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Abstract

This work aims to provide a toolbox for the design of optical image stabilizer. Both mechanical and electro-mechanical
devices can be used to stabilize imaging devices. The mechanical devices are constituted with viscoelastic materials that
provide damping and flexibility in order to isolate the optical devices from vibrations and shocks. The purpose of this paper
is to give a framework for taking into account viscoelastic materials behavior in different simulations, complex eigenvalue
analysis, frequency response or time response. To achieve this goal, the generalized Maxwell model is associated to an
original state-space formulation. To reduce CPU cost, it is associated with model order reduction. As these materials
are very sensitive to temperature variation, the model has been adapted to take easily into account different temperature
fields over the domain. Many results are presented and compared to experimental data in order to validate the algorithms.
Besides, in a context where the temperature and thus the performance of the insulators may vary in a unknown way an
optimal robust choice of the design is studied to ensure the efficiency of the systems.
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1 Introduction

Viscoelastic materials are commonly recognized as efficient passive damping systems, and are widely used in many ap-
plications such as automotive, marine or aerospace. The design of structures exhibiting such a behavior is complexified
by many aspects as the need to choose between different material models not valid for any application, the difficulties in
identifying the parameters for these models, and besides all the varying properties with frequency, temperature, pre-load,
aging above all. Furthermore, the finite element models used for industrial applications are large-sized models which lead
to crippling calculation times. The wide use of viscoelastic structures as insulators makes essential the development of ef-
ficient and robust tools of design, for modal analyses for instance, in a context of severe, thermal, uncertainty, in particular.
The work presented in this paper aims at proposing a global framework in this purpose.
The paper is organized as follows. The considered application is detailed in the first section, as well as the modeling of the
viscoelastic materials whose behavior is assumed to vary with frequency and temperature. The strategy developed to solve
the eigenvalue problem is described in the second section, and obtained results are compared to experimental data obtained
on the considered structure. Finally, a robustness analysis is presented in the third section as an efficient tool to quantify
the impact of the temperature uncertainties on damping.

2 Modeling

2.1 Case study

A structure integrating viscoelastic components is used as starting point to the led works. It consists in a damper introduced
in an optical image stabilizer fixed under fighter jets, where viscoelastic elements are introduced to achieve a sufficient
damping level in all the directions of space during application phases (Fig.1-A). The damper is made of a steel frame and



viscoelastic elements are added by melt-injection. One part of this damper is directly linked to the suspended mass, and
the other is attached to the main frame. In our case, the vibrations transmitted to the optics come from this structure. The
discretization of the model is made with the Finite Element Method (FEM) using ten nodes tetrahedron elements. The
nominal model contains 83037 nodes, and 249111 Degrees Of Freedom (DOF). The mesh between the viscoelastic and the
steel part is assumed to be compatible.

Fig. 1: A. : Design of a damper made of a steel frame and silicon viscoelastic elements, finite element modeling with
tetrahedron elements ; B. : Rheological representation of the Generalized Maxwell Model (GMM) as a series of spring and
viscous elements ; C. : 2-DOFs modal model of the device

2.2 Rheological behavior of the viscoelastic components

The basic assumption of linear viscoelasticty is the existence of a relaxation function such that the stress is obtained as
a convolution with the strain history [7, 10]. Using a Fourier transform, one obtains an equivalent representation where
the material is now characterized by a complex modulus E∗ which depends on the frequency ω and on the temperature
T . It can also depend on initial stresses σ0. In many papers, it is divided into a real part, the storage modulus E

′
, and an

imaginary part E
′′
, the loss modulus:

σ̂(ω) = E∗(ω,T,σ0)ε(ω) = [E
′
(ω,T,σ0)+ j.E

′′
(ω,T,σ0)]ε̂(ω) (1)

In order to perform accurate simulations of the damper behavior, the rheological model for the viscoelastic elements has
to be realistic on a large frequency bandwidth, and has to allow to take into account the variations of behavior with the
temperature. The Generalized Maxwell Model (GMM) [12] is chosen as this model has both a time and frequency repre-
sentation and is thus adapted for many different excitations, it can be adapted for studies on large bandwidth, and thermal
dependency can be integrated in the model parameters. The complex dynamic modulus can thus be written as follows:

E∗ = E∞ +
ncell

∑
i=1

Eiτi jω
1+ τi jω

= E∞

(
1+

ncell

∑
i=1

αiτi jω
1+ τi jω

)
(2)

where E∞ is the long term Young modulus, Ei the dynamic modulus of the ith cell and τi its time constant. Increase the
number of cells (ncell) allows the model to be consistent on a larger frequency range in return of an increase in the number
of parameters. The second form is more adapted to the dynamic simulation. It introduces the frequency stiffening αi as the
ratio Ei/E∞.

It has to be noted that the GMM model can be enhanced to take into account a possible dependence to the strain amplitude
(known at Payne effect) by the fretting elements addition. It thus allows to envisage later simulations in a nonlinear
context.Fig. 1-B shows the rheological representation of the GMM.



3 Simulation and validation

3.1 Numerical simulation : Complex Eigenvalue Analysis (CEA)

The eigenvalue analysis of a viscoelastic problem is not classic due to the frequency dependency of the parameters. When
considering the GMM to model the viscoelastic components, and assuming the rest of the structure as elastic, the complex
eigenvalue problem to solve can be written as,

−ω
2[M]Û +[Kelastic]Û +

nbmat

∑
i=1

[Ki
visco]

(
ncell

∑
k=1

α i
kτ i

k jω
1+ τ i

k jω
Û i

)
= 0 (3)

[M] and [Kelastic] denote the mass and elastic stiffness matrices. nbmat is the number of different viscoelastic materials,
ncell is the number of Maxwell cells in each GMM. αik and τik are respectively the viscoelastic constant and the relaxation
time for the kth cell of the model associated to the ith viscoelastic material. Ki

visco is a stiffness matrix based on the stiffness
matrix of the ith viscoelastic subdomain completed with null terms to fit the size of the finite element model. This equation
is not in a classical form to be solved. The system is thus transformed to obtain a generalized eigenvalue problem by a state
space formulation [6, 8]. Fig.2-left presents the steps of the proposed approach.

Fig. 2: LEFT : State space formulation with reduction of the model approach ; RIGHT : Complex Eigenvalue Analysis:
Elastic (red asterisk) versus viscoelastic (blue star) system

The main issue with this expression is the size of the system. Indeed, if there are nbcell terms in each GMM, the size of the
state space formulation is (ncell +nbmat +2)NDOF where NDOF is the number of DOF in the initial finite element model.
In order to reduce the size, the relaxation times are constrained to be common for all the viscoelastic materials. The
identification of the GMM parameters under this assumption is still realistic [5]. As the proposed damper only contains one
viscoelastic material, equations can be reduced to,

−ω
2[M]Û +[Kelastic]Û +[Kvisco]

ncell

∑
k=1

αkτk jω
1+ τk jω

Û = 0 (4)

A second action to improve the computation cost is to reduce directly the size of the system. The operators [M], [Kelastic]
and [Kvisco] are projected on a truncated multi-model basis [2, 11]. In a dynamic problem with viscoelastic behavior, the
multi-model approach allows us to build a projection basis that is representative of the viscoelastic material stiffening
according to the rise of the frequency. To create this basis, a "low frequency" basis [ΦBF ] made of the p first normal modes
is extracted by solving: (

−ω
2
p[M]+ [Kelastic]+ [Kvisco(ω=0)]

)
φp = 0 (5)

These normal modes verify the two orthogonality conditions:

[ΦBF ]
T [M][ΦBF ] = [I] (6)

[ΦBF ]
T [Kelastic+visco(ω=0)][ΦBF ] = [Ω2] (7)



Another basis [ΦHF ] also composed of the p first modes at "high frequency" is stocked:(
−ω

2
p[M]+ [Kelastic]+Re([Kvisco]

ncell

∑
k=1

αkτk jωHF

1+ τk jωHF
)

)
φp = 0 (8)

where ωHF is the pulsation associated to the maximum frequency of the studied domain. Then, a modified Gram-Schmidt
ortho-normalization is used to concatenate these two basis in one multi-model basis [T ]. The dimension of this operator is
NDOF ∗2p.
Due to these two assumptions, the final formulation size is 2p(2+nbcell). The computation cost is hence more affordable
and the extraction of the complex eigenvalues ωi and the complex eigenvectors φi is possible. In our case, the eigenfre-
quency and the modal damping associated are determined by:

fpi = |( fi)/2π| (9)
ζi = −Im( fi)/ fpi (10)

3.2 Validation

Experimental tests on the proposed damper have allowed to identify the first resonance frequencies around 30 Hz for the
three rotations and around 50 Hz for the three translations. A sweep sinus of 0.5 G magnitude over the frequency range
[10;1000] Hz is used to excite the damper. The Complex Eigenvalue Analysis (CEA) is achieved and a diagram frequency-
modal damping is plotted (Fig.2-right).

A comparison between the viscoelastic (blue star) and the purely elastic (red asterisk) system is made. All the elastic
identified frequencies lie on the horizontal axis as no damping is introduced in the system. The CEA allows to take
into account the dissipative behavior of the viscoelastic elements, and to compute the modal damping for each mode
contribution. It can be noticed a slight shift of the eigenfrequencies between the two problems. Such a representation
is useful to quantify the effects of the system variables (such as temperature) on the localization of the poles as showed
further is the paper. In order to validate this analysis, the Frequency Response Function (FRF) of the full order model is
calculated for a sweep sinus excitation on X direction. The resonance frequency and the associated modal damping ( f0, ζ )
are compared for the X translation mode. From, the FRF, we get ( f0 = 47 Hz, ζ = 0.043) whereas from, the CEA, we get
( f0 = 49 Hz, ζ = 0.044). Thus, the CEA appears to correctly predict the modal behavior of the system.

4 Robustness analysis under temperature uncertainties

4.1 Context of the study

The mechanical device presented in this paper is subjected to large derivation on temperature that can consist in sudden
variations between −20◦C and 50◦C. Due to the position of the damper in the final system, it is hard to accurately know
the surrounding temperature of the viscoelastic parts and, as told previously, the damping behavior of viscoelastic materials
depends on the temperature. The effective temperature in which materials are subjected in the real applications may vary,
and the profile of variation is an unknown considered as a lack-of-knowledge. In such a thermal environment it would thus
be interesting to be able to guarantee a certain damping level, and maybe selecting a viscoelastic material less absorbing
but more robust in temperature, than a material more absorbing but less robust. In this context, the aim of this last part is to
study the robustness of a given viscoelastic material when the temperature field is uncertain.
For sake of simplicity, without loss of generality, the approach has been developed on a viscously damped two degree of
freedom spring-mass system (Fig.1-C). This model is dimensioned to be almost representative of the two first modes of the
studied device.

The spring between the two masses contains the viscoelastic behavior and the parameters k1, k2, m1 and m2 are set to obtain
the two first resonance frequencies of the damper. The GMM is also reduced to a Zener model according to the smaller
frequency interval observed. Hence, the form of the model is:(

−ω
2[M]+ [Kelastic]+

jα(T )ωτ(T )
1+ jωτ(T )

[Kvisco(T )]
)

Û = 0 (11)



Moreover, the time constant τ is assumed to be constant and no longer depending of the temperature field. It becomes a user
choice to make the Zener model efficient on the studied frequency range. Hence, in this section, only the long-term modulus
Ein f ty (linked to [Kvisco]) and the α coefficient are functions of the temperature. An identification of these parameters based
on experimental curves extracted at different temperature can be considered. However, in practice, it is really hard to know
and control this variable during the characterization tests. In order to avoid this difficulty, a chosen temperature dependence
is introduced. The viscoelastic material used in this work has a glass transition temperature around 50◦C. Thus in order to
highlight the importance of robustness study, the temperature range of the study is [45◦C;55◦C]. Fig. 3 shows the impact
of the α variation according to the temperature on the eigenfrequencies and the modal damping of the two-DOF system. A
expected, it appears that the modal damping of the modes changes with temperature, and this effect is more important on
the first mode on which the robustness study is going to be applied.

Fig. 3: LEFT : Impact of the α variation according to the temperature on the eigenfrequencies and the modal damping of
the two-DOF system ; RIGHT : Info-gap robustness curve for the modal damping of the first mode

4.2 Info-gap robustness analysis: introduction and application

The approach is based on the info-gap decision theory [1, 3, 4, 9]. This theory is based on three elements: an uncertainty
model, a system model and a performance criterion. The response of interest in the study is the modal damping of the first
mode. Thus, the system model is the model used to compute this damping, given all the input parameters (dimensions,
materials, · · · ). Equation 9 is used for that purpose, based on eigenfrequencies computed using the CEA on the complex
eigenvalue problem, (

−ω
2
p[M]+ [Kelastic]+

jα(T )ωpτ

1+ jωpτ
[Kvisco(T )]

)
φp = 0 (12)

The info-gap model for uncertainty on temperature T is formulated under the following form:

U(h) =
{

T : |T − T̃ | ≤ h
}
,h≥ 0 (13)

where h is the horizon on uncertainty, varying in the study between 0 and 5◦C, and T̃ is the nominal temperature fixed at
the glass transition value. Hence, the interval covered by the temperature is between 45◦C and 55◦C. The main goal is
to determine how the modal damping fluctuates with the temperature deviation. In practice, this approach can be used to
know when the modal damping of the considered mode ζ1 will be smaller than a critical value ζc regarding the uncertainty
on temperature. Hence, the performance requirement can be expressed as inequality:

ζ1(T )≥ ζc (14)

The robustness is the largest horizon of uncertainty h that can be tolerated on the temperature while sastifying the perfor-
mance requirement:

ĥ(ζc) = max
{

h :
[
minT∈U(h)ζ1(T )

]
≥ ζc

}
,ζc ≥ 0 (15)

Thanks to the CEA and the info-gap formulation, it is possible to extract the minimum modal damping of the considered
mode and observe the impact of the temperature deviation on this variable. Figure 3 - right presents the results of the info-
gap analysis for the damping of the first mode. It clearly appears that for an horizon of uncertainty smaller than 1.1◦C, the



ensured modal damping is greater than the performance requirement. In other words, the dynamic model is assumed to be
robust for a temperature variation of ±1.1◦C around the nominal temperature. Out of this range, the robustness decreases
with the growth of the horizon of uncertainty.

5 Conclusion

A framework is proposed in this paper to design the dynamic behavior of structures including viscoelastic elements. Such
an approach is not easy to carry out due to the dependency of viscoelastic materials to many factors as the frequency or
the temperature, and due to large computation times when working with finite element models. To show and validate the
proposed methodology, this one is applied to a specific damper including viscoelastic elements. To take into account the
viscoelastic behavior, the GMM is used due to its flexibility and its easy numerical implementation. A complex eigenvalue
analysis is applied and numerical results are compared to given experimental data. The CEA has been driven under several
assertions: the system poles are common for all of the viscoelastic material and the operators can be projected on a multi-
model basis. These assumptions lead to an affordable computation cost. This approach has thus been validated, and has
shown its efficiency to predict the system eigenfrequencies and the associated modal damping.
As well-known in viscoelasticity, the temperature is a leading parameter in the dynamic behavior and the temperature field
introduces uncertainties due to its complexity. An info-gap robustness analysis has been led to quantify the impact of these
uncertainties on the modal damping. It appears that the dynamic model well manages the small deviation of temperature
but the robustness quickly decreases when the horizon of uncertainty growth. The method appears to be validate for a
simplified model of viscoelastic dynamic system.
Ongoing work deals with the simulation of the dynamic response of structures with viscoelastic elements in case of multiple
kinds of excitations, and taking into account non-linearities. Moreover, it will be interesting to apply the robustness analysis
to the real dynamic system with adequate assumptions on temperature dependence.

References

[1] Sez Atamturktur, Zhifeng Liu, Scott Cogan, and Hsein Juang. Calibration of imprecise and inaccurate numerical
models considering fidelity and robustness: a multi-objective optimization-based approach. Structural and Multidis-
ciplinary Optimization, 51(3):659–671, 2015.

[2] Etienne Balmes. Model reduction for systems with frequency dependent damping properties. Office national d’études
et de recherche aérospatial. ONERA-Publications, 1997.

[3] Yakov Ben-Haim. Info-Gap Decision Theory, Second Edition: Decisions Under Severe Uncertainty 2nd Edition.
Academic Press; 2 edition, October 2006.

[4] Yakov Ben-Haim and François M. Hemez. Robustness, fidelity and prediction-looseness of models. Proceedings of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 468(2137):227–244, 2011.

[5] Gaël Chevallier, Franck Renaud, J-L Dion, and S Thouviot. Complex eigenvalue analysis for structures with vis-
coelastic behavior. In ASME 2011 International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, pages 561–569. American Society of Mechanical Engineers, 2011.

[6] Gael Chevallier, Franck Renaud, and Jean-Luc Dion. Viscoelastic damping effect on brake squeal noise. In ASME
2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Con-
ference, pages 2049–2056. American Society of Mechanical Engineers, 2009.

[7] J.D. Ferry. Viscoelastic Properties of Polymers. Wiley, 1980.

[8] Hugo Festjens, Gaël Chevallier, Franck Renaud, Jean-Luc Dion, and Remy Lemaire. Effectiveness of multilayer
viscoelastic insulators to prevent occurrences of brake squeal: A numerical study. Applied Acoustics, 73(11):1121–
1128, 2012.



[9] A Kuczkowiak, S Cogan, M Ouisse, E Foltête, and M Corus. Robust expansion of experimental mode shapes under
epistemic uncertainties. In Model Validation and Uncertainty Quantification, Volume 3, pages 419–427. Springer
International Publishing, 2014.

[10] Roderic S. Lakes. Viscoelastic Solids (Mechanical and Aerospace Engineering Series) 1st Edition. Mechanical and
Aerospace Engineering Series (Book 9). CRC Press; 1 edition, October 1998.

[11] Anne-Sophie Plouin and Etienne Balmès. Steel/viscoelastic/steel sandwich shells computational methods and exper-
imental validations. In International Modal Analysis Conference, volume 4062, pages 384–390, 2000.

[12] Franck Renaud, Jean-Luc Dion, Gaël Chevallier, Imad Tawfiq, and Rémi Lemaire. A new identification method of
viscoelastic behavior: Application to the generalized maxwell model. Mechanical Systems and Signal Processing,
25(3):991–1010, 2011.


