}, (8)

and ri(v(k)) − ri(v(k − 1)) = δ2(|v(k)| − |v(k − 1)|). Let
u(k) − u(k − 1) = εu(k), |v(k)| − |v(k − 1)| = εv(k), and
|ξi(k)− ξi(k − 1)| = εξi(k), then

|e(k)| ≤
n∑
i=1

ρi max{|εu(k)|+ δ2|εv(k)|, |εξi|(k)}, (9)

Let max |εu(k)| = ε1, max |εv| = ε2, and max | |εξi|(k) =
ε3i(k), where ε1, ε2, and ε3i are small positive constants, and
ρmax = max {ρi}. Let ε3 = max ε3i. Then we conclude

|e(k)| ≤ nρmax max{ε1 + δ2ε2, ε3}. (10)

Let ε = max{ε1 + δ2ε2, ε3}, then |e(k)| ≤ nρmaxε. The
error bound is E = nρmaxε. For very small ε, the pro-
posed compensator yields y(k) ∼= z(k). (ii) When the input
u(k) decreases, u(k) < u(k − 1), we have |min{A,B}-
min{C,D}| = |max{−C,−D} −max{−A,−B}|, and

|max{−C,−D}−max{−A,−B}| ≤ |max{|A−C|, |B−D|}.
(11)

Then, we conclude that the error bound is E = nρmaxε
and for very small ε, y(k) ∼= z(k). (iii) For non-decreasing
or non-increasing input u(k), u(k) = u(k − 1), we have
Ω[u](k) = Ω[u](k − 1) and the error e(k) = 0. Then we
conclude y(k) = z(k).

Then, it can be concluded that

Γ ◦Π[z](k) ∼= z(k). (12)

Thus, the proposed rate-dependent compensator can be ap-
plied to ensure the tracking performance of system that
exhibits rate-dependent hysteresis nonlinearities.

IV. PARAMETERS UNCERTAINTY AND NUMERICAL
EXAMPLE

Since this study suggests the RDPI model as a model
and compensator for describing and compensation of rate-
dependent hysteresis nonlinearities of smart material-based



actuators, then it is essential to explore the effectiveness of
the proposed compensator in the presence of the characteriza-
tion errors. This section presents the parameters uncertainty
of RDPI model with the proposed compensator.

A. Parameters Uncertainty

The output of the estimated discrete RDPI model is

ŷ(k) = Γ̂[u](k) := ρ̂0u(k) + Ω̂[u](k) , (13)

where ρ̂0 is a positive constant and

Ω̂[u](k) =

n∑
i=1

ρ̂iΦr̂i(v(k))[u](k), (14)

where ρ̂i are positive constants. The output of the proposed
compensator constructed using estimated RDPI model is

u(k) = ρ̂−10

(
z(k)− Ω̂[u](k − 1)

)
. (15)

Then, the output of the compensation can be expressed as

y(k) = ρ0ρ̂0
−1z(k)− ρ0ρ̂−10 Ω̂[u](k − 1) + Ω[u](k), (16)

and the error is

e(k) = z(k)(1−ρ0ρ̂−10 )+ρ0ρ̂
−1
0 Ω̂[u](k−1)−Ω[u](k). (17)

Let ρ0ρ̂0−1 = τ and P[k] = ρ0ρ̂
−1
0 Ω̂[u](k − 1)− Ω[u](k),

then

P[k] =

n∑
i=1

(
τ ρ̂iΦr̂i(v(k−1))[u](k − 1)− ρiΦri(v(k))[u](k)

)
. (18)

and

P[k] =

n∑
i=1

max{|τ ρ̂iu(k − 1)− ρiu(k) +

τ ρ̂iri(v(k − 1))− ρiri(v(k))|, |ξi(k)− ξi(k − 1)|}. (19)

For ρ̂i = ρi + λi

P[k] =

n∑
i=1

max{|(τρi + τλi)u(k − 1)− ρiu(k) + (τρi

+τλi)ri(v(k − 1))− ρiri(v(k))|, |ξi(k)− ξi(k − 1)|} (20)

and

|P[k]| ≤
n∑
i=1

max{|τρiu(k − 1)− ρiu(k) +

τρiri(v(k − 1))− ρiri(v(k))|+ τλiu(k − 1) +

τλiri(v(k − 1)), |ξi(k)− ξi(k − 1)|} (21)

ρ̂−10

Smart mi-
cropositioning
system

Ω̂

z u− y

Fig. 2: The application of the model-based feedforward
compensator to a smart micropositioning system.

Let max{|τu(k)−u(k−1)|}= ε̄1, max{|u(k−1)+ri(v(k−
1)|}= κ, max |τri(v(k − 1))−ri(v(k))|= ε̄2, and λmax=
max{|λi|}, where ε̄1, ε̄2, and κ are positive constants. Then
the error is

|e(k)| ≤ |z(k)||(1− τ)|+ nρmax{ε̄1 + ε̄2 + λmaxκ, ε3}. (22)

It can be concluded that the tracking error is bounded in
the presence of the RDPI model parameters uncertainty when
the proposed feedforward compensator is applied for com-
pensation of rate-dependent hysteresis nonlinearities. This
can be achieved with very small sampling time relative to
the period of the signal involved. The following conditions
can be suggested to obtain low compensation error

Ts <
1

n(ρ0 + 1)(
∑n
i=1 ρi + 1)(fmax + 1)

(23)

considering that

ρmaxn < 1 (24)

B. Numerical example

Consider a reference input z(k) = 20 sin(2πfkTs) µm
applied to a hysteretic positioning actuator under f = 1
Hz, 50 Hz and 100 Hz excitations of frequency. A RDPI
model is formulated using n = 5 play operators and the
parameters ρ0 = 0.6295, ρ1 = 0.1617, ρ2 = 0.1137,
ρ3 = 0.0611, ρ4 = 0.0328, ρ5 = 0.0716, δ1 = 1.7504,
and δ2 = 3.7627 × 10−4. The response of the model under
these excitations is presented in Figure 3 (a). The proposed
compensator was subsequently applied for compensation of
hysteresis nonlinearities of the RDPI model at sampling time
of 1 × 10−6 Sec considering that fmax = 500 Hz. Figure
3 (b) shows the input-output of the RDPI model when the
proposed compensator is applied in a feedforward manner at
1 Hz, 50 Hz and 100 Hz excitations of frequency. Figure 3
(c) illustrates the time history of the error e and ∆e when
the proposed compensator is applied at input frequency of
50 Hz and sampling time of Ts = 1 × 10−6 Sec. Both
the sampling time and weights are selected to satisfy the
suggested conditions (23) and (24).

The effectiveness of the proposed compensator is further
examined at same excitation frequency f = 50 Hz but with
a sampling time of Ts = 5 × 10−4 Sec, which ignores
the suggested condition (23). The time history of e and ∆e
are shown in Figure 3 (d), which illustrates that increasing
the sampling time contributes substantial compensation error.
The compensation error signals e and ∆e are further exam-
ined in Figure 3 (e) under excitation frequency of 50 Hz with
Ts = 1×10−6 Sec sampling time. The weights of the RDPI
model are selected to ignore the suggested condition (24). As
the results demonstrate, ignoring condition (24) contributes
a dense noisy output signal that might effect the tracking
performance of control systems in real-time. The maximum
error is finally calculated and presented as a function of the
sampling time under input frequency of 50 Hz in Figure 3 (f).
The figure shows that decreasing the sampling time yields



lower compensation error.

Fig. 3: (a) Input-output rate-dependent hysteresis nonlinear-
ities of RDPI model at excitation frequency of 1 Hz, 50 Hz
and 100 Hz, (b) input-output of RDPI when the proposed
compensator is applied at 1 Hz, 50 Hz and 100 Hz excitation
of frequency, time-history of e and ∆e at (c) excitation
frequency of 50 Hz and sampling time Ts = 1× 10−6 Sec,
(d) excitation frequency of 50 Hz excitation frequency and
Ts = 5 × 10−4 Sec, (e) excitation frequency of 50 Hz and
Ts = 1× 10−6 Sec with violating condition (24) and (f) the
maximum compensation error at different samplings of time.

V. APPLICATION TO A PIEZOELECTRIC CANTILEVERED
ACTUATOR

A. The experimental study

The effectiveness of proposed rate-dependent compensator
was further examined in real-time system. A piezoelectric
cantilevered actuator was considered for the experimental
study to evaluate the effectiveness of the proposed com-
pensator to compensate for the rate-dependent hysteresis
nonlinearities. This actuator exhibits output displacement
(deflection) y[µm] in response to input voltage u[V].

The piezoelectric cantilevered actuator was subjected to
a sinusoidal harmonic input voltage of 8 V amplitude at
different excitations of frequency. Figure 4 shows the input
voltage-output displacement rate-dependent hysteresis loops
measured at 1 Hz, 90 Hz, 130 Hz and 190 Hz excitation
frequency. As the figure shows, increasing the excitation
frequency of the applied input yields a significant increase
in the hysteresis nonlinearities of the actuator.

Fig. 4: Measured hysteresis loops at 8 V amplitude applied
under 1 Hz, 90 Hz, 130 Hz and 190 Hz excitation frequency.

B. Open-loop compensation

The measured experimental results in Figure 4 were em-
ployed to identify the parameters of a RDPI model. The
model was formulated on the basis of the discrete version
presented in (1) and considering conditions (23) and (24).
The identified RDPI model was afterwards restructured to
obtain the associated inverse multiplicative scheme as illus-
trated in Figure 2. Subsequently, model-based compensator
was applied for compensation of rate-dependent hysteresis
nonlinearities of the piezoelectric cantilevered actuator. The
effectiveness of the proposed compensator was examined at
different excitations of input frequency differs than those
selected to identify the RDPI model. The response of the
actuator when the proposed rate-dependent compensator is
applied as a feedforward compensator are given in Fig-
ure 5. The figure shows the desired output displacement
y[µm] versus the resulting output displacement y[µm] at
different frequencies in the 0.1 Hz - 220 Hz range. The
compensation results demonstrate that the suggested rate-
dependent compensator can be employed to cancel out the
rate-independent and rate-dependent hysteresis nonlinearities
of the piezoelectric cantilevered actuator. However, at very
higher excitations, the compensation results revealed slight
error e that is mostly attributed to the other dynamics that
could not be represented by the RDPI model.

VI. APPLICATION TO A CLOSED-LOOP CONTROL

A. Internal model-based control design

The previous sections dealt with the feedforward compen-
sation of the rate-dependent hysteresis of the initial system.
The compensator was formulated on the basis of the RDPI
model that can describe rate-dependent hysteresis nonlin-
earities. The compensation error e(k) can be considered
as an internal perturbation of a linear system. Thus, the



f=0.1Hz f=1Hz f=10Hz

f=50Hz f=90Hz f=130Hz

f=150Hz f=190Hz f=220Hz

Fig. 5: The hysteresis loops of the piezoelectric cantilevered
actuator when the proposed compensator is applied for
compensation of hysteresis nonlinearities.

RDPI compensator + plant
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Fig. 6: Feedforward control augmented by an internal model
feedback scheme.

system can be represented using a linear model subjected
to a disturbance:

y(s) = G(s)yr(s) + e(s) (25)

where G(s) = 1, and yr is the reference displacement input.
Since there are always high dynamics that could not be
represented by the RDPI and hence were not compensated
then G(s) 6= 1. In the sequel, we leave G(s) in order to
consider such more general case. The identification of G(s)
can be done with the new system having as input yr and
output y, see Figure 1.

In this section, we augment the previous feedforward
scheme with a feedback controller in order to add robust-
ness and improve the tracking objective. In particular, we
construct the feedback control law from the error analysis
of the previous sections. The internal model scheme will
be employed as a feedback control, which permits the
consideration of the perturbation and modeling error in G(s).
Figure 6 shows the feedforward scheme augmented by the
internal model based feedback control. In the figure, ry is the
exogenous reference input, while C(s) and Ĝ(s) represent

the feedback controller to be calculated. In fact, the objective
is to obtain a Ĝ(s) as equal as possible to the real behavior
G(s). Ĝ(s) is therefore an approximate model of G(s). From
Figure 6, we have

y =
GC(

1 + C
(
G− Ĝ

))ry +

(
1− ĜC

)
(

1 + C
(
G− Ĝ

))e (26)

Selecting C(s) = 1
Ĝ(s)

. Thus, y = ry + 0× e, which implies
that the steady-state error is always null and the disturbance
is always rejected irrespective to the constant e(t), constant
reference ry(t) and any approximate model Ĝ(s). However,
this choice only improves the steady-state regime and ignores
transient part. In order to consider a transient part with a
desired settling time tr for the closed-loop, let us choose
C(s) = F (s) 1

Ĝ(s)
where the filter F (s) = 1

1+ tr
3 s

directly
corresponds to the desired closed-loop behavior. Notice that,
in that case, if the internal model Ĝ(s) is exact (Ĝ(s) =
G(s)), we have: y(s) = F (s)ry(s) + (1− F (s)) e(s). Con-
sequently, the desired transient part, the zero steady-state
error and the disturbance rejection are guaranteed. However,
if Ĝ(s) is not exact, we have

y =

G
Ĝ
F(

1 + F
(
G
Ĝ
− 1
))ry +

(1− F )(
1 + F

(
G
Ĝ
− 1
))e.

In such case, the steady-state error is still zero and the distur-
bance still rejected. However, the transient part differs from
the desired transient part F (s). This difference increases with
if Ĝ(s) has not been identified properly.

VII. APPLICATION TO THE PIEZOELECTRIC
MICROPOSITIONING ACTUATOR

The boundedness of the compensation error allows de-
signing feedback controllers that can be applied with the
proposed rate-dependent compensator to facilitate connecting
smart actuators to dynamic plants so as to deliver the desired
displacement without hysteresis nonlinearities. The dynamic
model Ĝ(s) was identified from output displacement that was
measured after applying a desired step input of yr = 40µm
to the compensated system. After application of the ARMAX
(Autoregressive–moving-average model with exogenous in-
puts) system identification technique, the dynamic model
Ĝ(s) was identified as:

Ĝ(s) = −19.6(s−1.2e5)(s+3e4)(s−2.8e4)(s−1.1e4)(s+1430)
(s2+925s+4.6e5)(s2+55s+1.4e7)(s2+1.5e4s+4e9)

(s2+4.3e4s+3.2e9)
(s2+965s+3.9e9)

(27)
where eθ denotes ×10θ, for instance 1.2e5 = 1.2×105. Fig-
ure 7 presents a comparison between both the experimental
step response measured from the piezoelectric cantilevered
actuator and the step response of the identified model Ĝ(s).

After estimating the model Ĝ(s) that can represent the
real model G(s) of the compensated system, a feedback
behavior F (s) has to be constructed. A transient response
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Fig. 7: A comparison between the step response of the
piezoelectric cantilevered actuator and the identified linear
model Ĝ(s).

without overshooting and with a settling time of tr = 20 ms
was considered as desired specifications for the closed-loop
control design. These specifications were selected to obtain
a better tracking compared to the response obtained from
the initial system Ĝ(s) (and G(s)) in Figure 7. Constructing
F (s) based on desired requirements was employed to yield
the controller C(s) such that

C(s) = F (s)
1

Ĝ(s)
. (28)

Then, C(s) = 1
(1+6.7×10−3s)Ĝ(s)

, where Ĝ(s) is given by
(27).

A step input ry = 40 µm was applied to the closed-loop
augmented system. The measured output displacement of the
actuator when the reference input ry = 40 µm is applied is
shown in Figure 8.

0

10

20

30

40

0 20 40 60 80
t[ms]

y[µm]

ry[µm]

100

Fig. 8: Experimental step response of the closed-loop with
the proposed internal-model controller.

VIII. CONCLUSIONS

A model-based feedforward compensator constructed us-
ing the rate-dependent Prandtl-Ishlinskii model is applied to
compensate for the rate-dependent hysteresis nonlinearities.
The proposed model-based feedforward controller can com-
pensate for the rate-dependent hysteresis nonlinearities in

micropositioning control when low sampling time is consid-
ered. The proposed compensator is applied as a feedforward
controller to compensate for the rate-dependent hysteresis
nonlinearities of a piezoelectric cantilevered actuator. The
results show that the proposed compensator can compensate
for rate-dependent hysteresis nonlinearities. A closed-loop
control design can be also applied with the proposed compen-
sator to improve the tracking performance of a piezoelectric
cantilevered actuator under step and sinusoidal harmonic
inputs.
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