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This result is shown for reaction A←−−−→B.
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1. INTRODUCTION

This paper deals with modeling of continuous single phase
chemical reactors in Port Hamiltonian framework us-
ing irreversible thermodynamics. More precisely, the Port
(pseudo) Hamiltonian modeling will be obtained by using
Brayton-Moser formulation ( B-M formulation) based on
a structured representation of the system with the vari-
ables directly issued from thermodynamic framework. It
shows that there exists some general thermodynamic crite-
rion (including the irreversible entropy production due to
chemical reaction) permitting to determine the (strictly)
negative definite matrix Q for the B-M formulation. In
other words, any thermodynamic variable verifying this
criteria is usable as an Hamiltonian function. This port
hamiltonian representation will be used for control design
of the CSTRs thank to IDA-PBC approach Ortega (2002);
Favache (2009); Ramı́rez (2009); Dörfler (2009) using the
thermodynamic availability function (Ydstie and Alonso
(1997); Ruszkowski (2005)) as desired closed loop hamil-
tonian. Although, it is generally difficult to solve the so
called matching PDE equation to find the state feedback
able to assign the desired closed loop Hamiltonian, it has
been show in Hoang (2010a,b) that this matching equation
can be easily solved with this previous choice.

Let us note that in contrast with mechanical and electrical
systems where connections between energy and control
are today fairly well understood (van der Schaft (2000a);
Maschke (2000)), links between physics and process con-
trol in a Port Hamiltonian based view are quite difficult
to exhibit from geometrical point of view(Eberard (2007))
and need considerable attentions. In fact, the chemical
reactor models, and in particular the reference case study
known as the Continuous Stirred Tank Reactor (CSTR),
belong to nonlinear non-equilibrium thermodynamic sys-

tems because of reaction kinetics and irreversibilities of
the coupling between matter and temperature. Following
the first principle of Thermodynamics, the total energy
(the energy of the simple system under consideration and
its surrounding medium) is conserved. Yet, this energy
changes of nature moving irreversibly from the material
domain to the thermal domain. As a matter of fact the
internal energy cannot be considered as an Hamiltonian
function because it does not allow to express the inherent
irreversibility of the system governed by the Second Law
of Thermodynamics. The variation of the internal energy
is only to change molecular arrangements and chemical
structure of species. As a consequence, the links between
thermodynamics and system theory have to be charac-
terized more precisely in order to exhibit thermodynamic
variables usable both for Port Hamiltonian based modeling
and control design.

This subject has attracted some interest in the litera-
ture (Hangos et al. (2001); Eberard (2007); Otero-Muras
(2008); Dörfler (2009); Favache (2009); Hudon (2008);
Ramı́rez (2009); Hoang (2010a,b)) due to the fact that
the Port Hamiltonian based methodology has been met
with some success in the field of chemical engineering.
Even if such formulation does not formally exist (Eber-
ard (2007)), a pseudo Hamiltonian formulation allows us
to find appropriate stabilization laws using the passivity
based control e.g. for simple chemical reactors (Bao and
Lee (2007); Favache (2009); Ramı́rez (2009)).

Let us analyze some obtained results for Port Hamilto-
nian modeling of CSTRs as proposed in (Otero-Muras
(2008); Ramı́rez (2009); Dörfler (2009); Favache (2010)).
In the case of (Ramı́rez (2009)), dissipation term does not
capture the inherently irreversible nature of the CSTR
and the Hamiltonian is not linked to any thermodynamic
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variable. The same situation is given in (Dörfler (2009)).
The use of the physical variable for the Hamiltonian is
done in (Otero-Muras (2008)), where the authors propose
an Hamiltonian representation of closed reaction networks
in the isothermal case. In their case the local Hamiltonian
is not the Gibbs free energy (as in Hoang (2010b)) but
it is locally linked to the chemical affinity. Using the
irreversible entropy production (due to chemical reaction)
as Hamiltonian potential is given in Favache (2010) with
some restrictions on the reaction kinetics. However, its
dissipation term is not obvious. In our recent works (Hoang
(2010a,b)), a thermodynamically consistent Hamiltonian
pseudo representation of the CSTRs model using the ther-
modynamic potentials (Gibbs free energy G and opposite
of entropy −S for isothermal and non-isothermal cases
respectively) as Hamiltonian function is given. The dis-
sipation term is then expressed by the irreversible entropy
production due to chemical reaction.

This paper first shows that, a pseudo PH representation
for continuous stirred tank reactor (CSTR) can be also
obtained from the B-M formulation by using thermo-
dynamic variables. The paper generalizes the results of
(Otero-Muras (2008); Hoang (2010a,b)). This formulation
is based on a structured representation of systems with the
variables directly coming from thermodynamic considera-
tions. In this paper, we show that the following candidate
variables can be chosen as hamiltonian function:

• The opposite of entropy −S (extensive variable).
• The chemical affinity A (intensive variable).

As a consequence, the dissipation term is also linked to
the natural irreversibility due to chemical reaction.

This paper is organized as follows: in section 2, an overview
on the links between the B-M formulation and Port con-
trolled Hamiltonian representation is given. In section 3
a CSTR case study with one reaction νAA = νBB is
presented and analyzed from a thermodynamics based
point of view. The Thermodynamic Availability concept
is recalled. In the section 4, we present a stability criteria
for thermodynamic variables and the decomposition of the
availability into the thermal and material parts for CSTRs.
This stability criteria is then used to find the solution
of the B-M formulation for a CSTR with one reaction
scheme νAA = νBB in Section 5. As a consequence, the
thermodynamically consistent Port Hamiltonian modeling
is easily obtained.

2. PORT CONTROLLED HAMILTONIAN
REPRESENTATION AND B-M FORMULATION

Here we are interested in open chemical systems whose
mathematical modeling is affine with respect to control
input u and is given by the following set of ODE’s :

dx

dt
= f(x) + g(x) u (1)

where x = x(t) ∈ Rn is the state vector, f(x) ∈ Rn
represents the smooth nonlinear function with respect to
x, g(x) ∈ Rn×m is the input-state map and u ∈ Rm is the
input.

2.1 B-M formulation

B-M formulation (Brayton and Moser (1964)) leads

(1) to find a matrix Q(x) : Rn → Rn×n that satisfies the
two following conditions:
(C1) It is non singular (or invertible)
(C2) Its symmetry part is negative definite:

Q(x) +Q(x)t ≤ 0 (2)
where the exponent t holds for the matrix transpose.

(2) to write the system dynamics (1) into the following
equivalent form :

Q(x)
dx

dt
= ∇xP (x) +G(x)u (3)

with P (x) : Rn → R is smooth potential function with
respect to x. ∇x represents the Gradient operator in x.

By identifying (1) et (3), we obtain the following relations:
∇xP (x) = Q(x)f(x) (4)

and
G(x) = Q(x)g(x) (5)

The sufficient and necessary conditions for the existence of
(3) is the symmetry of the Hessian matrix H(P ) of P (x) :

H(P ) =
(
H(P )

)t
(6)

Remark 1. The B-M formulation requires some possibly
heavily mathematical calculations in general (solutions for
Partial Differential Equation (PDE)). We leave the reader
to refer to (Favache (2009, 2010)) for the different appli-
cations of the B-M formulation to modeling of CSTRs.

2.2 Links with the Port controlled Hamiltonian formulation
(PCH)

Because Q is invertible, the B-M form (3) can be written
in the equivalent one:

dx

dt
= Q(x)−1∇xP (x) + g(x)u (7)

As we know, any square matrix can be split into two parts:
symmetric part and skew-symmetric part. Eq. (7) is then
transformed into the following form:

dx

dt
=
[Q(x)−1 −Q(x)−1t

2
+
Q(x)−1 +Q(x)−1t

2

]
∇xP (x) + g(x)u

(8)

The dynamical equation (8) can be identified to a general
class of the so called Port controlled Hamiltonian sys-
tems with dissipation given by (Maschke (2000); Brogliato
(2007); van der Schaft (2000a,b)):

dx

dt
= [J(x)−R(x)]∇xH(x) + g(x)u

y = g(x)t∇xH(x)

(9)

where: 

H(x) = P (x)

J(x) =
Q(x)−1 −Q(x)−1t

2

R(x) = −Q(x)−1 +Q(x)−1t

2

(10)
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the smooth function H(x) = P (x) : Rn → R represents
the Hamiltonian storage function (or the energy); J(x) =
−J(x)t and R(x) = R(x)t ≥ 0 are the structure matrices
and correspond to the natural interconnection matrix and
the damping matrix, respectively; u, y ∈ Rm are the
control input and the output, respectively, and are power
conjugated port variables.

The energy balance immediately follows from (9):

dH(x)
dt

= −
[
∂H(x)
∂x

]t
R(x)

[
∂H(x)
∂x

]
+ uty (11)

The system (9) is passive in the sense that the dissipation

d = −
[
∂H(x)
∂x

]t
R(x)

[
∂H(x)
∂x

]
< 0 (12)

is always negative and the Hamiltonian H(x) is bounded
from below (van der Schaft (2000b); Brogliato (2007)). The
term d defined by (12) corresponds to natural dissipation
(energy lost due to friction/damping in a mechanical
systems or due to resistance in RLC electrical system
(van der Schaft (2000a); Maschke (2000)) for example).
The following inequality immediately follows from (11)
and (12)

energy storage︷ ︸︸ ︷
H(x(t2))−H(x(t1)) ≤

energy supply︷ ︸︸ ︷∫ t2

t1

u(τ)ty(τ)dτ (13)

In this case (13) shows that a passive system cannot
store more energy than the one supplied to it from the
environment due to the dissipated energy. In other words,
we can only extract a finite amount of energy from a
passive system. From here, a feedback law of the form
u = −Ky with K > 0 for instance, returns this system to
be dissipative.
Remark 2. Port Hamiltonian formulation is related to the
existence of a geometric interconnection structure named
the Dirac structure. This linear structure implies that
J,R may depend only on x and the matrix R necessarily
verifies the strictly positive definite condition, ∀e 6= 0 :
etR(x)e ≥ 0. Unfortunately but it is not necessarily the
case for chemical reaction systems (see Hoang (2010a,b))
due to strong non linearity appearing in thermodynamic
and constitutive relations (reaction kinetics for instance).
In that situation, it is called Port pseudo Hamiltonian
formulation.

3. CSTR CASE STUDY

3.1 Classical model of CSTR

Let us consider a jacketed reactor with one reaction
involving 2 chemical species A and B :

νAA = νBB (14)
Let us assume that the reactor is modelled with the so
called CSTR model which assumes uniform properties
such as temperature, pressure or concentrations inside
the reactor. As a consequence, the reaction mixture is
homogeneous.
Remark 3. The reaction under consideration can be either
an equilibrated reaction (in this case, ” = ” is replaced by
” 
 ”) or a non equilibrated reaction (in this case, ” = ”
is replaced by ”→ ”).

In the case the reaction (14) is an equilibrated reaction,
A is not only the reactant (with respect to the forward
reaction) but also the product (with respect to the reverse
reaction). The same situation also holds for B. As a
consequence for the dynamic representation, νA and νB
are the suitable signed stoichiometric coefficients with the
following convention :{

νA < 0 since A appears on the left side of (14)
νB > 0 since B appears on the right side of (14)

(15)
Remark 4. the net reaction rate r is equal to :

r = (rf − rr) (16)
where rf and rr are the forward and reserve reaction rates
respectively.

Let us consider the following hypotheses:

(H1) The fluid mixture is ideal, incompressible and under
isobaric conditions.

(H2) In the inlet, the reactor is fed by the species A and
B at a fixed temperature TI .

(H3) The heat flow coming from the jacket Q̇J ,
Q̇J = λ(TJ − T ) (17)

with λ heat exchange coefficient and inlet molar flow
rates (FAI , FBI) are used as inputs.

3.2 Thermodynamics based view for CSTR modeling

In a thermodynamics based view, the system variables
are divided into extensive variables such as the internal
energy U , the entropy S, the volume V , the molar number
Ni and into intensive variables as the temperature T ,
the pressure P , the chemical potential µi. The variation
of the internal energy U (with isobaric conditions the
pressure p is constant, we use the enthalpy H instead of
the internal energy U) can be derived from the variation
of the extensive variables using the Gibbs equation:

dH =
B∑
i=A

µidNi + TdS (18)

Since the energy H is an extensive variable, it is a
homogenous function of degree 1 of (NA, NB , S) (Callen
(1985)). From Euler’s theorem we get:

H(NA, NB , S) =
B∑
i=A

µiNi + TS (19)

As a consequence of eq. (18):

dS =
B∑
i=A

−µi
T

dNi +
1
T
dH (20)

Since the entropy S is also an extensive variable, we get:

S(NA, NB , H) =
B∑
i=A

−µi
T

Ni +
1
T
H (21)

(20) can be written in a compact form as:

dS = wtdZ ⇒ w(Z)t =
∂S(Z)
∂Z

(22)

with

w(Z) =
(
−µA
T

,
−µB
T

,
1
T

)t
, Z =

(
NA, NB , H

)t
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As a consequence, w(Z) is a homogenous function of
degree 0 of Z.

The dynamics of the system is then given by energy and
material balances:

dNA
dt

= FAI − FA + νArV

dNB
dt

= FBI − FB + νBrV

dH

dt
= Q̇J + FAIhAI + FBIhBI − (FAhA + FBhB)

(23)
where ( FAI , FBI ) and ( FA, FB ) are the inlet flow
rate vector and the outlet flow rate vector respectively
and ( νA, νB ) the stoichiometric vector. ( hAI , hBI ) and
( hA, hB ) are the inlet molar enthalpy vector and the
molar enthalpy vector respectively, and Q̇J the heat flux
coming from the jacket. The sign of each νA and νB is
deduced from the rule (15).

Let us complete the system dynamics representation with
the entropy balance. In fact, on one side using the local
equilibrium hypothesis (Groot (1962)), (22) can be writ-
ten:

dS

dt
= wt

dZ

dt
(24)

The entropy balance of S can also directly be written from
the second law of thermodynamics:

dS

dt
= Φs + Σs and Σs ≥ 0 (25)

where Φs, Σs are the entropy exchange flow with environ-
ment and the irreversible entropy production respectively.
The source term Σs is always positive from the second law
of thermodynamics. From here the entropy balance (25)
is identified with (24) to derive Φs and Σs (see Couenne
(2006)):

Φs = FAIsAI + FBIsBI −
(
FAsA + FBsB

)
+
Q̇J
TJ

(26)

and
Σs = Σmix.

s + Σex.
s + Σreac.

s ≥ 0 (27)
where

Σmix.
s =

B∑
i=A

FiI
T

(hiI − TsiI − µi) ≥ 0 (28)

Σex.
s =

( Q̇J
T
− Q̇J
TJ

)
≥ 0 (29)

Σreac.
s =

(
− νA

µA
T
− νB

µB
T

)
rV ≥ 0 (30)

Σmix.
s , Σex.

s and Σreac.
s are irreversible entropy productions

due to mixing, exchange and reaction, respectively. They
are also positive from the second law of thermodynamics.
Note that Σmix.

s and Σex.
s depend on the control inputs and

that Σreac.
s depends only on the system states.

Finally let us introduce the definition of the total chemical
affinity:

A = −νA
µA
T
− νB

µB
T

(31)

Finall, we can write for the Σreac.
s in (27) with (31):

Σreac.
s = A rV ≥ 0 (32)

Remark 5. The inequality in (32) always holds for any
reaction kinetic constant. We can see that the affinity A

and rV have the same sign for any evolution; if A > 0
(resp. A < 0) then rV > 0 (resp. rV < 0) and if A = 0
then rV = 0. In other words, the reaction always evolves
in the direction of decreasing affinity.

4. PRELIMINARY RESULTS

4.1 A general stability criteria for CSTR

Lemma 1 gives a property of the chemical affinity. It
generalizes some results obtained in (Favache (2010)).
Lemma 1. The chemical affinity A (NA, NB , H) verifies
(33) for the reaction system for any rV :

−νA
∂A

∂NA
− νB

∂A

∂NB
≥ 0 (33)

Proof. Let us note that as presented in (22), w =(−µA
T , −µBT , 1

T

)t
is a function of Z = (NA, NB , H)t. ¿From

(31), we obtain:

∂A

∂Ni
= −

B∑
j=A

νj
∂
µj
T

∂Ni
; i = A,B

Taking into account that −µjT = ∂S
∂Nj

(see (22)), we have:

∂A

∂Ni
=

B∑
j=A

νj
∂2S

∂Ni∂Nj
; i = A,B (34)

Multiplying (34) by νi and summing for i = A,B, we
obtain

B∑
i=A

νi
∂A

∂Ni
=

B∑
i=A

B∑
j=A

νiνj
∂2S

∂Ni∂Nj
(35)

(35) can be also written under the following quadratic form
(36):

nc∑
i=1

νi
∂A

∂Ni
= υtH(S)υ (36)

where υ =
(

0, νA, νB
)t

and H(S) is the Hessian matrix of
the entropy function S(Z). Because S = S(Z) is concave
with respect to Z =

(
NA, NB , H

)
(see Remark (10),

Callen (1985)): H(S) ≤ 0. (33) immediately follows. 2

The following Corollary 1 gives the explicit form of (33)
in the ideal mixture.
Corollary 1. Under the hypothesis (H1), the explicit form
of (33) is :

−νA
∂A

∂NA
−νB

∂A

∂NB
=

R

Nt
νtΞν+

(
νth

)2 1
CpT 2

≥ 0 (37)

where ν = (νA, νB)t, h = (hA, hB)t and Ξ is the 2 × 2
positive definite matrix:

Ξ =


Nt −NA
NA

−1

−1
Nt −NB
NB

 (38)

Cp = cpANA + cpBNB is total heat capacity and Nt =
(NA +NB) is total molar number.

Proof. See Appendix A. 2
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The following proposition 1 proposes a (general) stability
criterion for CSTR’s. It generalizes some results of the
Lemma 1 and the irreversible entropy production.
Proposition 1. For any non isothermal homogeneous liquid-
phase reaction in entropy vision, there always exists a
thermodynamic potential P (NA, NB , H) verifying:(

− νA
∂P

∂NA
− νB

∂P

∂NB

)
rV ≥ 0 (39)

(39) is then called the (general) stability criterion.

Proof. We can show that:

• P = −S verifies (39) using the expression of Σreac.
s

given in (27) and relations between the intensive
variables and extensive variables in (22).

• P = A 2

2 verifies (39) using (32) and (33). 2

Remark 6. The inequality in (39) always holds for any
reaction kinetic constant. We can see that the potential
P and rV also have the same sign for any evolution.

5. THERMODYNAMICALLY PORT HAMILTONIAN
BASED CSTR MODELING

In this paper, we consider for control purpose and the
use of the availability function that the total mass mt

is constant B. As consequence, the outlet molar flow can
be expressed directly from mole fractions and inlet flows
of the different species involved in the reaction as (see
Appendix C):

FA =
NAMA

mt
FAI +

NAMB

mt
FBI

FB =
NBMA

mt
FAI +

NBMB

mt
FBI

(40)

The non isothermal balance equations are given in (23)
and are rewritten as in (41) using (40):

dx

dt
= f + g u (41)

with

x=

(
NA
NB
H

)
, u =

 FAI
FBI
Q̇J

 , f =

(
νArV
νBrV

0

)
(42)

g =



(
1− NAMA

mt

)
−NAMB

mt
0

−NBMA

mt

(
1− NBMB

mt

)
0

[
hAI −

MAH

mt

] [
hBI −

MBH

mt

]
1


(43)

In our recent results Hoang (2010b), we showed that the
internal energy of the system can be chosen as Hamil-
tonian. The system is then naturally under Hamiltonian
form without dissipation, showing that internal energy is
conserved. However this formulation does not allow to
express the inherent irreversibility of the reaction from
the thermodynamic point of view. As a consequence, the

entropy representation must be chosen and the state vari-
ables are Z = (NA, NB , H)t. In this section we show that
the proposed criterion (see Proposition 1) can help to
obtain a Port hamiltonian representation with dissipation
using the B-M formulation for the system (41). We only
treat the non isothermal case in this paper (however, the
isothermal case is deduced by the same procedure).
Proposition 2. In the entropy representation, if the ther-
modynamic potential P given in Proposition 1 verifies the
following condition:

lim
r→0

(
νA

∂P
∂NA

+ νB
∂P
∂NB

)
r

<∞ (44)

Then the dynamics (41) accepts a port (pseudo) hamilto-
nian representation (9) with x = (NA, NB , H )t and:

• Its Hamiltonian is
H(x) = P (x) (45)

• Structure matrices are

J =
1

2∆


0 J12 −4αbe

(νA
νB

)2

−J12 0 ec

4αbe
(νA
νB

)2

−ec 0

 (46)

with J12 =

(
−4αb

νA
νB
−2c

)
βe2

4(1−α)b and

R = − 1
2∆


R11

αβe2 νAνB
(1− α)

4αbe
(νA
νB

)2

αβe2 νAνB
(1− α)

R22 −ec

4αbe
(νA
νB

)2

−ec R33


(47)

where 0 < α < 1 and β > 1 are two scalars

and R11 =
2αβe2

(
νA
νB

)2

(1−α) , R22 = βe2

2(1−α) and R33 =

2
[
4αb
(
b
(
νA
νB

)2

+ c νAνB

)
+ c2

]


b =
1
νA

(νB
νA

∂P

∂NB
+

∂P

∂NA

) 1
rV

c = − 1
νA

∂P

∂NB

1
rV

e = − 1
νA

( ∂P
∂H

1
rV

)
∆ =

αβe2

(1− α)

(
b
(νA
νB

)2

+ c
νA
νB

)
+

βe2c2

4(1− α)b
(48)

• The input-state map is g given by equation(43)
• The control input and the output y are respectively:

ut =
(
FAI FBI Q̇J

)
(49)

and
y = gt∇xH(x) (50)

Finally, the system is passive with dissipation (12),

d =
(
νA

∂P

∂NA
+ νB

∂P

∂NB

)
rV (51)
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is negative.

Proof. The proof is done by using the B-M Formulation
(see Section 2) and contains two parts.

Part 1: We write the dynamic (41) into B-M formulation.
Let us note:

Q(x) =

(
q11(x) q12(x) q13(x)
q21(x) q22(x) q23(x)
q31(x) q32(x) q33(x)

)
(52)

We have from (4),

Q(x)f(x) = ∇xP (x)

where f is given in (41). So the can be established following
relations:

q11 =
1
νA

(
− νBq12 +

∂P

∂NA

1
rV

)
q21 =

1
νA

(
− νBq22 +

∂P

∂NB

1
rV

)
q31 =

1
νA

(
− νBq32 +

∂P

∂H

1
rV

)
(53)

Using the condition (39) and after some mathematical
manipulations, we obtain (see Appendix D):

Q(x) =


b c 0

−4αb
νA
νB
− c 4αb

(νA
νB

)2

0

−e 0
βe2

4(1− α)b

 (54)

where 0 < α < 1 and β > 1 are two scalars and b, c and e
are given in (48).

Part 2: We have from (54):

Q(x)−1 =
1
∆



q−1
11

−βe2c
4(1− α)b

0

−
(
− 4αb νAνB − c

)
βe2

4(1− α)b
q−1
22 0

4αbe
(νA
νB

)2

−ec q−1
33


(55)

with q−1
11 =

αβe2
(
νA
νB

)2

(1−α) ,q−1
22 = βe2

4(1−α) and q−1
33 =

4αb
(
b
(
νA
νB

)2

+ c νAνB

)
+ c2 with ∆ is given as in (48). The

dynamics (41) with the matrix Q(x) becomes (7) or it is
equivalent to (8). The port hamiltonian representation is
then given by (9) with H(x) = P (x). We obtain for the
structure matrices J in (46) and R in (47). Other results
(49) and (50) follow immediately. Finally, we calculate for
the dissipation term d (12):

d = −
(
∇xP (x)

)t
R
(
∇xP (x)

)
(56)

With R given in (47) and from (D.11), ∇xP (x) =
(

(νBc+

νAb),−νAc,−νAe
)t
rV , the quadratic form (56) is:

d =
(rV )2

2∆

(2αβe2
(
νA
νB

)2

(1− α)
(νBc+ νAb)2

+
βe2

2(1− α)
(−νAc)2 + 2

αβe2 νAνB
(1− α)

(νBc+ νAb)(−νAc)
)

(57)
By simplifying (57), we obtain:

d =
(rV )2

∆

(
αβe2

(1− α)

(
b2
(
νA

νB

)2

+cb
νA

νB

)
ν2

A+
βe2

4(1− α)
ν2

Ac
2

)
(58)

By putting ν2
Ab as common factor, (58) becomes:

d =
ν2
Ab(rV )2

∆

(
αβe2

(1− α)

(
b
(νA
νB

)2

+ c
νA
νB

)
+

βe2

4(1− α)b
c2
)

(59)
And with (48) for ∆ and b, we obtain d as given in (51).
It is negative using (39). 2

Remark 7. The dissipation d (51) don’t depend on α and
β.
Remark 8. In the non-equilibrated reaction, the condition
(44) verifies because r > 0. In the equilibrated reaction
we can show that the condition (44) also verifies using the
fact that:

• The chemical affinity (31) can be rewritten under a
structured form:

A = Af −Ar (60)
where Af = −νA µAT and Ar = νB

µB
T are affinities of

the forward and reserve reactions respectively.
• The global reaction rate is then given by (Tarbell

(1977); Couenne (2006))

r = k(T )
(

exp
(Af

R

)
− exp

(Ar

R

))
(61)

where k(T ) > 0 is the kinetic constant and R is the
gas constant. (60) and (61) always permit to verify
the inequality (32).

• Finally, we can show that,

lim
r→0

A

r
<∞

Remark 9. The obtained results give a global dissipa-
tive behavior for non isothermal case without doing any
variable transformation as done in Otero-Muras (2008).
More precisely, the authors in Otero-Muras (2008) used
the affinity as hamiltonian storage function and gave a
local hamiltonian representation of the isolated chemical
systems (see the proposition 1 and the equ. (34) in Otero-
Muras (2008)). In fact, the equ. (34) in Otero-Muras
(2008) close to equilibrium becomes (using Taylor series)
H(z) = C z2

2 with C = cst and z is the affinity A .

6. CONCLUSION

In this paper we have developed a thermodynamic stability
criteria for CSTRs. Furthermore in the non isothermal
case, we have then proposed links between the Brayton-
Moser formulation and Port (pseudo) Hamiltonian mod-
eling of CSTR with one liquid-phase reaction νAA =
νBB. The very interesting result is that a solution of the
Brayton-Moser formulation is easily found using the devel-
oped criteria. As a consequence, the dissipation term of the
hamiltonian modeling captures the natural irreversibility
due to chemical reaction.

ha
l-0

07
20

33
5,

 v
er

si
on

 1
 - 

24
 J

ul
 2

01
2



REFERENCES

Brogliato, B. and Lozano, R. and Maschke, B. and Ege-
land, O. (2007). Dissipative systems analysis and con-
trol. Springer, London, 2nd edition.

van der Schaft, A. (2000a). Port-controlled Hamiltonian
systems: towards a theory for control and design of
nonlinear physical systems. SICE journal, 39(2), 91-98.

van der Schaft, A. (2000b). L2-gain and passivity tech-
niques in nonlinear control. Springer-Verlag, London,
2nd edt.

Maschke, B. and Ortega, R. and Arjan J. van der Schaft
(2000). Energy based Lyapunov functions for forced
Hamiltonian systems with dissipation. IEEE Trans.on
Autom. Control, 45(8), 1498-1502.

Eberard, D. and Maschke, B. and van der Schaft, A.
(2007). An extension of pseudo-Hamiltonian systems to
the thermodynamic space: towards a geometry of non-
equilibrium thermodynamics. Reports on Mathematical
Physics, 60(2), 175-198.

Hangos, K. M. and Bokor, J. and Szederkényi, G. (2001).
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Appendix A. PROOF FOR COROLLARY 1

The isobaric mixture is ideal, we have for the partial molar
enthalpies and entropies of the chemical specie k (Sandler
(1999)):

hk(T, xk) = cpk(T − Tref ) + hkref

sk(T, xk) = cpk ln
( T

Tref

)
+ skref −R lnxk

(A.1)

where xk is molar fraction of species k = A,B:

xk =
( Nk
NA +NB

)
(A.2)

And the fact that µk
T = hk

T − sk (Groot (1962); Sandler
(1999)), we obtain:[µk

T

]
(T, xk) = ξk(T ) +R lnxk (A.3)

with
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ξk(T ) = cpk +
−cpkTref + hkref

T
− cpk ln

( T

Tref

)
− skref

(A.4)

The intensive variables (A.3) is not presented with respect
to its true variables Z = (NA, NB , H). Let us do a variable
transformation as bellow; because the mixture is ideal we
can write for the total enthalpy:

H(T,Nk) =
B∑
k=A

hkNk (A.5)

Using the first relation in (A.1), (A.5) leads to

T (H,NA, NB) =
H −

∑B
k=ANkhkref∑B

k=ANkcpk
+ Tref (A.6)

From here
[
µk
T

]
(T, xk) in (A.3) with (A.6) and (A.2)

becomes
[
µk
T

]
(H,NA, NB). We obtain for A (31):

νi
∂A

∂Ni
= −νiνA

∂ µAT
∂Ni

− νiνB
∂ µBT
∂Ni

= −νi
B∑
j=A

νj
∂
µj
T

∂Ni

(A.7)
Using (A.3) and (A.6), it leads to

νi
∂A

∂Ni
= −νi

B∑
j=A

νj
∂ξj(T )
∂T

∂T

∂Ni

− νiR
B∑
j=A

νj

∂

(
ln
(

Nj
NA+NB

))
∂Ni

(A.8)

Let us note that from (A.4) ∂ξk(T )
∂T = − hk

T 2 , (A.6) ∂T
∂Ni

=
− hi
Cp

and that:

∂

(
ln
(

Nj
NA+NB

))
∂Ni

=


Nt −Ni
NiNt

if i = j

− 1
Nt

if i 6= j

We obtain for (A.7):

νi
∂A

∂Ni
= −

(
νA
hA
T 2

+ νB
hB
T 2

)
νi
hi
Cp

−Rνi
(
− 1
Nt

B∑
j=A,j 6=i

νj + νi
Nt −Ni
NiNt

) (A.9)

Get sum for (A.9) with i = A,B one obtains:

−
B∑
i=A

νi
∂A

∂Ni
=

1
T 2Cp

(
νAhA + νBhB

)2

+
R

Nt

B∑
i=A

νi

(
−

B∑
j=A,j 6=i

νj + νi
Nt −Ni
Ni

)
(A.10)

The eq. (A.10) leads to (37). The later ends the proof.

Appendix B. THERMODYNAMIC AVAILABILITY.

As a consequence of the second law of thermodynamics
for homogeneous systems, the entropy function S(Z) is
necessarily concave with respect to Z (see Callen (1985)).

This concavity is independent from the dynamic behavior
of the system. From the concavity of S(Z), it can be
shown (see (Glansdorff and Prigogine (1971); Alonso and
Ydstie (1996); Ydstie and Alonso (1997))) that the the
availability function A :

A(Z) = S2 + wt2(Z − Z2)− S(Z) ≥ 0 (B.1)
is non negative, where Z2 is some fixed reference point
(for example the desired set point for control) and w2

is intensive variables associated to the extensive variables
Z2. A(Z) has some interesting properties that will entail
its use as Lyapunov function for control purpose (Alonso
and Ydstie (2001); Ruszkowski (2005); Hoang (2008, 2009,
2010a,b).
Remark 10. Because the entropy S is an homogeneous
function of degree 1 with respect to Z (Callen (1985)),
it is not strictly concave in general case, as a consequence
A(Z) will not be strictly convex. The strict concavity of
the entropy can be obtained if at least one global extensive
property (such volume, total mass, total mole number) is
fixed (Jillson (2007)). In the remaining of the paper we
will always suppose that the total mass mt is constant.

Finally, the availability function (B.1) can be written (see
(Hoang (2010b))):

A(Z) = −(w − w2)tZ (B.2)
and

dA
dt

= −(w − w2)t
dZ

dt
(B.3)

Appendix C. OUTLET MOLAR FLOWS

The total mass is constant:
mt = MANA +MBNB = cte (C.1)

where MA and MB are molar masses of species A and B.

As a matter of fact, the considered constraint allows to
express the outlet molar flows as function of inlet molar
flows and mole numbers. In fact, from this constraint we
get:

dmt

dt
= MA

dNA
dt

+MB
dNB
dt

= 0 (C.2)

¿From stoichiometric relation (MAνA +MBνB)rV = 0, so
we obtain f:

(MAFAI +MBFBI)− (MAFA +MBFB) = 0 (C.3)

On one side, FA and FB can be expressed with respect to
the total molar flow rate Ft as:(

FA
FB

)
=

 NA
Nt
NB
Nt

Ft (C.4)

where Nt is the total molar number. We obtain from (C.4)
with (C.1):

MAFA +MBFB =
mt

Nt
Ft (C.5)

So (C.4) can be written as:(
FA
FB

)
=

 NAMA

mt

NAMB

mt
NBMA

mt

NBMB

mt

( FAIFBI

)
(C.6)

This equation (C.6) leads to (40).

ha
l-0

07
20

33
5,

 v
er

si
on

 1
 - 

24
 J

ul
 2

01
2



Appendix D. PROOF FOR PROPOSITION 1

We choose q13 = q23 = q32 = 0, (52) becomes:

Q =


1
νA
χA q12 0

1
νA
χB q22 0

χH 0 q33

 (D.1)

with χA = −νBq12 + ∂P
∂NA

1
rV , χB = −νBq22 + ∂P

∂NB
1
rV and

χH = 1
νA

∂P
∂H

1
rV This matrix Q + Qt is(strictly) negative

definite if and only if
−(Q+Qt) > 0

As a consequence, all of the principal minors determinants
of −

(
Q + Qt

)
are positive. We obtain the following

conditions:
2

1
νA
χA < 0

4q22
1
νA
χA −

(
q12 +

1
νA
χB

)2

> 0

2q33

{
4

1
νA
χAq22 −

(
q12 +

1
νA
χB

)2
}
− 2q22χ2

H < 0

(D.2)

Calculation for q12. The property (39) helps us to choose
in this non isothermal case:

q12 = − 1
νA

∂P

∂NB

1
rV

(D.3)

So the first relation of (D.2) always verifies because:

2
1
νA

(
−νBq12 +

∂P

∂NA

1
rV

)
= 2

1
ν2
A

(
νB

∂P

∂NB
+νA

∂P

∂NA

) 1
rV

is certainly negative with (39).

Calculation for q22. The second relation of (D.2) be-
comes:

q22

(
4

1
νA
χA −

(νB
νA

)2

q22

)
> 0 (D.4)

Because 1
νA
χA < 0 (see (D.2)) and the equation (D.4) is

the second order with respect to q22. (D.4) is positive if
we have:

0 > q22 >
(νA
νB

)2

4
1
νA

(
− νBq12 +

∂P

∂NA

1
rV

)
(D.5)

¿From (D.5), we can choose for q22 by using q12 in (D.3):

q22 =
(νA
νB

)2(
4α

1
νA

(νB
νA

∂P

∂NB
+

∂P

∂NA

) 1
rV

)
< 0 (D.6)

with 0 < α < 1.

Calculation for q33. The third condition of (D.2) permits
to determine q33. In fact, we have:

2q33

{
4
νA

(νB
νA

∂P

∂NB
+
∂P

∂NA

) 1
rV

q22−
(νB
νA

)2

q222

}
−2q22χ2

H < 0

(D.7)

By using relation (D.6) for q22, it leads to 1
αq22

(
νB
νA

)2

=
4
νA

(
νB
νA

∂P
∂NB

+ ∂P
∂NA

)
1
rV . The condition (D.7) then becomes:

2q22

{
q33

(1− α
α

)(νB
νA

)2

q22 − χ2
H

}
< 0 (D.8)

We notice that q22 < 0 and the equation (D.8) is linear
with respect to q33. (D.8) is negative only if the condition
for q33 is:

q33 <

(
1
νA

∂P
∂H

1
rV

)2

(
1−α
α

)(
νB
νA

)2

q22

< 0 (D.9)

q33 is also negative because the negation of q22 (D.6). We
choose:

q33 =
β
(

1
νA

∂P
∂H

1
rV

)2

4(1− α) 1
νA

(
νB
νA

∂P
∂NB

+ ∂P
∂NA

)
1
rV

< 0 (D.10)

with β > 1. In order to simplify some used notations, we
note:

∂P

∂NA
= (νBc+ νAb)(rV )

∂P

∂NB
= −νAc(rV )

∂P

∂H
= −νAe(rV )

⇒


b =

1
νA

(νB
νA

∂P

∂NB
+

∂P

∂NA

) 1
rV

c = − 1
νA

∂P

∂NB

1
rV

e = − 1
νA

( ∂P
∂H

1
rV

)
(D.11)

This equation (D.11) leads to some relations obtained for
b, c and e given in (48). The matrix Q (D.1) with (D.3),
(D.10) and (D.11) becomes:

Q =



b c 0

−4αb
νA
νB
− c 4αb

(νA
νB

)2

0

−e 0
βe2

4(1− α)b


(D.12)

The matrix Q (D.12) is a solution for the B-M formulation
(3) of the non isothermal system (41) with 0 < α < 1 et
β > 1.
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