A clustering package for nucleotide sequences using
Laplacian Eigenmaps and Gaussian Mixture Model

Marine Bruneau'#, Thierry Mottet®?, Serge Moulin®%*, Maél Kerbiriou'4,
Franz Chouly'#, Stéphane Chretien®, Christophe Guyeux?*

L Laboratoire de Mathématiques de Besancon, UMR 6623 CNRS
2 Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS
3 National Physical Laboratory, Hampton Road, Teddington, United Kingdom
4 Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besancon, France

Abstract

In this article, a new Python package for nucleotide sequences clustering is
proposed. This package, freely available on-line, implements a Laplacian
eigenmap embedding and a Gaussian Mixture Model for DNA clustering. It
takes nucleotide sequences as input, and produces the optimal number of
clusters along with a relevant visualization. Despite the fact that we did
not optimise the computational speed, our method still performs reasonably
well in practice. Our focus was mainly on data analytics and accuracy and
as a result, our approach outperforms the state of the art, even in the case
of divergent sequences. Furthermore, an a priori knowledge on the number
of clusters is not required here. For the sake of illustration, this method
is applied on a set of 100 DNA sequences taken from the mitochondrially
encoded NADH dehydrogenase 3 (ND3) gene, extracted from a collection of
Platyhelminthes and Nematoda species. The resulting clusters are tightly
consistent with the phylogenetic tree computed using a maximum likelihood
approach on gene alignment. They are coherent too with the NCBI tax-
onomy. Further test results based on synthesized data are then provided,
showing that the proposed approach is better able to recover the clusters
than the most widely used software, namely Cd-hit-est and BLASTClust.

Keywords: DNA clustering, Genomics, Laplacian Eigenmap, Gaussian
mixture model.

* Email address: serge.moulin@univ-fcomte.fr (Serge Moulin)

Preprint submitted to Computers in Biology and Medicine December 29, 2017

1. Introduction

As the amount of available genetic sequences increases drastically every
year, accurate methods to deeply study them are strongly demanded [1].
Among these methods, clustering is a very powerful tool that helps to under-
stand relations between sequences. It can be used, for instance, to classify
16S RNA sequences into OTUs [2], which are standard proxies for microbial
species (clustering is here a way to identify an a priori unknown number of
“species”). Clustering is used too to define taxa within groups of species
represented by their DNA sequences. Other utilizations of sequence clus-
tering in genomics encompass the study of sub-populations within the same
species [3], the discovery of possible hidden variables that can explain differ-
ences between such sub-populations, and so on [4].

However, most of the times, only generic methods for clustering a matrix
of similarity scores is applied, and methods that are more specific to DNA
sequences are still waited. Furthermore, the few existing methods that focus
on sequence clustering mainly target on speed and scalability, and they need
a strong similarity between sequences to produce accurate clusters. Further-
more, an a priori knowledge on the number of clusters is required, for instance
by providing a similarity threshold cutoff. The objective of this article is to
provide a new method that relaxes such constrains, allowing the sequences
to be really divergent, and returning an a posteriori of the optimal number
of clusters in an efficient manner.

One important issue in any clustering procedure is to find an appropriate
embedding of the data under study, that will make the respective salient
features in each of the groups more clearly delineateable. However, as often
stated in the Machine Learning (ML) literature, high dimensional data are
often much too scattered in order for an off-the-shelf method to be able to
work properly. This phenomenon, often referred as the “curse of dimension-
ality” [5, 6], explains why several embeddings have been proposed recently.
Some of these embeddings are very over-parametrized and can thus only be
implemented in the supervised setting. This is the case for methods based
on neural networks (e.g., auto-encoders). Other methods need less param-
eters and are more suitable to unsupervised learning, which is the case of
our proposal. Among many nonlinear embedding methods, the Laplacian
Eigenmap [7] approach has been extensively studied from both the theoret-

ical and the application viewpoint [8]. More involved methods relying on
Semi-Definite programming have also appeared recently with higher separa-
tion power in practice than spectral methods, see e.g., [9].

In this article, the aim is to establish the practical efficiency, for DNA
sequence clustering, of the combination of a plain Laplacian Eigenmap ap-
proach coupled with a Gaussian Mixture based clustering. This particular
choice is motivated by its remarkable computational efficiency, even in the
case where the objects to classify are really divergent. The overall procedure
can be divided in three steps.

1. Compute a similarity matrix between each pair of DNA sequences,
i.e., provide a matrix W of size n x n, where n is the number of se-
quences, which is such that W ; increases with the “similarity” between
sequences number ¢ and j.

2. Diagonalise the Laplacian matrix of W. By such an operation, DNA
sequences are mapped to elements of a given vector space, whose di-
mension is much smaller than the sequence lengths. This reduction of
the problem dimension is a key element that usually has a great im-
pact on both visualization and clustering. The combination of the two
stages above is often referred as the “Laplacian eigenmap” approach.

3. Cluster the transformed data using a Gaussian Mixture Model (GMM [10]).

By using a ready to use Python package designed at this occasion, and
freely available on-line, we have demonstrated the accuracy and efficiency of
this approach for DNA sequence clustering. Indeed, the methodology has
firstly been tested on a sample of 100 ND3 genes (DNA sequences) from
Platyhelminthes and Nematoda species that have been downloaded from the
NCBI website [11]. The classification obtained via this approach has been
compared with the phylogenetic tree of these species obtained by a likelihood
maximization method using PhyML [12]. Obtained clusters are consistent
with both clades appearing in the phylogenetic tree and the NCBI taxon-
omy. In particular, this clustering perfectly separates the Nematoda and
Platyhelminthes phyla.

To evaluate the method further, extensive simulation experiments have
secondly been run on synthesized data: n DNA sequences have been ran-
domly generated, and random mutations and block deletions have been ap-
plied on them, leading finally to N > n sequences. The objective was then to
group these N sequences within n clusters (n is not a priori known), in such a

way that all the elements in each cluster are originated from the same initial
DNA sequence. On this set of synthesized data, our proposal has outper-
formed the two other state-of-the-art software for DNA clustering, namely
Cd-hit-est and BLASTClust.

The remainder of this article is structured as follows. The three stages of
the proposed method are detailed in the next section. Numerical results are
then presented: the application example involving a real dataset is provided
in Section 3.1, while the simulation based procedure is detailed in Section 3.2.
A general discussion about the proposed approach is provided in Section 4.
This research work ends by a conclusion section, in which the contribution
is summarized and intended future work is provided.

2. The Clustering Method

2.1. Laplacian Figenmap

The so-called Laplacian Eigenmap [7] is an original method for embedding
data living in a structured set into a k-dimension vector space. The main
information needed to compute the eigenmap is a matrix containing the
value of the measured similarity between pairs of data. The main motivation
for such embeddings is dimension reduction and visualization. Moreover,
spectral methods often exhibit the nice property of separating clusters.

2.1.1. The matriz of similarity

The first step in the construction of a good embedding is the creation
of a similarity matrix W. This matrix is intended to measure the similarity
between each pair of sequences by providing a number ranging between 0
and 1. The main assumption on W is that the greater the similarity is, the
closer are the sequences to each other.

In order to create this similarity matrix, a multiple global alignment of
the DNA sequences is first run using the MUSCLE (Multiple Sequence Com-
parison by Log-Expectation [13]) software. Then, an ad hoc “Needleman
Wunsch distance” [14] is computed for each pair of aligned sequence, and
with the “EDNAFULL” scoring matrix. This distance takes into account
that DNA sequences usually face (1) mutations and (2) insertion/deletion.
Note that, by using MUSCLE as first stage of this matrix computation, we
operate only one (multiple) sequence alignment, instead of @ (pairwise)
alignments in the classical Needleman Wunsch algorithm (that usually con-
tains two stages: finding the best pairwise alignment, and then compute

4

the edit distance). Introducing Muscle leads to a real acceleration in the
construction of the similarity matrix.

Let us call M the distance matrix obtained by this way. M is then divided
by the largest distance value, so that all its coefficients are between 0 and 1.
W can finally be obtained as follows:

Vi, j€[l,n], Wiy =1 My,

in such a way that W ; represents the similarity score between sequences ¢
and j.

2.1.2. Operations on W
Once the similarity matrix has been constructed, the next step is to create
the normalized Laplacian matrix, as follows [15]:

L=DY*(D—-wW)D™ V2

where W is the similarity matrix defined previously and D is the degree
matrix of W. That is to say, D is the diagonal matrix defined by:

Vie[l,n], Diy=> W, .
j=1

L being symmetric and real, it is diagonalisable in a basis of pairwise orthog-
onal eigenvectors {¢1, ..., ¢, } associated with eigenvalues 0 = \; < A < ... <
An. The Laplacian Eigenmap consists in considering the following embedding
function:

P2(i)

Cr, (1) = #5(2) e RM,

¢k1+1 (Z>

where ¢y, (i) is the coordinate vector of the point corresponding to the i
sequence. In other words, the coordinate vector of the point corresponding
to the i" sequence is composed of the i coordinate of each of the k; first
eigenvectors, ordered according to the size of their eigenvalues.

The choice of the k; cutoff is a crucial step and one usually proceeds as
follows. The ordered eigenvalues are plotted, and we stop at the index where
the increase in the eigenvalue is negligible: the number of eigenvalues that
are not discarded is k;. For instance, in our program, we have chosen to set

ky as the first time the difference between the k'™ and (k+ 1) value is lower
than 0.01.

Note that W can be seen as a weighted adjacency matrix of a graph,
where nodes are the DNA sequences while edges are labeled by the degree of
affinity between their adjacent nodes. In the literature, the Laplacian matrix
is often described as constructed from the weighted adjacency matrix of such
a graph rather than constructed from a similarity matrix. These definitions
are equivalent.

2.2. Gaussian Mizture based clustering

The final step is performed by applying Gaussian Mixture based clus-
tering (GMM, [10]) to the point cloud. Gaussian Mixture Models belong
to the class of unsupervised learning schemes [16], and allow to distribute
the data points into different clusters without a priori assumption about
the clusters interpretation. One of the very useful features of model based
clustering is that the model allows to use information criteria in order to es-
timate the number of clusters using Akaike Information Criterion (AIC [17]),
Bayesian Information Criterion (BIC [18]), or Integrated Completed Like-
lihood (ICL [19]) well-known criteria. The mathematical assumption of a
GMM is that the point cloud follows the distribution:

where ks is the number of clusters, 7; is the probability for a point to be
in cluster i, and N (u;,Y;) is the normal distribution of mean p; and co-
variance matrix ;. GMM parameters are computed with the Expectation-
Maximization (EM) algorithm [20]. Notice that the EM algorithm may con-
verge to singular distributions exponentially fast [21]. However, degenerate
situations can be easily discarded and consistent estimators can be easily
obtained in practice. Gaussian Mixture models are still a topic of current
extensive research, both from the statistical perspective [22, 23] and the com-
putational one [24].

The Bayesian Information Criterion has been chosen to determine the
most relevant number of clusters ks to be considered. The BIC, which is a
criterion for model selection, is defined as follows:

BIC = —2In(L) + In(n)p,

6

where L is the likelihood of the estimated model, n is the number of observa-
tions in the sample, and p is the number of model parameters. This criterion
allows us to select a model whose validity is based on a balance between the
value of the model’s likelihood (fidelity term) and the number of parameters
to estimate (complexity term). The likelihood of the model increases with ks
as well as the number of parameters. The selected model will be by default
the one that minimizes this criterion. In the proposed package, the user can
also set the number of clusters manually.

2.3. The clustering software

The Python program corresponding to the algorithm described in this
section is freely available online!. The main function of this package provides
a clustering from nucleotide sequences. Its prototype meets the following
canvas:
clustering = Gclust(liste, nbClusters=’BIC’, drawgraphs=True,
nbEVMethod = ’delta’, nbEVCut0ff = ’default’,
AddToNames0fOutputs = ’’):
where:

e list is an in-memory image of a fasta file containing the sequences
associated with their names. The fasta file must be configured as the
“ND3.fasta” file in our github repository.

e nbClusters is the number of clusters desired by the user. By default,
the program applies the BIC criterion to determine it. The user may
also choose to use the AIC criterion by writing “nbClusters = AIC”.

e drawgraphs is an optional Boolean value to produce some graphics. If
drawgraphs = TRUE, a two dimensional clustering of data is plotted
(cf. Figures 4, 5, and 6), as well as the graphical representation of
similarities (as in Figure 1).

e nbEVMethod is the method chosen to determine the number of consid-
ered eigenvectors k;. The user can choose between 3 methods, usually
reported in the literature.

Thttps://github.com/SergeMOULIN /clustering-tool-for-nucleotide-sequences-using-
Laplacian-Eigenmaps-and-Gaussian-Mixture-Models

— If nbEVMethod = ’delta’ then k; is the lowest value such that
Aej+1 — Mg, < 0 where ¢ is a constant to be fixed by the user.
’delta’ is the default method, and with 6 = 0.01.

— If nbEVMethod = ’energy’ then k; is the lowest value such that

k1 n

Z (Mnaz — Ni) > C X Z (Anaz — A;) where C' is a constant to
i=1 i=1

be chosen by the user (default C = 0.9)
— If nbEVMethod = ’log’ then k; is the rounded value of log(n).

e nbEVCutOff is the constant ¢ if nbEVMethod == ’delta’ or the con-
stant C' if nbEVMethod == ’energy’. By default, nbEVCut0ff = 0.01 if
nbEVMethod == ’delta’ and nbEVCut0ff = 0.9 if nbEVMethod == ’energy’.

e AddToNamesOfQOutputs is a character string that is inserted as prefix in
the output filenames. By default, the file that contains the clustering is
named “Clustering.txt” while the one that contains the graphical rep-
resentation of the similarity matrix is named “similarity_matrix.png”.
If the user specifies that AddToNamesOfOutputs = ’Jobl’, then these
filenames become “Job1Clustering.txt” and “Joblsimilarity_matrix.png”
respectively.

The GClust function can be, for instance, launched as follows within a
Python script:
list = open(’MyFileName.fasta’).read()
groups = gclust(list, drawgGraphs=True)
The output is a list of ko lists, each list containing the references of the
sequences grouped in a particular cluster.

2.4. Module and package dependencies

As explained in Section 2.1.1, the DNA sequence alignment software
used during the similarity matrix stage is MUSCLE. More precisely, the
“muscle_v38” function of cogent package has been used [25]. The Gaus-
sian Mixture Model, for its part, is performed using the GMM function of
sklearn.mixture package [26].

3. Numerical evaluations

3.1. Evaluation on real genomic data

The proposed method has been applied to a sample of 100 DNA se-
quences from the mitochondrial gene ND3 taken from various species of both
Platyhelminthes and Nematoda. Figure 1 graphically displays the similarity
matrix that was obtained from the data. As expected, the largest similarities
are obtained on the diagonal, that is, when the sequences are compared to
themselves. However, blocks seem to appear as well. This justifying the prior
intuition that the embedding method separates the clusters if there happens
to be more than one in the dataset.

Figure 1: Similarity matrix

Figure 2 displays the 14 first ascending eigenvalues, labeled)\;, and sat-
isfying 0 = Ay < Ay < ... < Ay According to the proposed methodology, we
have chosen k; as the minimal index k such that Ay;; — A is lower than or
equal to 0.01. In this case study, we found k; = 4.

Figure 3 shows the Bayesian Information Criterion of the Gaussian Mix-
ture Models for various number of clusters. One can see that this BIC reaches

Figure 2: Curve representing the first 14 eigenvalues

its minimum for k3 = 4. Thus, the program automatically partitions the se-
quence dataset into four clusters.

—a00

—650
-700|
—750|
—go0 |

(=]

® _gsol
—ao0 |
—aso |

—1000 |-

—1050
1

Number of clusters

Figure 3: Bayesian Information Criterion of the Gaussian Mixture Models

Figures 4, 5, and 6 represent the point cloud divided in 4 clusters. This
point cloud is projected into the plane formed by the first and second eigen-
vectors in Figure 4, to the one formed by the first and third eigenvectors in
Figure 5, and to the plane formed by the second and the third eigenvectors
in Figure 6. In these graphs, clusters 0, 1, 2, and 3 are represented in blue,
red, yellow and cyan respectively.

10

e ® .
0.4 4
.

0.3 4
™~
™
g
g 0.2
=]
(=%
E
S

0.1+

L J
L]
@, L]
0.0 1 «® ‘0 (X ‘
® *®
® 9
®
—0.1—

T T T T T T T
—0.20 —0.15 —0.10 —0.05 0.00 0.05 0.10
Component 1

Figure 4: GMM clustering in the plane formed by the eigenvectors 1 and 2

° e,
0.1+ °
®
Qa. o o [
[
o N . °
0.0 1 o '.‘

(2]
=
=4
g
g -0.14
E
o
O

—0.2 1 L]

‘.
]
-0.3 1 ‘
. T . T ‘ T .
-0.20 -0.15 -0.10 —0.05 0.00 0.05 0.10

Component 1

Figure 5: GMM clustering in the plane formed by the eigenvectors 1 and 3

A FASTA file was then written, in which each nucleotide sequence has
been labeled according to its taxonomy and its cluster number. The tax-

11

o LI
0.1 .
L]
o ¢ °
o
oﬂ °
0.0 4 (‘l}
m
i
=4
g
g -0.1
E
o
Q
0.2 - .
.,
-0.3]
-0.1 0.0 0.1 0.2 0.3 0.4

Component 2

Figure 6: GMM clustering in the plane formed by the eigenvectors 2 and 3

onomies have been found thanks to the efetch function (sub-package Entrez?,
Python package Bio). We then have used the online software PhyML (max-
imum likelihood method for phylogenetic tree reconstruction) with default
options [12], to build a tree based on the same mitochondrial ND3 gene that
we have used during clustering. The tree, whose leaves contain taxa names
and cluster id, has been displayed using FigTree software [27]. This tree is
depicted in Figures 7 and 8.

The efetch function provides 8 taxonomic levels for each species in our
sample. In Figures 7 and 8, for readability reasons, we only show the taxon-
omy between levels 4 and 6. Note first that this clustering perfectly separates
Platyhelminthes and Nematoda phyla. Indeed Trematoda and Cestoda are
two classes of Platyhelminthes. Cluster 1 corresponds exactly to the Platy-
helminthes, while Clusters 0, 2, and 3 represent the Nematoda. Cluster 0 is
only composed of Spirurida, it contains 10 of the 12 members of this taxon.
More precisely, when considering the seventh taxonomic level, we found that
Cluster 0 contains nine Filarioidea and one Thelazioidea, while the Spirurida
that are not in this cluster are a Dracunculoidea and a Physalopteroidea.
Cluster 3, for its part, corresponds exactly with the Trichocephalida taxon.

2A package that provides code to access NCBI over the world wide web.

12

MNC_008067_Trematoda_Digenea_Strigeidida_-->_cluster_1
NC_008074_Trematoda_Digenea_Strigeidida_-->_cluster_1
NC_002545_Trematoda_Digenea_Strigeidida_-->_cluster_1
NC_002529_Trematoda_Digenea_Strigeidida_-->_cluster_1
——— NC_002544_Trematoda_Digenea_Strigeidida_-->_cluster_1
NC_009680_Trematoda_Digenea_Strigeidida_—>_cluster_1
MNC_002767_Cestoda_Eucestoda_Cyclophyllidea_-->_cluster_1
NC_011037_Cestoda_Eucestoda_Diphyllobothriidea_-->_cluster_1
L NC_008945_Cestoda_Eucestoda_Diphyllobothriidea_->_cluster_1
MNC_009463_Cestoda_Eucestoda_Diphyllobothriidea_-->_cluster_1
NC_017613_Cestoda_Eucestoda_Diphyllobothriidea_-->_cluster_1
NC_017615_Cestoda_Eucestoda_Diphyllobothriidea_-->_cluster_1
i _: NC_020153_Cestoda_Eucestoda_Cyclophyllidea_-->_cluster_1
MNC_002547_Cestoda_Eucestoda_Cyclophyllidea_-—>_cluster_1
NC 009462 Cestoda Eucestoda Cyclophyllidea —> cluster 1
MNC_009461_Cestoda_Eucestoda_Cyclophyllidea_-->_cluster_1
NC_020374_Cestoda_Eucestoda_Cyclophyllidea_-->_cluster_1
NC 008075 Cestoda Eucestoda Cyclophyllidea —> cluster 1
NC_011122_Cestoda_Eucestoda_Cyclophyllidea_-->_cluster_1
MNC_011121_Cestoda_Eucestoda_Cyclophyllidea_-->_cluster_1
NC 009460 Cestoda Eucestoda Cyclophyllidea —> cluster 1
NC_000928_Cestoda_Eucestoda_Cyclophyllidea_-->_cluster_1
NC_009938_Cestoda_Eucestoda_Cyclophyllidea_-->_cluster_1
NC 004826 Cestoda Eucestoda Cyclophyllidea —> cluster 1
NC_012894_Cestoda_Eucestoda_Cyclophyllidea_-->_cluster_1
NC_004022_Cestoda_Eucestoda_Cyclophyllidea_-->_cluster_1
NC_012896_Cestoda_Eucestoda_Cyclophyllidea_-->_cluster_1
: NC_013844_ Cestoda_Eucestoda_Cyclophyllidea_-->_cluster_1

NC_014768_Cestoda_Eucestoda_Cyclophyllidea_-->_cluster_1
——— NC_002546_Trematoda_Digenea_Plagiorchiida_-->_cluster_1

— NC_002354_Trematoda_Digenea_Plagiorchiida_-->_cluster_1
NC_012147_Trematoda_Digenea_Opisthorchiida_-->_cluster_1

NC_011127_Trematoda_Digenea_Opisthorchiida_->_cluster_1

Figure 7: First part of the phylogenetic tree (Platyhelminthes)

Finally, in addition to recover taxonomy, the clustering agrees very well
with the tree obtained via PhyML, as shown in Figures 7 and 8. Note that the
taxonomy, based on morphology and nuclear genome, fully agrees with the
PhyML tree and our clustering, which are both based on the mitochondrial

genome. This fact suggests that this mitochondrial gene evolves like the
nuclear genome.

3.2. Tests on simulated data

In addition to the analysis of real data processed in the previous section,
we also performed tests on simulated data. This new series of tests allow us
to assess the accuracy of our tool and to compare this accuracy with other
existing tools. The data are simulated according to the following steps:

e We generate a “global root”. That is to say, a random word of 500
letters {A,T,C,G} representing a sequence of 500 nucleotides.

13

NC 014181

MC_{ 013&24

FC_013807_Memaloda C
Dﬂm Nﬂnﬂnda um:nml:bma Rluinil:!a m_cluster_; ¥

NC I 01532’? Nemabch Chnrrml:ma Rhabciu:h - duslnr 7
z

MC_012308_Mematoda Chromadares_Rhabditida ->_clusber 2
Mematoda

rea_| Rhabclm:h - _chuster_2

NC 012309 Nurrwu:da Chumm:lnn:ﬂ Rl'mhdi.da - d.:ﬂ:f 2

Nun.'uhda I:hmmadureu R.'ﬂ.bdll‘.'a—’ dl.mer 2

Memateda_Chramadarea_Rhabdibida_—=_cluster 2
llnmm:lnn:ﬂ Rhabditida_w= d_d:r 2

Cluster 3

e
HC_ ﬂl??-l? Hematoda _Encplea_| Duqh-ma - d.ul:f_
NC I]1T.l‘5t] Memateda_Enaplea_Dorylaimia_—>_cluster_3

NC_DO02881_Nemaileda Eraplea_Dorylaimia_=>_cluster 3

|

HC_073353_Hemaioda_Chromadorea_T' _-=>_clusber_J

WC_00582E_b Doqllalrrln—!-dlm.u!

52 MNematoda_Enoplea_Dondaimia_—>_clustar 2

NC_DOBE
|_|—rm:mam Mematods_Enaples_Dorgaimia_—>_clustar 2
NG _DOBOAT _Dioerylaimia_=>_cluster_2

M: DOAZIT Numdnﬁ _Enoglea Dnryhlm i _clusier_2

Figure 8: Second part of the phylogenetic tree (Nematoda)

e From this global root, we generate 3 “cluster roots” which are each an
evolution of the global root for which each nucleotide has mutated with

probability 0.05.

e From each cluster root, we generate a cluster of 10 sequences.
sequence is an evolution of the cluster root for which each nucleotide

has mutated with probability 0.05.

14

Each

e Each of the obtained sequences undergoes a block deletion of 2.5% to
7.5% of its nucleotides with a probability of 0.5. That is to say, for
each sequence:

— A random draw is performed in order to decide on whether a
block deletion is carried out or not. The deletion is carried out
with probability 0.5.

— A uniform random draw is performed to determine how many
nucleotides are deleted between 2.5% and 7.5% of the sequence
size.

— A uniform random draw is performed in order to decide on where
the block deletion starts.

The procedure defined above makes it possible to generate a simulated
base of 30 sequences. We repeatedly applied this procedure 25 times with
different random seeds (seed = 0 ... 24) in order to simulate 25 different
databases. Figure 9 shows the similarity matrix obtained via these simula-
tions (with a random seed of 0).

Figure 9: Similarity matrix of the simulated clusters (seed = 0)
The clusters are sorted in each of the simulated databases (as can be seen

on the similarity matrix). Thus, the ideal outcome we would like to obtain
in applying our tool to these databases is, for example:

15

['S11’, ’S12’, ’S13’, 'S14’, 'S15’, 'S16’, 'S17’, 'S18’, ’'S19’, 'S207],

[’S217, ’S22’, ’S23’, ’S24’, 'S257, ’S26’, 'S27’, ’S28’, 'S29’, ’S307],

[’S17, ’S2’, ’S3’, ’S4’, 'S5’, ’S6’, 'ST’, 'S8’, ’S9’, "S107]]

In order to evaluate the performance of our tool to find the right cluster-
ing, we have created a distance that corresponds to the number of sequences
that need to move to get the perfect clustering. For instance, the following
clustering:

['S1’, ’S2’, ’S3’, 'S4, ’Sh’, 'S6’, *ST’, 'S8’ ’S9’, 'S107],

[’S217, ’S23’, ’S24°, ’S25’, 'S267, ’S27’, 'S28’, ’S29’, 'S30°],

[’S117, ’S12’, ’S13’, ’S14’, ’S15’, ’S16’, 'S17’, ’S18’, 'S19’, ’S20’],

[5227)]
has a distance from the perfect clustering equal to 1.

Table 1 summarizes the distances obtained with our tool for each of the
simulated database. This table also summarizes the distance obtained with
the “CD-Hit-est” and “BlastClust” tools.

3.2.1. Tests on simulated data with other tools

“CD-Hit-est” and “BLASTClust” are two of the most used clustering
tools for nucleotide sequences. According to [28]: “Cd-hit-est is a greedy
incremental clustering algorithm. Briefly, the sequences are first sorted in
decreasing length. The longest sequence becomes the representative of the
first cluster. Then, each remaining sequence is compared with the represen-
tatives of the existing clusters. If the similarity with any representative is
above a given threshold, it is grouped into that cluster. Otherwise, a new
cluster is defined with that sequence as the representative.” And, accord-
ing to [29]: “The program [BLASTClust| begins with pairwise matches and
places a sequence in a cluster if the sequence matches at least one sequence
already in the cluster. In the case (...) of nucleotide sequences, the Megablast
algorithm is used.”

In both cases, the user has to provide a similarity threshold. In the case of
CD-hit-est, this threshold indicates the minimum similarity that a sequence
must have with the reference of a cluster to integrate this cluster. In the
case of BlastClust, this threshold indicates the minimum similarity that a
sequence must have with at least one other sequence in the cluster. This
necessity to specify the threshold for similarity makes a important difference
with our tool. Indeed, our tool determines the number of clusters automat-
ically using BIC. Of course, CD-hit-est and BLASTClust provide a default

16

random | Distance | Distance Distance
seed our tool | CD-hit-est | BlastClust
0 0 7 3

1 0 11 19
2 2 7 1

3 10 13 20
4 0 8 3

5 0 7 5

6 0 8 2

7 0 7 9

8 0 7 12
9 1 10 19
10 0 6 5
11 0 7 10
12 1 6 5
13 1 10 2
14 0 7 9
15 0 7 5
16 0 6 4
17 0 11 17
18 0 12 16
19 0 6 17
20 0 8 17
21 10 8 17
22 0 7 1
23 0 7 2
24 0 8 6
total 25 201 226

Table 1: Distance from the perfect clustering

value for this similarity (e.g., 0.9 for CD-hit-est) but it is simple to find situ-
ations in which this value is not adapted. Indeed, this value does not fit the

data as BIC does.

We have not found a way to choose similarity thresholds based only on
the simulated databases. Thus, to apply CD-hit-est and BLASTClust to

17

the simulated data we have deliberately biased our inputs in favor of these
programs: we have sought similarity thresholds that minimize the distance to
the ideal clustering (as if this ideal clustering was known in advance) in the
case of the first simulated database. Then we have applied these thresholds
to the 25 simulated bases.

In the case of CD-hit-est, we have tested different similarities between
0.82 and 0.90. Indeed, we have calculated that, given the parameters of
the simulations, the ideal threshold should be in this area. The results are
shown in Table 2. On can see that the distance to the ideal clustering is
minimized for a similarity threshold of 0.84. When studying these CD-hit-
est clustering in detail, one can see that, even with this ideal similarity of
0.84, some sequences are isolated and do not fit into their ideal cluster. If
the chosen similarity threshold increases, this number of isolated sequences
increases. On the other hand, if the chosen similarity threshold decreases
(below 0.84), some clusters merge together.

The case of BLASTClust is a little more complicated. In this case, we
have varied four parameters detailed below:

e -S <threshold> similarity threshold

— if <3 then the threshold is set as a BLAST score density (0.0 to
3.0; default = 1.75)

— if > 3 then the threshold is set as a percent of identical residues
(3 to 100)

e -L <threshold> minimum length coverage (0.0 to 1.0; default = 0.9)

e -b <T—F> require coverage as specified by -L and -S on both (T) or
only one (F) sequence of a pair (default = TRUE)

There are thus two binary parameters (-b on the one hand and the fact that
S < 3orS > 3 on the other hand) and two continuous parameters (S et L).
The two binary parameters constitute 4 configurations (b = ‘T ’and S < 3
.. b="F"and S > 3). For each of these 4 cases, we have tested BlastClust
on a 10,000 points grid (100 possibilities for S x 100 possibilities for L). We
have observed the minimum distance to the ideal clustering obtained on these
40,000 points (it is 3). Then we have counted which of the four configurations
contain the largest number of points that minimize the distance to the ideal
clustering (it is b = ‘F” and S < 3). After this, we have selected the point

18

of this configuration closest to the average of the points that minimize the
distance to the ideal clustering among the points that minimize the distance
to the ideal clustering. The setting obtained is: S = 1.91 (BLAST score
density), b = ‘F’, L, = 0.49 and p = ‘F’ (p = ‘F’ means that we work on
nucleotide sequences, not on proteins).

After we had obtained these parameters for CD-hit-est and BLASTClust,
we finally applied these two tools to our 25 simulated datasets. The results
are shown in Table 1 with those of our tool.

Similarity Intra-Cluster 0.82]0.83]0.84|0.85|0.86| 0.87 | 0.88

0.89

0.90

Distance to Ideal Clustering | 10 8 7 9 9 9 10

10

13

Table 2: Search for the best similarity threshold for CD-hit-est

4. Discussion

4.1. Comparison with other tools

Compared to CD-hit-est and BLASTClust, our tool has several advan-
tages.

1. It uses a statistical criterion (in this case, the reputed BIC) to determine
the number of clusters to consider. Thus, it can propose a number of
clusters adapted to the database without the user having to provide
any a priori.

2. As shown in Section 3.2, it allows a better reconstruction of the ideal
clustering, even when the similarity threshold is chosen advantageously
for CD-hit-est and BLAST Clust.

3. It allows the user to plot useful graphical representations of the clus-
tered data.

Finally, we note that CD-hit-est works only for intra-cluster similarities larger
than 75%.

One drawback of our tool as compared to CD-hit-est and BLAST Clust is
the computation speed. According to [30], CD-hit-est is the fastest of these
two programs. We have not been able to rigorously confirm this remark in
our study, simply because we used BLASTClust on our computers while we
used CD-hit-est online.

19

To sum up, the main features of our tool are different from that of CD-hit-
is and BLASTClust. For users wanting to cluster their dataset into meaning-
ful taxa, which makes it possible to apprehend the evolution, our tool might
be of greater interest. On the other hand, if the objective is to reduce the
size of the dataset by removing duplicates (or retain only one sequence per
group of close sequences), it is more appropriate to use one of the other tools
with a similarity of 100% (or close to 100%). In particular, CD-hit-est is
written so as to provide a representative sequence for each cluster.

4.2. Possible alternatives with the same caneva

Various options are possible to perform the analysis we have presented
previously, some of them being listed below.

4.2.1. Similarity matrix

As stated previously, the multiple global alignment step is performed
first before computing similarities, using MUSCLE software [13]. Among the
most extensively used methods, we can choose MAFFT [31] too, as well as
ClustalW or ClustalX [32]. In addition, instead of defining the similarity
matrix W as W, ; = 1 — M, ;, it could be possible to consider W, ; = —— or

szj
VV’L’j = G_Mi’j.

4.2.2. Number of considered eigenvectors

The number of eigenvectors to keep is another point to investigate. As
explained in Section 2.1.2, it is usually advised to check graphically when the
increase of eigenvalues is reducing. In this article, we have chosen to consider
as default proposal: k; such that § = A\g, 11 — Ag, < 0.01. This criterion has
led to £ = 4 in the case study, which seems acceptable according to the
considered taxonomy.

Some authors in the literature proposed to compute k; as the logarithm
of n [33]. This method has been implemented as an option, as specified in
Section 2.3. In addition, the “energy” method defined in Section 2.3 has
been implemented too, in order to propose something similar to what is
done in usual Principal Component Analysis (PCA). Other approaches can
be considered to solve this problem, which is still an open one.

4.2.3. Number of clusters
We have chosen to consider the BIC [18] to determine the optimal number
of clusters, which is a common choice for this type of problem. An alternative

20

may be to use the Akaike Information Criterion (AIC, [17]). The principle
of calculating the AIC is the same as the BIC, since the goal is to maximize
log-likelihood penalized by the number of parameters (or more precisely, to
minimize the number of parameters to which the log-likelihood is subtracted).
AIC formula is the following:

AIC = —2In(L) + 2 X p,

where L is the likelihood of the estimated model and p the number of model
parameters.

When In(n) > 2, that is to say n > 8 (which is always the case in
practice), BIC penalization is larger than that of AIC. Thus the number of
clusters obtained by BIC is lower or equal to the one obtained by AIC. BIC
is said to be “more conservative” than AIC. The choice between these two
criteria can be dependent on how stringent the clustering is desired. The
user of the GClust function may choose to use the AIC rather than the BIC
as specified in Section 2.3. The user of the GClust function is also able to
choose the number of clusters of his or her choice.

4.8. Conclusion

In this work, we have proposed a new method of nucleotide sequence
clustering. This clustering is produced by a methodology combining Lapla-
cian Eigenmap with Gaussian Mixture models, while the number of clusters
is automatically determined by using the Bayesian Information Criterion.
The proposed methodology was applied to 100 sequences of mitochondrially
encoded NADH dehydrogenase 3. The resulting clusters appeared to be co-
herent with the phylogeny (gene tree obtained with PhyML) as well as with
the NCBI taxonomy. In addition, further tests have also been carried out
on fully simulated data. These tests showed that our methodology allows to
recover the expected clusters with greater accuracy.

One possible extension for future work could be to investigate more deeply
the impact of parameters in the obtained clusters. The effects of using a
different similarity matrix, or choosing a different dimension of the image
space in Laplacian Eigenmap, or the number of desired clusters, could be
investigated. Moreover, our tests on real data allowed us to watch our tool
in action while performing a clustering of species into taxons. It might be
interesting to also test the ability of our tool to classify 16S RNA sequences
into OTUs on real data. Another avenue could consist in adapting the code
to the very similar problem of protein clustering.

21

On a more computer-oriented aspect, our tools could be easier to access

by being packaged with pypi. An online tool is also possible. Finally, the
graphical interface could also be enhanced, for instance so as to make easier
the identification of sequences associated to each point cloud.

1]

[10]

B. Valot, C. Guyeux, J. Y. Rolland, K. Mazouzi, X. Bertrand, D. Hoc-
quet, What it takes to be a pseudomonas aeruginosa? the core genome
of the opportunistic pathogen updated 10 (5) (2015) e0126468.

X. Hao, R. Jiang, T. Chen, Clustering 16s rfRNA for OTU prediction:
a method of unsupervised bayesian clustering, Bioinformatics 27 (5)
(2011) 611-618.

A. Torroni, T. G. Schurr, C.-C. Yang, E. J. Szathmary, R. C. Williams,
M. S. Schanfield, G. A. Troup, W. C. Knowler, D. N. Lawrence, K. M.
Weiss, Native american mitochondrial dna analysis indicates that the

amerind and the nadene populations were founded by two independent
migrations., Genetics 130 (1) (1992) 153-162.

B. E. Suzek, H. Huang, P. McGarvey, R. Mazumder, C. H. Wu, Uniref:
comprehensive and non-redundant uniprot reference clusters, Bioinfor-
matics 23 (10) (2007) 1282-1288.

R. Bellman, Dynamic programming, Courier Corporation, 2013.

R. E. Bellman, Adaptive control processes: a guided tour, Princeton
university press, 2015.

M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for
embedding and clustering., in: NIPS, Vol. 14, 2001, pp. 585-591.

D. Spielman, Spectral graph theory, Lecture Notes, Yale University
(2009) 740-0776.

S. Chrétien, C. Dombry, A. Faivre, A semi-definite programming ap-
proach to low dimensional embedding for unsupervised clustering, arXiv
preprint arXiv:1606.09190 *.

N. E. Day, Estimating the components of a mixture of normal distribu-
tions, Biometrika 56 (3) (1969) 463-474.

22

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

National center for biotechnology information, https://www.ncbi.nlm.
nih.gov/.

S. Guindon, F. Lethiec, P. Duroux, O. Gascuel, PHYML online-a web
server for fast maximum likelihood-based phylogenetic inference, Nucleic
acids research 33 (suppl 2) (2005) W557-W559.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy
and high throughput, Nucleic acids research 32 (5) (2004) 1792-1797.

S. B. Needleman, C. D. Wunsch, A general method applicable to the
search for similarities in the amino acid sequence of two proteins, Journal
of molecular biology 48 (3) (1970) 443-453.

H. Chen, F. Zhang, Resistance distance and the normalized laplacian
spectrum, Discrete Applied Mathematics 155 (5) (2007) 654-661.

J. Friedman, T. Hastie, R. Tibshirani, The elements of statistical learn-
ing, Vol. 1, Springer series in statistics Springer, Berlin, 2001.

H. Akaike, A new look at the statistical model identification, IEEE
transactions on automatic control 19 (6) (1974) 716-723.

G. Schwarz, et al., Estimating the dimension of a model, The annals of
statistics 6 (2) (1978) 461-464.

C. Biernacki, G. Celeux, G. Govaert, Assessing a mixture model for
clustering with the integrated completed likelihood, IEEE transactions
on pattern analysis and machine intelligence 22 (7) (2000) 719-725.

G. McLachlan, D. Peel, Finite mixture models, John Wiley & Sons,
2004.

C. Biernacki, S. Chrétien, Degeneracy in the maximum likelihood esti-
mation of univariate gaussian mixtures with EM, Statistics & probability
letters 61 (4) (2003) 373-382.

X. He, D. Cai, Y. Shao, H. Bao, J. Han, Laplacian regularized gaussian
mixture model for data clustering, IEEE Transactions on Knowledge
and Data Engineering 23 (9) (2011) 1406-1418.

23

23]

[24]

[25]

[26]

[33]

Z. Wang, Q. Gu, Y. Ning, H. Liu, High dimensional expectation-
maximization algorithm: Statistical optimization and asymptotic nor-
mality, arXiv preprint arXiv:1412.8729.

X.Yi, C. Caramanis, Regularized EM algorithms: A unified framework
and statistical guarantees, in: Advances in Neural Information Process-
ing Systems, 2015, pp. 1567-1575.

R. Knight, P. Maxwell, A. Birmingham, J. Carnes, J. G. Caporaso, B. C.
Easton, M. Eaton, M. Hamady, H. Lindsay, Z. Liu, et al., Pycogent: a
toolkit for making sense from sequence, Genome biology 8 (8) (2007)
R171.

L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, et al., Api design
for machine learning software: experiences from the scikit-learn project,
arXiv preprint arXiv:1309.0238.

V. I. Morariu, B. V. Srinivasan, V. C. Raykar, R. Duraiswami, L. S.
Davis, Automatic online tuning for fast gaussian summation, in: Ad-
vances in Neural Information Processing Systems (NIPS), 2008.

W. Li, A. Godzik, Cd-hit: a fast program for clustering and compar-
ing large sets of protein or nucleotide sequences, Bioinformatics 22 (13)
(2006) 1658-1659.

Using blastclust to make non-redundant sequence sets, https://www.
ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html.

Cd-hit user’s guide, http://weizhong-lab.ucsd.edu/cd-
hit/wiki/doku.php?id=cd-hit_user_guide.

K. Katoh, D. M. Standley, MAFFT multiple sequence alignment soft-
ware version 7: improvements in performance and usability, Molecular
biology and evolution 30 (4) (2013) 772-780.

M. A. Larkin, G. Blackshields, N. Brown, R. Chenna, P. A. McGettigan,
H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, et al.,
Clustal w and clustal x version 2.0, bioinformatics 23 (21) (2007) 2947—
2948.

C. Matias, Notes de cours: Analyse statistique de graphes (2015).

24

