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Abstract

Bias in the performance evaluation of scheduling heuristics has been
shown to undermine the scope of existing studies. Improving the assess-
ment step leads to stronger scientific claims when validating new opti-
mization strategies. This article considers the problem of allocating inde-
pendent tasks to unrelated machines such as to minimize the maximum
completion time. Testing heuristics for this problem requires the genera-
tion of cost matrices that specify the execution time of each task on each
machine. Numerous studies showed that the task and machine hetero-
geneities belong to the properties impacting heuristics performance the
most. This study focuses on orthogonal properties, the average correla-
tions between each pair of rows and each pair of columns, which measure
the proximity with uniform instances. Cost matrices generated with two
distinct novel generation methods show the effect of these correlations on
the performance of several heuristics from the literature. In particular,
EFT performance depends on whether the tasks are more correlated than
the machines and HLPT performs the best when both correlations are
close to one.

keywords: Scheduling; Cost Matrix; Correlation; Parallelism; Unrelated;
Measure.

1 Introduction

The problem of scheduling tasks on processors is central in parallel computing
science because it supports parts of the grid, computing centers and cloud sys-
tems [27]. Many papers [17, 26, 30, 32, 33] propose new or adapted scheduling

2A preliminary version of this work appeared in Euro-Par 2016 [10]. The current article
extends it with more detailed proofs in the analysis of existing generation methods, a new
generation method and additional experiments and analysis of the behavior of scheduling
heuristics.
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algorithms that are assessed on simulators to prove their superiority. There is
however no clear consensus on the superiority of one or another of these algo-
rithms because they are usually tested on different simulators and parameters
for the experimental settings. As for all experimental studies, a weak assessment
step in a scheduling study may lead to bias in the conclusions (e.g., due to partial
results or erroneous/misleading results). By contrast, improving the assessment
step leads to a sounder scientific approach when designing new optimization
strategies such as scheduling algorithms. In this context, using standardized
experimental input data allows being in line with the open science approach
because it enforces reproducibility [35].

This article tackles the problem of generating input instances to assess the
performance of scheduling algorithms. Several input data impact the perfor-
mance of such algorithms, among which the characteristics of the tasks and of
the execution resources. In the cases when the tasks and their execution times
are deterministic, the performance results of the algorithm directly depend on
the input instance. These cases correspond to the offline scheduling case where
the algorithm takes a set of tasks and computes the whole schedule for a set
of processors or nodes and to the online scheduling case where the algorithm
dynamically receives tasks during the system execution and schedules them, one
at a time, depending on the load state of execution resources. The performance
of any heuristic for these problems is then given by the difference between the
obtained optimization criterion (such as the makespan) and the optimal one.
Of course, the performance of any scheduling algorithm depends on the prop-
erties of the input instance. Generating instances is thus a crucial problem in
algorithm assessment [7, 9].

The previous scheduling cases correspond to numerous practical situations
where a set of tasks, either identical or heterogeneous, must be distributed
on platforms ranging from homogeneous clusters to grids and including semi-
heterogeneous platforms such as CPU/GPU platforms [1] but also quasi-homogeneous
systems such as clouds. In this context, several practical examples may be con-
cerned by assessing the scheduling algorithm and adapting it depending on the
execution resources characteristics, e.g. resource managers for heterogeneous
environments as Condor [36], dedicated runtimes as Hadoop [16], batch sched-
ulers or master/slave applications that are publicly distributed on a large variety
of platforms [8] and must include a component that chooses where to run each
task. In these examples, the choice of the scheduling algorithm is a key point
for the software performance.

Three main parallel platform models that specify the instance have been
defined: the identical case (noted P in the α|β|γ notation [23]), where the
execution time of a task is the same on any machine that runs it; the uniform
case (noted Q), where each execution time is proportional to the weight of the
task and the cycle time of the machine (a common model); and, the unrelated
case (noted R), where each task execution time depends on the machine. This
article focuses on this last case in which an input instance consists in a matrix
E where each element ei,j (i ∈ T , the task set and j ∈ M , the machine set)
stands for the execution time of task i on machine j. Note that the unrelated
case includes the identical and the uniform cases as particular cases. Hence,
algorithm assessment for these two cases may also use a matrix as an input
instance provided that this matrix respects the problem constraints (i.e., ∀i ∈
T, ∀(j, k) ∈ M2, ei,j = αj,k × ei,k where αj,k > 0 is arbitrary for the uniform
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case and αj,k = 1 for the identical case).
To reflect the diversity of heterogeneous platforms, a fair comparison of

scheduling heuristics must rely on a set of cost matrices that have distinct
properties. Controlling the generation of synthetic random cost matrix in this
context enables an assessment on a panel of instances that is sufficiently large
to encompass practical settings that are currently existing or yet to come. In
this generation, it is therefore crucial to identify and control the properties
that impact the most critically the performance. Moreover, a hyperheuristic
mechanism, which automates the heuristic selection, can exploit these properties
through machine learning techniques or regression trees [4].

In a previous study [9], we already studied the problem of generating random
matrices to assess the performance of scheduling algorithms in the unrelated
case. In particular, we showed that the heterogeneity was previously not prop-
erly controlled despite having a significant impact on the relative performance
of scheduling heuristics. We proposed both a measure to quantify the matrix
heterogeneity and a method to generate instances with controlled heterogeneity.
This previous work provided observations that are consistent with our intuition
(e.g., all heuristics behave well with homogeneous instances), while offering new
insights (e.g., the hardest instances have medium heterogeneity). In addition to
providing an unbiased way to assess the heterogeneity, the introduced genera-
tion method produces instances that lie on a continuum between the identical
case and the unrelated case.

In this article, we propose to investigate a more specific and finer continuum
between the uniform case and the unrelated case. In the uniform case, each
execution time is proportional to the weight of the task and the cycle time of
the machine and, in the particular case where all the tasks have the same weight,
an optimal solution can be found in polynomial time. By contrast, durations
may be arbitrary in the unrelated case and finding an optimal solution is NP-
Hard. In practice, however, the execution times may be associated to the task
and machine characteristics: heavy tasks are more likely to take a significant
amount of time on any machine; analogously, efficient machines are more likely
to perform any task quickly. Since unrelated instances are rarely arbitrary, our
objective is to determine how heuristics are impacted by the degree at which an
unrelated instance is close to a uniform one. In other words, we want to assess
how scheduling algorithms respond when the considered tasks or machines are
more or less uniform. We use the notion of correlation to denote this proximity
(in particular, uniform instances have a correlation of one). This article provides
the following contributions:2

• a new measure, the correlation, for exploring a continuum between unre-
lated and uniform instances (Section 3);

• an analysis of this property in previous generation methods and previous
studies (Section 3);

• an adaptation of a previous generation method and a new one with better
correlation properties (Section 4);

2The related code, data and analysis are available in [11]. Most of these results are also
available in the companion research report [12] and in a conference paper [10].
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• and, an analysis of the effect of the correlation on several static scheduling
heuristics (Section 5).

The main issue addressed in this paper is the random generation of input
instances to assess the performance of scheduling algorithms. It contains sev-
eral technical mathematical proofs providing the theoretical foundations of the
results. However, understanding these proofs is not required to understand the
algorithms and the propositions. The reader unfamiliar with the mathematical
notions can read the paper without reading the proofs.

2 Related Work

This section first covers existing cost matrix generation methods used in the
context of task scheduling. It continues then with different approaches for char-
acterizing cost matrices.

The validation of scheduling heuristics in the literature relies mainly on two
generation methods: the range-based and CVB (Coefficient-of-Variation-Based)
methods. The range-based method [6, 7] generates n vectors of m values that
follow a uniform distribution in the range [1, Rmach] where n is the number of
tasks and m the number of machines. Each row is then multiplied by a ran-
dom value that follows a uniform distribution in the range [1, Rtask]. The CVB
method (see Algorithm 1) is based on the same principle except it uses more
generic parameters and a distinct underlying distribution. In particular, the pa-
rameters consist of two coefficients of variation3 (Vtask for the task heterogeneity
and Vmach for the machine heterogeneity) and one expected value (µtask for the
tasks). The parameters of the gamma distribution used to generate random val-
ues are derived from the provided parameters. An extension has been proposed
to control the consistency of any generated matrix:4 the costs on each row of a
submatrix containing a fraction of the initial rows and columns are sorted.

The shuffling and noise-based methods were later proposed in [9, 13]. They
both start with an initial cost matrix that is equivalent to a uniform instance
(any cost is the product of a task weight and a machine cycle time). The former
method randomly alters the costs without changing the sum of the costs on each
row and column. This step introduces some randomness in the instance, which
distinguishes it from a uniform one. The latter (see Algorithm 2) relies on a
similar principle: it inserts noise in each cost by multiplying it by a random
variable with expected value one. Both methods require the parameters Vtask
and Vmach to set the task and machine heterogeneity. In addition, the amount
of noise introduced in the noise-based method can be adjusted through the
parameter Vnoise.

Once a cost matrix is generated, numerous measures can characterize its
properties. The MPH (Machine Performance Homogeneity) and TDH (Task
Difficulty Homogeneity) [2, 3] quantifies the amount of heterogeneity in a cost
matrix. These measures present some major shortcomings such as the lack of in-
terpretability [13]. Two alternative pairs of measures overcome these issues [9]:

3Ratio of the standard deviation to the mean.
4In a consistent cost matrix, any machine faster than another machine for a given task will

be consistently faster than this other machine for any task. Machines can thus be ordered by
their efficiency.
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Algorithm 1: CVB cost matrix generation with the gamma distribution
[6, 7]

Input: n, m, Vtask, Vmach, µtask

Output: a n×m cost matrix
1: αtask ← 1/V 2

task

2: αmach ← 1/V 2
mach

3: βtask ← µtask/αtask

4: for all 1 ≤ i ≤ n do
5: q[i]← G(αtask, βtask)
6: βmach[i]← q[i]/αmach

7: for all 1 ≤ j ≤ m do
8: ei,j ← G(αmach, βmach[i])
9: end for

10: end for
11: return {ei,j}1≤i≤n,1≤j≤m

the coefficient of variation of the row means V µtask and the mean of the column
coefficient of variations µVtask for the task heterogeneity (the machine hetero-
geneity has analogous measures). These properties impact the performance of
various scheduling heuristics and should be considered when comparing them.

This study focuses on the average correlation between each pair of tasks or
machines in a cost matrix. No existing work considers this property explic-
itly. The closest work is the consistency extension in the range-based and CVB
methods mentioned above. The consistency extension could be used to gen-
erate cost matrices that are close to uniform instances because cost matrices
corresponding to uniform instances are consistent (machines can be ordered by
their efficiency). However, this mechanism modifies the matrix row by row,
which makes it asymmetric relatively to the rows and columns. This prevents
its direct usage to control the correlation.

The TMA (Task-Machine Affinity) quantifies the specialization of a platform
[2, 3], i.e., whether some machines are particularly efficient for some specific
tasks. This measure proceeds in three steps: first, it normalizes the cost matrix
to make the measure independent from the matrix heterogeneity; second, it
performs the singular value decomposition of the matrix; last, it computes the
inverse of the ratio between the first singular value and the mean of all the other
singular values. The normalization happens on the columns in [3] and on both
the rows and columns in [2]. If there is no affinity between the tasks and the
machines (as with uniform machines), the TMA is close to zero. Oppositely, if
the machines are significantly specialized, the TMA is close to one. Additionally,
Khemka et al [25] claims that high (resp., low) TMA is associated with low
(resp., high) column correlation. This association is however not general because
the TMA and the correlation can both be close to zero.

The range-based and CVB methods do not cover the entire range of possible
values for the TMA [3]. Khemka et al [25] propose a method that iteratively
increases the TMA of an existing matrix while keeping the same MPH and TDH.
A method generating matrices with varying affinities (similar to the TMA) and
which resembles the noise-based method is also proposed in [5]. However, no
method with analytically proven properties has been proposed for generating
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Algorithm 2: Noise-based cost matrix generation with gamma distribu-
tion [9]

Input: n, m, Vtask, Vmach, Vnoise
Output: a n×m cost matrix

1: for all 1 ≤ i ≤ n do
2: wi ← G(1/V 2

task, V
2
task)

3: end for
4: for all 1 ≤ j ≤ m do
5: bj ← G(1/V 2

mach, V
2
mach)

6: end for
7: for all 1 ≤ i ≤ n do
8: for all 1 ≤ j ≤ m do
9: ei,j ← wibj ×G(1/V 2

noise, V
2
noise)

10: end for
11: end for
12: return {ei,j}1≤i≤n,1≤j≤m

matrices with a given TMA.
There is finally a field of study dedicated to the generation of random vectors

given a correlation (or covariance) matrix that specifies the correlation between
each pair of elements of a random vector [15,21,28,34]. The proposed techniques
for sampling such vectors have been used for simulation in several contexts such
as project management [38] or neural networks [31]. These approaches could
be used to generate cost matrices in which the correlations between each pair
of rows (resp., columns) is determined by a correlation matrix. However, the
correlation between each pair of columns (resp., rows) would then be ignored. In
this work, we assume that all non-diagonal elements of the correlation matrices
associated with the rows and with the columns are equal.

3 Correlation Between Tasks and Processors

As stated previously, the unrelated model (R) is more general than the uniform
model (Q) and all uniform instances are therefore unrelated instances. Let U =
({wi}1≤i≤n, {bj}1≤j≤m) be a uniform instance with n tasks and m machines
where wi is the weight of task i and bj the cycle time of machine j. The
corresponding unrelated instance is E = {ei,j}1≤i≤n,1≤j≤m such that ei,j = wibj
is the execution time of task i on machine j. Our objective is to generate
unrelated instances that are as close as desired to uniform ones. On the one
hand, all rows are perfectly correlated in a uniform instance and this is also
true for the columns. On the other hand, there is no correlation in an instance
generated with nm independent random values. Thus, we propose to use the
correlation to measure the proximity of an unrelated instance to a uniform one.
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3.1 Correlation Properties

Let ei,j be the execution time for task i on machine j. Then, we define the task
correlation as follows:

ρtask ,
1

n(n− 1)

n∑
i=1

n∑
i′=1,i′ 6=i

ρri,i′ (1)

where ρri,i′ represents the correlation between row i and row i′ as follows:

ρri,i′ ,
1
m

∑m
j=1 ei,jei′,j −

1
m

∑m
j=1 ei,j

1
m

∑m
j=1 ei′,j√

1
m

∑m
j=1 e

2
i,j −

(
1
m

∑m
j=1 ei,j

)2√
1
m

∑m
j=1 e

2
i′,j −

(
1
m

∑m
j=1 ei′,j

)2 (2)

Note that any correlation between row i and itself is 1 and is hence not
considered. Also, since the correlation is symmetric (ρri,i′ = ρri′,i), it is actually
sufficient to only compute half of them.

Similarly, we define the machine correlation as follows:

ρmach ,
1

m(m− 1)

m∑
j=1

m∑
j′=1,j′ 6=j

ρcj,j′ (3)

where ρcj,j′ represents the correlation between column j and column j′ as follows:

ρcj,j′ ,
1
n

∑n
i=1 ei,jei,j′ −

1
n

∑n
i=1 ei,j

1
n

∑n
i=1 ei,j′√

1
n

∑n
i=1 e

2
i,j −

(
1
n

∑n
i=1 ei,j

)2√ 1
n

∑n
i=1 e

2
i,j′ −

(
1
n

∑n
i=1 ei,j′

)2 (4)

These correlations are the average correlations between each pair of dis-
tinct rows or columns. They are inspired by the classic Pearson definition, but
adapted to the case when we deal with two vectors of costs.

The following two cost matrix examples illustrate how these measures cap-
ture the intuition of the proximity of an unrelated instance to a uniform one:

E1 =

1 2 3
2 4 6
3 6 10

 E2 =

1 6 10
2 2 3
6 3 4

 .

Both correlations are almost one with E1 (ρtask = ρmach = 1), whereas they are
close to zero with E2 (ρtask = −0.02 and ρmach = 0) even though the costs are
only permuted. The first matrix, E1, may be transformed to be equivalent to
a uniform instance by changing the last cost from the value 10 to 9. However,
E2 requires a lot more changes to be equivalent to such an instance. In these
examples, the correlations ρtask and ρmach succeed in quantifying the proximity
to a uniform one.

3.2 Related Scheduling Problems

There are three special cases when either one or both of these correlations are
one or zero. When ρtask = ρmach = 1, then instances may be uniform ones (see
Proposition 1) and the corresponding problem can be equivalent to Q||Cmax
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(see [23] for the α|β|γ notation) for example. When ρtask = 1 and ρmach = 0,
then a related problem is Q|pi = p|Cmax where each machine may be represented
by a cycle time (uniform case) and all tasks are identical (see Proposition 2).
Finally, when ρmach = 1 and ρtask = 0, then a related problem is P ||Cmax where
each task may be represented by a weight and all machines are identical (see
Proposition 3). For any other cases, we do not have any relation to another
existing model that is more specific than R.

Proposition 1. The task and machine correlations of a cost matrix correspond-
ing to a uniform instance (Q) are ρtask = ρmach = 1.

Proof. In an unrelated instance corresponding to a uniform one, ei,j = wibj
where wi is the weight of task i and bj the cycle time of machine j. The
correlation between {wibj}1≤j≤m and {wi′bj}1≤j≤m is one for all (i, i′) ∈ [1;n]2

because the second vector is the product of the first by the constant wi′/wi.
Therefore, ρtask = 1. Analogously, we also have ρmach = 1.

The reciprocal is however not true. Consider the cost matrix E = {ei,j}1≤i≤n,1≤j≤m
where ei,j = ri + cj and both {ri}1≤i≤n and {cj}1≤j≤m are arbitrary. The task
and machine correlations are both one, but there is no corresponding uniform
instance in this case. The second generation method proposed in this article
generates such instances. However, the first proposed method produces cost
matrices which are close to uniform instances when both target correlations are
high.

For the second special case, we propose a mechanism to generate a cost
matrix that is arbitrarily close to a given uniform instances with identical tasks.
Let wi = w be the weight of any task i. In the related cost matrix, ei,j =
wbj + ui,j where U = {ui,j}1≤i≤n,1≤j≤m is a matrix of random values that
follows each a uniform distribution between −ε and ε. This cost matrix can be
seen as a uniform instance with identical tasks with noise.

Proposition 2. The task and machine correlations of a cost matrix E = {wbj+
ui,j}1≤i≤n,1≤j≤m tend to one and zero, respectively, as ε→ 0 and n→∞ while
the root-mean-square deviation between E and the closest uniform instance with
identical tasks (Q and wi = w) tends to zero.

Proof. We first show that ρtask → 1 and ρmach → 0 as ε→ 0. Both the numera-
tor and the denominator in Equation 2 tend to 1

m

∑m
j=1(wbj)

2− ( 1
m

∑m
j=1 wbj)

2

as ε→ 0. Therefore, the task correlation ρtask → 1 as ε→ 0. The numerator in
Equation 4 simplifies as 1

n

∑n
i=1 ui,jui,j′ −

1
n2

∑n
i=1 ui,j

∑n
i=1 ui,j′ , while the de-

nominator simplifies as
√

1
n

∑n
i=1 u

2
i,j −

(
1
n

∑n
i=1 ui,j

)2×√
1
n

∑n
i=1 u

2
i,j′ −

(
1
n

∑n
i=1 ui,j′

)2
. This is the correlation between two columns

in the noise matrix. This tends to 0 as n → ∞ if the variance of the noise is
non-zero, namely if ε 6= 0.

We must now show that the root-mean-square deviation (RMSD) between
E and the closest uniform instance with identical tasks tends to zero. The
RMSD between E and the instance where w is the weight of the task and bj the

cycle time of machine j is
√

1
nm

∑n
i=1

∑m
j=1 u

2
i,j . This tends to zero as ε → 0.

Therefore, the RMSD between E and any closer instance will be lower and will
thus also tends to zero as ε→ 0.
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Proposition 3. The task and machine correlations of a cost matrix E = {wib+
ui,j}1≤i≤n,1≤j≤m tend to zero and one, respectively, as ε→ 0 and m→∞ while
the root-mean-square deviation between E and the closest identical instance (P )
tends to zero.

Proof. The proof is analogous to the proof of Proposition 2.

In Propositions 2 and 3, ε must be non-zero, otherwise the variance of the
rows or columns will be null and the corresponding correlation undefined.

Note that when either the task or machine correlation is zero, the correlation
between any pair of rows or columns may be different from zero as long as the
average of the individual correlations is zero. Thus, there may exist instances
with task and machine correlations close to one and zero (or zero and one),
respectively, that are arbitrarily far from any uniform instance with identical
tasks (or identical instance). However, the two proposed generation methods in
this article produce cost matrices with similar correlations for each pair of rows
and for each pair of columns. In this context, it is therefore relevant to consider
that the last two special cases are related to the previous specific instances.

In contrast to these proposed measures, the heterogeneity measures proposed
in [13] quantify the proximity of an unrelated instance with an identical one
with identical tasks. Depending on the heterogeneity values, however, two of
the special cases are shared: uniform with identical tasks (Q and wi = w) when
the task heterogeneity is zero and identical (P ) when the machine heterogeneity
is zero.

3.3 Correlations of the Range-Based, CVB and Noise-
Based Methods

We analyze the asymptotic correlation properties of the range-based, CVB and
noise-based methods described in Section 2 and synthesize them in Table 1.
We discard the shuffling method due to its combinatorial nature that prevents
it from being easily analyzed. The range-based and CVB methods use two
additional parameters to control the consistency of any generated matrix: a and
b are the fractions of the rows and columns from the cost matrix, respectively,
that are sorted.

In the following analysis, we refer to convergence in probability simply as
convergence for concision. Also, the order in which the convergence applies
(either when n → ∞ and then when m → ∞, or the contrary) is not specified
and may depend on each result.

The proofs of the analysis of the range-based and CVB methods (Proposi-
tions 4 to 7) are in the companion research report [12].

Proposition 4. The task correlation ρtask of a cost matrix generated with the
range-based method with the parameters a and b converges to a2b as n→∞ and
m→∞.

Proposition 5. The machine correlation ρmach of a cost matrix generated with
the range-based method with parameter b converges to 3

7 as n → ∞, m → ∞,

Rtask →∞ and Rmach →∞ if the matrix is inconsistent and to b2 + 2
√

3
7b(1−

b) + 3
7 (1− b)2 as n→∞, m→∞, Rtask →∞ and Rmach →∞ if a = 1.
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Proposition 5 assumes that Rtask →∞ and Rmach →∞ because the values
used in the literature (see Section 3.4) are frequently large. Moreover, this
clarifies the presentation (the proof provides a finer analysis of the machine
correlation depending on Rtask and Rmach).

Proposition 6. The task correlation ρtask of a cost matrix generated with the
CVB method with the parameters a and b converges to a2b as n → ∞ and
m→∞.

Proposition 7. The machine correlation ρmach of a cost matrix generated
with the CVB method with the parameters Vtask, Vmach and b converges to

1
V 2
mach(1+1/V 2

task)+1
as n → ∞ and m → ∞ if the matrix is inconsistent and

to b2 + 2b(1−b)√
V 2
mach(1+1/V 2

task)+1
+ (1−b)2
V 2
mach(1+1/V 2

task)+1
as n→∞ and m→∞ if a = 1.

Proposition 8. The task correlation ρtask of a cost matrix generated using the
noise-based method with the parameters Vmach and Vnoise converges to 1

V 2
noise(1+1/V 2

mach)+1
as m→∞.

Proof. Let’s analyze the four parts of Equation 2 (the two operands of the
subtraction in the numerator and the two square roots in the denominator).
As m → ∞, the first part of the nominator converges to the expected value
of the product of two scalars drawn from a gamma distribution with expected
value one and CV Vtask, the square of bj that follows a gamma distribution
with expected value one and CV Vmach and two random variables that follow
a gamma distribution with expected value one and CV Vnoise. This expected
value is 1 + V 2

mach. As m → ∞, the second part of the numerator converges to
the product of the expected values of each row, namely one. As m → ∞, each
part of the denominator converges to the standard deviation of each row. This
is
√
V 2
machV

2
noise + V 2

mach + V 2
noise because each row is the product of a scalar

drawn from a gamma distribution with expected value one and CV Vtask and
two random variables that follow two gamma distributions with expected value
one and CV Vmach and Vnoise. This concludes the proof.

Proposition 9. The machine correlation ρmach of a cost matrix generated us-
ing the noise-based method with the parameters Vtask and Vnoise converges to

1
V 2
noise(1+1/V 2

task)+1
as n→∞.

Proof. Due to the symmetry of the noise-based method, the proof is analogous
to the proof of Proposition 8.

3.4 Correlations in Previous Studies

More than 200 unique settings used for generating instances were collected from
the literature and synthesized in [9]. For each of them, we computed the cor-
relations using the formulas from Table 1. For the case when 0 < a < 1,
the correlations were measured on a single 1000 × 1000 cost matrix that was
generated with the range-based or the CVB method as done in [9] (missing con-
sistency values were replaced by 0 and the expected value was set to one for the
CVB method).

Figure 1 depicts the values for the proposed correlation measures. The task
correlation is larger than the machine correlation (i.e., ρtask > ρmach) for only
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Table 1: Summary of the asymptotic correlation properties of existing methods
(Propositions 4 to 9).

Method ρtask ρmach

Range-based a2b

{
3
7 if a = 0

b2 + 2
√

3
7b(1− b) + 3

7 (1− b)2 if a = 1

CVB a2b


1

V 2
mach(1+1/V 2

task)+1
if a = 0

b2 + 2b(1−b)√
V 2
mach(1+1/V 2

task)+1
+ (1−b)2

V 2
mach(1+1/V 2

task)+1
if a = 1

Noise-based 1
V 2
noise(1+1/V 2

mach)+1
1

V 2
noise(1+1/V 2

task)+1

CINT2006Rate
CFP2006Rate

0.0

0.2

0.4
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1.0
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ρtask
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h

(a) Range-based method
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(b) CVB method

Figure 1: Correlation properties (ρtask and ρmach) of cost matrices used in
the literature (adapted from [10]). The correlations for the SPEC benchmarks
belong to an area that is not well covered.

a few instances. The space of possible values for both correlations has thus
been largely unexplored. Additionally, few instances have high task correla-
tion and are thus underrepresented. By contrast, the methods proposed below
(Algorithms 3 and 4) cover the entire correlation space.

Two matrices extracted from the SPEC benchmarks on five different ma-
chines are provided in [2]. There are 12 tasks in CINT2006Rate and 17 tasks in
CFP2006Rate. The values for the correlation measures and other measures from
the literature are given in Table 2. The correlations for these two benchmarks
correspond to an area that is not well covered in Figure 1. Hence, instances
used in the literature are not representative of these benchmarks and cannot be
used to validate scheduling heuristics. This emphasizes the need for a better
exploration of the correlation space when assessing scheduling algorithms.
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Table 2: Summary of the properties for two benchmarks (CINT2006Rate and
CFP2006Rate). Both cost matrices are provided in [2].

Benchmark ρtask ρmach V µtask V µmach µVtask µVmach TDH MPH TMA

CINT2006Rate 0.85 0.73 0.32 0.36 0.37 0.39 0.90 0.82 0.07
CFP2006Rate 0.60 0.67 0.42 0.32 0.48 0.39 0.91 0.83 0.13

4 Controlling the Correlation

Table 1 shows that the correlation properties of existing methods are determined
by a combination of unrelated parameters, which is unsatisfactory. We propose
two cost matrix generation methods that take the task and machine correlations
as parameters. The methods proposed in this section assume that both these
parameters are distinct from one.

4.1 Adaptation of the Noise-Based Method

Algorithm 3: Correlation noise-based generation of cost matrices with
gamma distribution for controlling the correlations

Input: n, m, rtask, rmach, µ, V
Output: a n×m cost matrix

1: N1 ← 1 + (rtask − 2rtaskrmach + rmach)V 2 − rtaskrmach

2: N2 ←
(rtask−rmach)2V 4+2(rtask(rmach−1)2+rmach(rtask−1)2)V 2+(rtaskrmach−1)2

3: Vnoise ←
√

N1−
√
N2

2rtaskrmach(V 2+1)

4: Vtask ← 1√
(1/rmach−1)/V 2

noise−1

5: Vmach ← 1√
(1/rtask−1)/V 2

noise−1
6: for all 1 ≤ i ≤ n do
7: wi ← G(1/V 2

task, V
2
task)

8: end for
9: for all 1 ≤ j ≤ m do

10: bj ← G(1/V 2
mach, V

2
mach)

11: end for
12: for all 1 ≤ i ≤ n do
13: for all 1 ≤ j ≤ m do
14: ei,j ← µwibj ×G(1/V 2

noise, V
2
noise)

15: end for
16: end for
17: return {ei,j}1≤i≤n,1≤j≤m

We first adapt the noise-based method by changing its parameters (see Al-
gorithm 3). The objective is to set the parameters Vtask, Vmach and Vnoise of
the original method (Algorithm 2) given the target correlations rtask and rmach.
Propositions 10 and 11 show that the assignments on Lines 4 and 5 fulfill this
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objective for any value of Vnoise. On Lines 7, 10 and 14, G(k, θ) is the gamma
distribution with shape k and scale θ. This distribution generalizes the ex-
ponential and Erlang distributions and has been advocated for modeling job
runtimes [18,29].

Proposition 10. The task correlation ρtask of a cost matrix generated using
the correlation noise-based method with the parameter rtask converges to rtask
as m→∞.

Proof. According to Proposition 8, the task correlation ρtask converges to 1
V 2
noise(1+1/V 2

mach)+1

as m → ∞. When replacing Vmach by 1√
1

V 2
noise

(
1

rtask
−1
)
−1

(Line 5 of Algo-

rithm 3), this is equal to rtask.

Proposition 11. The machine correlation ρmach of a cost matrix generated
using the correlation noise-based method with the parameter rmach converges to
rmach as n→∞.

Proof. Due to the symmetry of the correlation noise-based method, the proof
is analogous to the proof of Proposition 10.

To fix the parameter Vnoise, we impose a bound on the coefficient of variation
of the final costs in the matrix to avoid pathological instances due to extreme
variability. This constraint requires the complex computation of Vnoise on Lines 1
to 3.

Proposition 12. When used with the parameters µ and V , the correlation
noise-based method generates costs with expected value µ and coefficient of vari-
ation V .

Proof. The expected value and the coefficient of variation of the costs in a matrix
generated with the noise-based method are µ and

√
V 2
taskV

2
machV

2
noise + V 2

taskV
2
mach + V 2

taskV
2
noise + V 2

machV
2
noise

+V 2
task + V 2

mach + V 2
noise, respectively [9, Proposition 12]. Replacing Vtask, Vmach

and Vnoise by their definitions on Lines 3 to 5 leads to an expression that sim-
plifies as V .

Note that the correlation parameters may be zero: if rtask = 0 (resp., rmach =
0), then Vtask = 0 (resp., Vmach = 0). However, each of them must be distinct
from one. If they are both equal to one, a direct method exists by setting
Vnoise = 0. The distribution of the costs with this method is the product of
three gamma distributions as with the original noise-based method.

4.2 Combination-Based Method

Algorithm 4 presents the combination-based method. It sets the correlation
between two distinct columns (or rows) by computing a linear combination
between a base vector common to all columns (or rows) and a new vector specific
to each column (or row). The algorithm first generates the matrix with the
target machine correlation using a base column (generated on Line 3) and the
linear combination on Line 7. Then, rows are modified such that the task
correlation is as desired using a base row (generated on Line 12) and the linear
combination on Line 16. The base row follows a distribution with a lower
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Algorithm 4: Combination-based generation of cost matrices with gamma
distribution
Input: n, m, rtask, rmach, µ, V
Output: a n×m cost matrix

1: Vcol ←
√
rtask+

√
1−rtask(

√
rmach+

√
1−rmach)

√
rtask

√
1−rmach+

√
1−rtask(

√
rmach+

√
1−rmach)

V {Scale variability}
2: for all 1 ≤ i ≤ n do {Generate base column}
3: ci ← G(1/V 2

col, V
2
col)

4: end for
5: for all 1 ≤ i ≤ n do {Set the correlation between each pair of columns}
6: for all 1 ≤ j ≤ m do
7: ei,j ←

√
rmachci +

√
1− rmach ×G(1/V 2

col, V
2
col)

8: end for
9: end for

10: Vrow ←
√

1− rmachVcol {Scale variability}
11: for all 1 ≤ j ≤ m do {Generate base row}
12: rj ← G(1/V 2

row, V
2
row)

13: end for
14: for all 1 ≤ i ≤ n do {Set the correlation between each pair of rows}
15: for all 1 ≤ j ≤ m do
16: ei,j ←

√
rtaskrj +

√
1− rtaskei,j

17: end for
18: end for
19: for all 1 ≤ i ≤ n do {Rescaling}
20: for all 1 ≤ j ≤ m do
21: ei,j ← µei,j√

rtask+
√
1−rtask(

√
rmach+

√
1−rmach)

22: end for
23: end for
24: return {ei,j}1≤i≤n,1≤j≤m

standard deviation, which depends on the machine correlation (Line 10). Using
this specific standard deviation is essential to set the target task correlation
(see the proof of Proposition 13). Propositions 13 and 14 show these two steps
generate a matrix with the target correlations for any value of Vcol.

Proposition 13. The task correlation ρtask of a cost matrix generated using
the combination-based method with the parameter rtask converges to rtask as
m→∞.

Proof. Let’s recall Equation 2 from the definition of the task correlation:

ρri,i′ ,
1
m

∑m
j=1 ei,jei′,j −

1
m

∑m
j=1 ei,j

1
m

∑m
j=1 ei′,j√

1
m

∑m
j=1 e

2
i,j −

(
1
m

∑m
j=1 ei,j

)2√
1
m

∑m
j=1 e

2
i′,j −

(
1
m

∑m
j=1 ei′,j

)2
Given Lines 7, 16 and 21, any cost is generated as follows:

ei,j = µ

√
rtaskrj +

√
1− rtask

(√
rmachci +

√
1− rmachG(1/V 2

col, V
2
col)
)

√
rtask +

√
1− rtask

(√
rmach +

√
1− rmach

) (5)
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Let’s scale all the costs ei,j by multiplying them by 1
µ

(√
rtask +

√
1− rtask

(√
rmach+√

1− rmach

))
. This scaling does not change ρri,i′ . We thus simplify Equation 5

as follows:

ei,j =
√
rtaskrj +

√
1− rtask

(√
rmachci +

√
1− rmachG(1/V 2

col, V
2
col)
)

(6)

Let’s focus on the first part of the numerator of ρri,i′ :

1

m

m∑
j=1

ei,jei′,j = rtask
1

m

m∑
j=1

r2j (7)

+
1

m

m∑
j=1

√
rtaskrj

√
1− rtask

(√
rmachci +

√
1− rmachG(1/V 2

col, V
2
col)
)

(8)

+
1

m

m∑
j=1

√
rtaskrj

√
1− rtask

(√
rmachci′ +

√
1− rmachG(1/V 2

col, V
2
col)
)

(9)

+ (1− rtask)
1

m

m∑
j=1

(√
rmachci +

√
1− rmachG(1/V 2

col, V
2
col)
)
×

(10)(√
rmachci′ +

√
1− rmachG(1/V 2

col, V
2
col)
)
(11)

The first subpart (Equation 7) converges to rtask(1 + (1 − rmach)V 2
col) as

m → ∞ because rj follows a gamma distribution with expected value one and
standard deviation

√
1− rmachVcol. The second subpart (Equation 8) converges

to
√
rtask
√

1− rtask
(√
rmachci +

√
1− rmach

)
as m → ∞ because the expected

value of G(1/V 2
col, V

2
col) is one. The third subpart (Equation 9) converges to√

rtask
√

1− rtask
(√
rmachci′ +

√
1− rmach

)
as m→∞. Finally, the last subpart

(Equations 10 and 11) converges to (1−rtask)
(√
rmachci +

√
1− rmach

) (√
rmachci′ +

√
1− rmach

)
as m→∞. The second part of the numerator of ρri,i′ is simpler and converges to(√
rtask +

√
1− rtask

(√
rmachci +

√
1− rmach

)) (√
rtask +

√
1− rtask

(√
rmachci′ +

√
1− rmach

))
as m → ∞. Therefore, the numerator of ρri,i′ converges to rtask(1 − rmach)V 2

col

as m→∞.
The denominator of ρri,i′ converges to the product of the standard deviations

of eij and ei′j as m→∞. The standard deviation of rj (resp., G(1/V 2
col, V

2
col))

is
√

1− rmachVcol (resp., Vcol). Therefore, the standard deviation of eij is√
rtask(1− rmach)V 2

col + (1− rtask)(1− rmach)V 2
col.

The correlation between any pair of distinct rows ρri,i′ converges thus to rtask
as m→∞.

Proposition 14. The machine correlation ρmach of a cost matrix generated
using the combination-based method with the parameter rmach converges to rmach

as n→∞.

Proof. The correlation between any pair of distinct columns ρcj,j′ is (Equation 4):

ρcj,j′ ,
1
n

∑n
i=1 ei,jei,j′ −

1
n

∑n
i=1 ei,j

1
n

∑n
i=1 ei,j′√

1
n

∑n
i=1 e

2
i,j −

(
1
n

∑n
i=1 ei,j

)2√ 1
n

∑n
i=1 e

2
i,j′ −

(
1
n

∑n
i=1 ei,j′

)2
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Let’s consider the same scaling for the costs ei,j as in Equation 6.
The first part of the numerator of ρcj,j′ is:

1

n

n∑
i=1

ei,jei,j′ = rtaskrjrj′ + 2(1− rtask)
1

n

n∑
i=1

√
rmachci

√
1− rmachG(1/V 2

col, V
2
col)

(12)

+ (1− rtask)
1

n

n∑
i=1

rmachc
2
i (13)

+ (1− rtask)
1

n

n∑
i=1

(1− rmach)G(1/V 2
col, V

2
col)

2 (14)

+ (rj + rj′)
1

n

n∑
i=1

√
rtask
√

1− rtask
(√
rmachci +

√
1− rmachG(1/V 2

col, V
2
col)
)

(15)

The first subpart (Equation 12) converges to rtaskrjrj′+2(1−rtask)
√
rmach

√
1− rmach

as n→∞. The second subpart (Equation 13) converges to (1− rtask)rmach(1 +
V 2
col) as n→∞ because ci follows a gamma distribution with expected value one

and standard deviation Vcol. The third subpart (Equation 14) converges to (1−
rtask)(1−rmach) as n→∞ and the last subpart (Equation 15) converges to (rj+
rj′)
√
rtask
√

1− rtask
(√
rmach +

√
1− rmach

)
as n→∞. The second part of the

numerator of ρcj,j′ converges to
(√
rtaskrj +

√
1− rtask

(√
rmach +

√
1− rmach

))(√
rtaskrj′ +

√
1− rtask

(√
rmach +

√
1− rmach

))
as n → ∞. Therefore, the nu-

merator of ρcj,j′ converges to (1− rtask)rmachV
2
col as n→∞.

The denominator of ρcj,j′ converges to (1−rtask)
(
rmachV

2
col + (1− rmach)V 2

col

)
as n → ∞ and the correlation between any pair of distinct columns ρcj,j′ con-
verges thus to rmach as n→∞.

Finally, the resulting matrix is scaled on Line 21 to adjust its mean. The
initial scaling of the standard deviation on Line 1 is necessary to ensure that
the final cost coefficient of variation is V .

Proposition 15. When used with the parameters µ and V , the combination-
based method generates costs with expected value µ and coefficient of variation
V .

Proof. By replacing with the values of the base row and column on Lines 3
and 12, Equation 5 gives:

ei,j = µ

√
rtaskG(1/V 2

row, V
2
row) +

√
1− rtask

(√
rmachG(1/V 2

col, V
2
col) +

√
1− rmachG(1/V 2

col, V
2
col)
)

√
rtask +

√
1− rtask

(√
rmach +

√
1− rmach

)
The expected value of any cost is thus µ because the expected value of all

gamma distributions is one.
The standard deviation of G(1/V 2

col, V
2
col) is Vcol and the standard deviation

of G(1/V 2
row, V

2
row) is

√
1− rmachVcol. Therefore, the standard deviation of ei,j

is:

µ

√
rtask
√

1− rmach +
√

1− rtask
(√
rmach +

√
1− rmach

)
√
rtask +

√
1− rtask

(√
rmach +

√
1− rmach

) Vcol
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Given the assignment on Line 1, this simplifies as µV . The cost coefficient
of variation is therefore V .

As with the correlation noise-based method, the correlation parameters must
be distinct from one. Additionally, the final cost distribution is a sum of three
gamma distributions (two if either of the correlation parameters is zero and only
one if both of them are zero).

Note that the previous propositions give only convergence results. For a
given generated matrix with finite dimension, the effective correlation properties
are distinct from the asymptotic ones.

5 Impact on Scheduling Heuristics

Controlling the task and machine correlations provides a continuum of unrelated
instances that are arbitrarily close to uniform instances. This section shows
how some heuristics for the R||Cmax scheduling problem5 are affected by this
proximity.

5.1 Selected Heuristics

A subset of the heuristics from [13] were used with instances generated using
the correlation noise-based and combination-based methods. The three selected
heuristics, which are detailed in [12, Appendix E], are based on distinct princi-
ples to emphasize how the correlation properties may have different effects on
the performance.

First, we selected EFT [24, E-schedule] [19, Min-Min], a common greedy
heuristic that computes the completion time of any task on any machine and
schedules first the task that finishes the earliest on the corresponding machine.
The second heuristic is HLPT [14], an adaptation of LPT [22] for unrelated
platforms that is similar to HEFT [37]. HLPT differs from EFT by considering
first the largest tasks based on their minimum cost on any machine and assigning
it to the machine that finishes it the earliest. Since LPT is an efficient heuristic
for the Q||Cmax problem, HLPT performs as the original LPT when machines
are uniform (i.e., when the correlations are both equal to 1). The last heuristic,
BalSuff [14] starts from an initial mapping where the tasks are assigned to
their best machines, the ones with their smallest costs. Then, the algorithm
iteratively balances the schedule by changing the allocation of the tasks that
are on the most loaded machine, i.e. the one that completes its tasks the latest.
At each iteration, the algorithm selects a task-machine pair that minimizes
the amount by which the task duration increases, its sufferage, and moves the
task to the machine provided that the makespan is improved. BalSuff is more
sophisticated than the other heuristics but generates excellent solutions.

These heuristics perform identically when the task and machine correlations
are arbitrarily close to one and zero, respectively. In particular, sorting the
tasks for HLPT is meaningless because all tasks have similar execution times.
With such instances, the problem is related to the Q|pi = p|Cmax problem

5A well-studied NP-Hard problem [20] in which tasks are independent and the objective is
to minimize the total execution time.
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(see Section 3.2), which is polynomial. Therefore, we expect these heuristics to
perform well with these instances.

5.2 Settings

In the following experiments, we rely on the correlation noise-based and combination-
based methods (Algorithms 3 and 4) to generate cost matrices. With both
methods, instances are generated with n = 100 tasks and m = 30 machines.
Without loss of generality, the cost expected value µ is set to one (scaling a ma-
trix by multiplying each cost by the same constant will have no impact on the
scheduling heuristics). Unless otherwise stated, the cost coefficient of variation
V is set to 0.3.

For the last two parameters, the task and machine correlations, we use the
probit scale. The probit function is the quantile function of the standard normal
distribution. It highlights what happens for values that are arbitrarily close to
0 and 1 at the same time. For instance, with 10 equidistant values between
0.01 and 0.9, the first five values are 0.01, 0.04, 0.10, 0.22 and 0.40 (the last five
are the complement of these values to one). In the following experiments, the
correlations vary from 0.001 to 0.999 using a probit scale.

For each scenario, we compute the makespan6 of each heuristic. We then
consider the relative difference from the reference makespan: C/Cmin− 1 where
C is the makespan of a given heuristic and Cmin the best makespan we obtained.
The closer to zero, the better the performance. To compute Cmin, we use a
genetic algorithm that is initialized with all the solutions obtained by other
heuristics as in [13], which significantly improves the quality of the generated
schedules. Finding the optimal solution would take too much time for this NP-
Hard problem. We assume in this study that the reference makespan closely
approximates the optimal one.

5.3 Variation of the Correlation Effect

The first experiment shows the impact of the task and machine correlations
when the target correlations are the same (see Figure 2). For each generation
method and coefficient of variation, 10 000 random instances are generated with
varying values for the parameters rtask = rmach that are uniformly distributed
according to a probit scale between 0.001 and 0.999.

In terms of central tendency, we see that the selected heuristics are impacted
in different ways when the correlations increase: EFT performance degrades
slightly; HLPT performance improves significantly; and, BalSuff performance
remains stable except for correlation values above 0.9.

In terms of variance for some given values of correlations, the performance
varies moderately. For correlation parameters between 0.01 and 0.1 and a co-
efficient of variation of 0.3, we generate 1695 instances with the correlation
noise-based method. In the case of HLPT, although the average performance
stays relatively constant when the correlations vary from 0.01 and 0.1, the rel-
ative differences with the best cases were between 0.063 and 0.382. However,
the 50% most central of these differences were between 0.148 and 0.200 (see the
dark rectangle in Figure 2). Therefore, we may have some confidence in the

6The makespan is the total execution time and it must be minimized.
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Figure 2: Heuristic performance with 10 000 instances for each pair of generation
method and coefficient of variation. The x-axis is in probit scale between 0.001
and 0.999. The central tendency is obtained with a smoothing method relying
on the generalized additive model (GAM). The contour lines correspond to the
areas with the highest density of points. The dark rectangle corresponds to 50%
of the most central values when 0.01 ≤ rtask ≤ 0.1 and V = 0.3.

average performance even though the performance for a single instance may be
moderately different from the average one.

5.4 Mean Effect of Task and Machine Correlations

The heat maps on Figures 3 to 5 share the same generation procedure. First,
30 equidistant correlation values are considered between 0.001 and 0.999 using
a probit scale (0.001, 0.002, 0.0039, 0.0071, . . . , 0.37, 0.46, . . . , 0.999). Then,
each pair of values for the task and machine correlations leads to the generation
of 200 cost matrices (for a total of 180 000 instances). The actual correlations
are then measured for each generated cost matrices. Any tile on the figures
corresponds to the average performance obtained with the instances for which
the actual correlation values lie in the range of the tile. Hence, an instance
generated with 0.001 for both correlations may be associated with another tile
than the bottommost and leftmost one depending on its actual correlations.
Although it did not occur in our analysis, values outside any tile were planned
to be discarded.

Figure 3 compares the average performance of EFT, HLPT and BalSuff.
The diagonal line corresponds to the cases when both correlations are similar.
In these cases, the impact of the correlations on the three heuristics is consistent
with the previous observations that are drawn from Figure 2 (see Section 5.3).
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Figure 3: Heuristic performance with 180 000 instances for each generation
method. The cost coefficient of variation V is set to 0.3. The x- and y-axes are
in probit scale between 0.001 and 0.999. Each tile represents on average 200
instances. The contour lines correspond to the levels in the legend (0, 0.05, 0.1,
. . . ). The diagonal slices correspond to Figure 2.

Despite ignoring the variability, Figure 3 is more informative regarding the
central tendency because both correlations vary.

First, EFT performance remains mainly unaffected by the task and machine
correlations when they are similar. However, its performance is significantly
impacted by them when one correlation is the complement of the other to one
(i.e., when ρtask = 1 − ρmach, which is the other diagonal). In this case, the
performance of EFT is at its poorest on the top-left. It then continuously
improves until reaching its best performance on the bottom-right (less than 5%
from the reference makespan, which is comparable to the other two heuristics
for this area). This is consistent with the previous observation that this last
area corresponds to instances that may be close to Q|pi = p|Cmax instances, for
which EFT is optimal (see Section 5.1). HLPT achieves the best performance
when either correlation is close to one. This is particularly true for the task
correlation. HLPT shows however some difficulties when both correlations are
close to zero. This tendency was already clearly depicted on Figure 2. Finally,
BalSuff closely follows the reference makespan. The iterative nature of this
algorithm, which makes it more costly than the other two, allows the generation
of high-quality schedules.
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Figure 4: Performance of HLPT with 180 000 instances for each pair of genera-
tion method and cost coefficient of variation V . The x- and y-axes are in probit
scale between 0.001 and 0.999. Each tile represents on average 200 instances.
The contour lines correspond to the levels in the legend (0, 0.05, 0.1, . . . ).

5.5 Effect of the Cost Coefficient of Variation

Figure 4 shows the effect of the cost coefficient of variation, V , on HLPT perfor-
mance for five distinct values: 0.1, 0.2, 0.3, 0.5 and 1. All costs are similar when
the coefficient of variation is 0.1 (0.90, 0.94, 0.95, 1.07 and 1.14 for instance),
whereas they are highly heterogeneous when it is 1 (0.1, 0.2, 0.7, 1.5 and 2.5 for
instance).

The behavior of HLPT is similar for most values of V with both genera-
tion methods: it performs the worst in the bottom-left area than in the other
areas. However, V limits the magnitude of this difference. In particular, the
performance of HLPT remains almost the same when V = 0.1.

HLPT behaves slightly differently when V = 1. At this heterogeneity level,
incorrect scheduling decisions may have significant consequences on the per-
formance. Here, HLPT performs the worst for instances for which the task
correlation is non-zero and the machine correlation is close to 0. By contrast, it
produces near-optimal schedules in the area related to instances of the P ||Cmax

problem (top-left). For these instances, LPT, from which HLPT is inspired,
achieves an upper bound of 4/3, which may explain its efficiency.

5.6 Best Heuristic

Figure 5 depicts the results for the last set of experiments. In addition to the
three selected heuristics, two other heuristics were considered: BalEFT [14],
which is similar to BalSuff except it selects at each iteration the task that
minimizes its earliest finish time, and Max-min [14], which is similar to EFT
except it schedules first the task with the largest minimum completion time.
Each tile color corresponds to the best heuristic in average over related instances.
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Figure 5: Heuristic with the best average performance with 180 000 instances for
each pair of generation method and cost coefficient of variation V (among EFT,
HLPT, BalSuff, BalEFT and Max-min). The x- and y-axes are in probit scale
between 0.001 and 0.999. Each tile represents on average 200 instances. Tiles
with at least two similar heuristics are darker (i.e., there is at least one heuris-
tic with a performance closer to the best heuristic performance than 0.001).
Contour lines show the tiles with at least three similar heuristics.

When the performance of any other heuristic is closer to the best one than 0.001,
then this heuristic is considered similar. For instance, if the best heuristic
performance is 0.05, then all heuristics with a performance lower than 0.051 are
considered similar to the best one. Tiles for which there are at least two similar
heuristics (the best one and at least another one) are darker. For instance,
this is the case for low task correlation, high machine correlation and V = 1
for which HLPT and Max-min are similar (note that Max-min is never the only
heuristic to be the best). The white contour lines show the areas for which there
are at least three similar heuristics. When several heuristics are similar for a
given tile, the appearing heuristic is the one that is the best the least often (in
particular, heuristics are chosen in the reverse order in which they appear in the
legend of Figure 5). This highlights the settings for which the worst heuristics
are good.

When the cost coefficient of variation is 0.1 or 0.3, the best heuristics are
BalSuff and BalEFT. This is expected because they are the most sophisticated
and the most costly ones. When V = 0.1, BalSuff outperforms BalEFT except
for high task and low machine correlations or low task and high machine cor-
relations. In addition, with high task and low machine correlations all tested
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heuristics behave similarly. The related problem is polynomial and all tested
heuristics are optimal for this problem. When V = 0.3, BalEFT outperforms
BalSuff only for high task and low machine correlations with both generation
methods. The case when V = 1 is significantly different. BalSuff is almost
always the best when the machine correlation is low. For low task and high
machine correlations, there are at least two best methods, including HLPT
which is the best method when the machine correlation is high. The superi-
ority of HLPT over both BalSuff and BalEFT in this case confirms the results
previously pointed out on Figure 4. This behavior, identified by varying the cor-
relations, was not observed when varying the heterogeneity of the costs in [13]
and thus illustrates the interest of this new measure when assessing scheduling
algorithms.

On both Figures 4 and 5, the behavior of the heuristic performance remains
relatively stable except when the cost coefficient of variation is high. The precise
impact of large values of V remains to be investigated.

To conclude on the performance of EFT, HLPT and BalSuff: EFT and
HLPT perform well in the bottom-right area, which may be because they are
optimal for the problem related to this area (Q|pi = p|Cmax); HLPT performs
also well in this top-left area, which may be because it achieves an upper bound
of 4/3 for the problem related to this area (P ||Cmax); BalSuff performs well
everywhere thanks to its costlier approach that balances iteratively the tasks.

The results obtained with both generation methods are not equivalent be-
cause for the same correlation values, the generated instances must have dif-
ferent properties depending on the generation process. However, most of the
observations in this section are consistent. In particular, the task and machine
correlations impact the performance of the heuristics similarly with both gen-
eration methods. This shows that controlling this properties when generating
cost matrices plays an crucial role. Finally, these two methods should be consid-
ered and used as tools to assess the quality of scheduling algorithms and using
both will give a better view on the algorithm characteristics and performance
considering correlation.

6 Conclusion

This article studies the correlations of cost matrices used to assess heterogeneous
scheduling algorithms. The task and machine correlations are proposed to mea-
sure the similarity between an unrelated instance in which any cost is arbitrary
(R) and the closest uniform instance (Q) in which any cost is proportional to
the task weight and machine cycle time. We analyzed several generation meth-
ods from the literature and designed two new ones to see the impact of these
properties. In contrast to instances used in previous studies, the new methods
can be used to cover the entire space of possible correlation values (including
realistic ones).

Even though the correlation is not a perfect measure for the distance between
uniform and unrelated instances (a unitary correlation does not always imply
a correspondence to a uniform instance), both proposed generation methods
consistently show how some heuristics from the literature are affected. For
instance, the closer instances are from the uniform case, the better HLPT, an
adaptation of LPT to the unrelated case, performs. Additionally, the need for
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two correlations (for the tasks and for the machines) arises for EFT for which
the performance goes from worst to best as the task and machine correlations go
from zero to one and one to zero, respectively. These effects do not depend on
the generation method. This shows that both these correlations could enhance a
hyperheuristic mechanism that would select a heuristic based on the properties
of the instance.

Although the current study highlights the importance of controlling the cor-
relations in cost matrices, it presents some limitations. Overcoming each of them
is left for future work. First, results were obtained using the gamma distribution
only. However, the two proposed methods could use other distributions as long
as the expected value and standard deviation are preserved. Second, all formal
derivations are in the asymptotic case only. Hence, the proposed approach must
be adjusted for small instances. Also, the proposed correlation measures and
generation methods assume that the correlations stay the same for each pair of
rows and for each pair of columns: our measures average the correlations and
our methods are inapplicable when the correlations between each pair of rows or
each pair of columns are distinct. Considering two correlation matrices that de-
fine the specific correlations between each pair of rows and each pair of columns
would require the design of a finer generation method. Finally, investigating the
relation with the heterogeneous properties would require the design of a method
that controls both the correlation and heterogeneity properties. A sensitivity
analysis could then be used to assess the impact of each of these properties.
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