Model-Based Testing as a Service for IoT
Platforms

Abbas AHMAD2, Fabrice BOUQUET?, Elizabeta FOURNERET?, Franck
LE GALL!, and Bruno LEGEARD??

! Easy Global Market, Sophia-Antipolis, France
2 Université de Franche-Comté - Femto-ST, Besancon, France
3 Smartesting Solutions & Services, Besancon, France

Table of Contents

Model-Based Testing as a Service for IoT Platforms 1
Abbas AHMAD, Fabrice BOUQUET, Elizabeta FOURNERET,
Franck LE GALL, and Bruno LEGEARD

Abstract. The Internet of Things (IoT) has increased its footprint be-
coming globally a ’must have’ for today’s most innovative companies.
Applications extend to multitude of domains, such as smart cities, health-
care, logistics, manufacturing, etc. Gartner Group estimates an increase
up to 21 billion connected things by 2020. To manage 'things’ heterogene-
ity and data streams over large scale and secured deployments, IoT and
data platforms are becoming a central part of the loT. To respond to this
fast growing demand we see more and more platforms being developed,
requiring systematic testing. Combining Model-Based Testing (MBT)
technique and a service-oriented solution, we present Model-Based Test-
ing As A Service (MBTAAS) for testing data and IoT platforms. In this
paper, we present a first step towards MBTAAS for data and IoT Plat-
forms, with experimentation on FIWARE, one of the EU most emerging
IoT enabled platforms.

Keywords: Model Based Testing, Testing As A Service, Internet of Things,
Standard Compliance

1 Introduction

Internet of Things (IoT) applications can be found in almost all domains, with
use cases spanning across areas such as healthcare, smart homes/buildings/ci-
ties, energy, agriculture, transportation, etc. FIWARE [?] is an emerging IoT
platform, funded by the European Union (EU), which is pushing for an ecosys-
tem providing APIs and open-source implementations for lightweight and simple
means to gather, publish, query and subscribe context-based, real-time ”things”
heterogeneous information. This independent community includes 60 cities across
Europe in the Open and Agile Smart Cities alliance, which adopted FIWARE
standardised APIs to avoid vendor lock-in of proprietary solutions.

FIWARE provides an enhanced Open Stack-based cloud environment including
a rich set of open standard APIs that make it easier to connect to the hetero-
geneous IoTs, process and analyse Big Data and real-time media or incorporate
advanced features for user’s interaction. These platforms, strongly dependent on
the cloud, need to be properly tested to cover all necessary points to achieve
success in their adoption. Scalability, security, performance, conformance, in-
teroperability are the main points that must be ensured, for instance through
white, gray or blackbox testing [?]. Moreover, as IoT is an emerging technology
re-tooling and changes are frequent, requiring reducing the cost of testing by

rethink the way of testing. In this context, Model-Based Testing (MBT) offers
tool and language independence thus aiming to lower the testing effort of IoT [?].

In this paper, we focus on Model-Based Testing in terms of conformity and
interoperability. We demonstrate through the FIWARE [?] case study that for
these purposes, MBT as a Service is a suitable and scalable approach for testing
IoT Platforms. We introduce the basic concepts of MBT and how it applies
for the testing of IoT systems as a Service. Indeed, most recent IoT platforms
are using standardized protocols to communicate (MQTT, CoAP, HTTP). This
makes MBT testing deployment very suited by enabling design of a generic
model, based on these standards and producing test cases that can be used over
multiple applications.

FIWARE has defined its own standard starting from the Open Mobile Al-
liance Next Generation Services Interface (NGSI) standard [?] in order to make
the development of future internet applications easier and interoperable. This
standard is used as part of general-purpose platform functions available through
APIs, each being implemented on the platform, noted as GEi (Generic Enabler
Implementation). We used our MBT solution to increase confidence in the devel-
opment of the FIWARE platform applications. We show through our experiment
on the FIWARE Orion Context Broker [?] how it indeed helps developers to cre-
ate high quality applications.

The paper is organised as follows. Section 7?7 poses the challenges of testing
IoT platforms and the context of our approach, MBT and FIWARE. Section 7?7
defines our approach for MBT as a Service for IoT platforms testing. Section 77
summarizes the results and lessons learnt on the case study. We discuss related
works in Section ??. Finally we conclude and provide a roadmap for future works
in Section ?77.

2 Challenges and Context of Testing IoT Platforms

through FIWARE

We identify the challenges and define the context for our approach based on the
analysis of the FIWARE IoT Platform, which is a perfect representative for this
domain due to its presence in the European market. We further applied MBT
to FIWARE, which was already an ongoing project. We illustrate the MBT
approach and the test generation later in Sections 7?7 and 77.

2.1 The FIWARE IoT Platform

The FIWARE [?] cloud and software platform is the perfect catalyst for an open
ecosystem of entrepreneurs aiming at developing state-of-the-art data-driven ap-
plications. This ecosystem is formed by application developers, technology and
infrastructure providers and entities that aim to leverage the impact of develop-
ing new applications based on the produced data. Building applications based
on FIWARE is intended to be quick and easy thanks to the use of pre-fabricated
components in its cloud, sharing their own data as well as accessing ”open”
data. However, the challenge remains to build developers’ trust and confidence

into this FIWARE underlying platform. This is achieved by setting up quality
assurance (QA) processes relying on effective testing of the platform. This raises
questions such as balancing of test coverage with time and cost. However, several
questions arise when testing IoT platforms with respect to the specificities of the
communication protocols, devices and the heterogeneity of the data.

Connecting ”things” as devices, requires to overcome a set of problems arising
in the different layers of the communication model. Using devices’ produced data
or responding to device’s requests requires interacting with an heterogeneous and
distributed environment of devices running several protocols (such as HTTP,
MQTT, COAP) , through multiple wireless technologies.

Devices have a lot of particularities so it is not feasible to provide a testing
solution where one size fits all. Devices are resource constrained and cannot use
full standard protocol stacks: they cannot transmit information too frequently
due to battery drainage, they are not always reachable due to wireless connection
based on low duty-cycles, their communication protocols are IoT specific and lack
integrated approach [?] and use different data encoding languages, which
makes global deployment hardly existing.

Developers face complex scenarios where merging the information is a
real challenge. For this reason, an IoT platform must enable intermediation and
data gathering functions to deal with devices variety and it must be configurable
and adaptable to market needs.

Y Y
SHORT TERM
HISTORIC CEP
Companies 1 @
Organisations 1
CONTEXT BROKER S
=
3 :
p-d
c
5
loT Agents

Devices

Fig. 1. FIWARE IoT platform Architecture

Figure 7?7 exposes the FIWARE architecture that deals with all these spe-
cific elements, which remain a challenge when testing them in a real situation.
More specifically, the figure illustrates a connector (IoT Agent) solving the is-
sues of heterogeneous environments where devices with different protocols are
translated into to a common data format: NGSI. While several enablers are im-
proving the capacities of the platform to manage stored information (security
tools, advanced data store models, historical retrieval of information, linkage to
third party applications. ..), a core component known as Orion Context Broker
allows to gather and manage context information between data producers and

data consumers at large scale. This context broker is at the centre of the exposed
MBT based evaluation.

2.2 Introducing MBT in FIWARE

FIWARE was an ongoing project facing testing problems when we introduced
MBT to its community. The introduction required to adapt the existing FI-
WARE testing process. In Fig. 7?7, we illustrate this introduction through the
FIWARE use-case: Orion Context Broker. The focus is to bring examples over
the method registerContext. This method enables the registration of a new
“thing” in the Context broker implementation.

FXy —
Test Architects I
_I'I @ ;
v Publication
MBT @] Test ®
model

.0 generation
@
e
FIWARE spec writers

Test
selection
criteria

X
O
".
Test Architects

Execution

Test Script

Adaptor
+Env.

Test
repository

Test results
(pass/fail) I
®

.0
o
Generic Enabler implementers

Fig. 2. FIWARE MBT Process

Classicaly an MBT process [?] includes activities such as test planning and
controls, test analysis and design (which includes MBT modelling, choosing
suitable test selection criteria), test generation, test implementation and exe-
cution [?]. Figure 77 illustrates the classical MBT process applied to FIWARE.
The test analyst takes requirements and defines tests objectives as input to
model the System Under Test (SUT) (step ©). This MBT model contains static
and dynamic views of the system. Hence, to benefit as much as possible from
the MBT technology, we consider an automated process, where the test model is
sent as an input to the test generator that automatically produces abstract test
cases and a coverage matrix, relating the tests to the covered model elements
or according to another test selection criteria (step ®@). These tests are further
exported, automatically (step @), in a test repository to which test scripts can
be associated. The automated test scripts in combination with an adaptation
layer link each step from the abstract test to a concrete command of the SUT
and automate the test execution (step @). In addition, after the test execution,
tests results and metrics are collected (step ®) and feedback is sent to the user.

From one MBT model different test selection criteria exist to drive the test
generation approach [?]. In Fig. ?? we illustrate the general FIWARE MBT
process that is based on different test selection criteria, depending on the tool
being used.

In our approach for compliance testing we used the Smartesting Certifylt
tool [?], as it has already shown its benefits in compliance testing [?]. The Cer-
tifylt tool uses coverage-based test selection criteria (see Section ??) and it con-
siders, among others, UML class and object diagrams to develop MBT models.

Each type has a separate role in the test generation process. The class diagram
describes the system’s structure, namely the set of classes that represents the
static view of the system: (7) Its entities, with their attributes, (i) Operations
that model the APT of the SUT, (iii) Observations (usually denoted as check
operations) that serve as oracles, for instance an observation returns the current
state of the user’s connection on a web site.

Hsut

I_F‘Elretum_message: RETURN_MESSAGE Q Subsaribtion
-sut Subscribers - subscriber [Eg D : ENTITVD

%a: checkReturnMessage ()

5 CreateNewEntity () 0.1

% DeleteEntityBylD ()

%UpdateEntity 4] . -
-sut _ - entities Entif

% =uncertaintys QueryEntity () Q nity

&2 RegisterContext () 0.1 B [y |d : ENTITVID

§, DiscoverContextAvailability () =] Pa',rloadT;.rpe * PAYLOAD TYPE

% =uncertainty= ContextSubscription) Eg's Updated : Boolean

%uuncenaim}m UnsubscribeContextSubscription (
)

Fig. 3. MBT Orion Context Broker UML model - static view (Class diagram)

The MBT model given in Fig. 7?7 shows the architecture of the SUT - the
Orion Context Broker. The classes have attributes and functions. For instance
in the SUT class we model respectively return message, the SUT response to
the sent messages and the function RegisterContext, that registers the entities
(for instance a sensor) .

‘] EMPTY VALUE Entity? : Entity 1 JSON Entity? : Entity #-| EMPTY VALUE Entity1 : Enfity ‘£ EMPTY VALUE Entity3 : Entity
[Eg'd = ENTITY2 [Egd = ENTITYZ [Eg 'd = ENTITA Egd = ENTITY3
Eg isUpdated = false = isUpdated = false Eépay\oaﬂ,rpe = EMPTY_CONTEXT_VALUE E.‘pay\oadType = EMPTY_CONTEXT_VALUE
EE'IpayloadType = EMPTY_CONTEXT_VALUE E.‘pay\oadType =JSON
£ JSON Entity1 : Entity £ JSON Entity3 : Entity £ JSON ERROR Entity1 : Entity. £ JSON_ERROR Entity2 : Entity
[Eg'd = ENTITY [Egd = ENTITY3 [Eg d = ENTITV [Egd = ENTITY2
== payloadType = JSON == payloadType = JSON = payloadType = JSON_ERROR == payloadType = JSON_ERROR
#] JSON ERROR Entity3 ; Enti +] SUTinstance : SUT. | #] Subsaribti ce ID1 : Subscribtion |
g d = ENTITVG [Eg return_message = REQUEST OK | | 1D = ENTITY! |
Eg payloadType = JSON_ERROR
|] subscribti ce : Subscribtion ‘£ Subscribti elD2 : Subscribtion
||_FE‘|\D=ENT\TY3 | gD = ENTITY2

Fig. 4. MBT Orion Context Broker UML model - input data (Object Diagram)

Next, from the previous class diagram we instantiate an object diagram
(Fig. ?7). This data view provides the initial state of the system and also the
objects that will be used for test generation as input data for the operation
parameters.

The dynamic view of the system or its behaviours are described by Object
Constraint Language (OCL) constraints written as pre/postcondition in opera-
tions in a class (Fig. ?7?). The test generation engine sees these behaviour objects
as test targets. The operations can have several behaviours, identified by the
presence of the conditional operator if-then-else. The precondition is the union

of the operation’s precondition and the conditions of a path that is necessary
to traverse for reaching the behaviour’s postcondition. The postcondition corre-
sponds to the behaviour described by the action in the then or else clause of
the conditional operator. Finally, each behaviour is identified by a set of tags,
which refers to a requirement covered by the behaviour. For each requirement,
two types of tags exist:

e QREQ - a high-level requirement
e QAIM - its refinement

Both tags are followed by an identifier. Figure 7?7 shows the OCL code for the
Register Context method. The high level requirement is to test the registration
of an entity. Its refinement is the case where an error in the destination URL
can be found, an error in the payload sent or its success.

45 RegisterContext 23 |

1let entity : Entity = Entity.allInstances()->any{
Ze : Entity | e.sut.oclIsUndefined() and e.payloadType = IN_PAYLOAD TYPE and e.Id = IN ENTITYID) in
3-——FREQ:RegisterContext
4if (IN_URL = URL::INVALIDURL)
Sthen —---@RIM:UrlError
self.return message = RETURN_MESSRAGE: :URL_ERROR
Telse 1f(IN_PAYLOAD TYPE = PARYLOAD TYPE::JS5CN_ERRCR)
B then ———-@AIM:JS0NPayloadError
9 self.return message = RETURN_MESSRGE::BAD REQUEST
10 else 1f(IN_PAYLOAD TYPE = PAYLOAD TYPE::J5CN)
11 then ——-@AIM:JS0NPayloadSuccess
12 self.entities->includes (entity) and
13 self.return message = RETURN_MESSAGE::REQUEST_OK
l4endif endif endif and
15result = self.return_message
leand checkReturnMessage ()

Fig. 5. Orion Context Broker ”Register Context” method OCL - dynamic view

Deducing the test oracle from our model is a major advantage of the used
tool (Smartesting Certifylt). A specific type of operations, called observations
are used to assign the test verdict. The tester with these special operations
can define the system parts or variables to observe, for instance a function
checkReturnMessage (). Thus, based on these observations, the test oracle is
automatically generated for each test step, based on the return message vari-
able expected and actual (from the execution) result..

2.3 Test generation with Certifylt

The Certifylt tool uses the object diagram and the OCL constraints to extract
automatically a set of test targets. The test targets are used to drive the test
generation process. As discussed previously each test has a set of tags associated
for which it will ensure the coverage.

Figure 77 illustrates a test target associated to the success behaviour de-
picted in Fig. 7?7 and its corresponding test in the Certifylt tool. The tool lists
all generated tests clustered per covered requirement. We can visualize the test
case and for each step a test oracle is generated. As discussed, the tester with
the observation manually defines the system point to observe when calling any
function. As we can see on Fig. 7?7, checkReturnMessage () observes the return

8

Test Targets Test detail
Steps
B %+ SUT:RegisterContext() T Defauft model instance
% RegisterContext Initialized model instance
JSONPayloadSuccess &= SUTInstance.RegisterContext(ENTITY1, JSON, VALIDURL) = REQUEST_OK
f') = * DeleteEntityBylD/Success_a273 ® SUTInstance.checkReturnMessage() = REQUEST_OK
) + + EntityUpdate/JSONPayloadSuccess_e09 & SUTInstance.UpdateEntity(ENTITY1, JSON, VALIDURL) = REQUEST_OK
)+« QueryContext/JSONPayloadSuccess_e27c ® SUTInstance.checkReturnMessage() = REQUEST_O

Fig. 6. Register Context test case

code of each Orion Context Broker function with respect to the activated re-
quirement.

One test covers one or more test targets. Moreover, the tool’s engine generates
fewer tests then test targets, because it uses the light merge of tests method,
which considers that one test is covering one or more test objectives (all test
objectives that have been triggered by the test steps) [?]. The light merge of
tests means that the generator will not produce separate tests for the previously
reached test targets but will consider the test targets as covered by a specific
test. The generated tests are exported as an XML file gathering the description
of each test suite with its test cases containing parametrized abstract test steps.
Generated tests are abstract and to execute them on the system an adaptation
layer is required, as classically done in MBT.

3 MBTAAS for IoT platforms testing

IoT platforms offer services to applications users. The question of conformance
testing and validation of IoT platforms can be tackled with the same ”as a
service” approach. This section presents the general architecture of our Model
Based Testing As a Service (MBTAAS). We then present in more details,
how each service works individually in order to publish, execute and present the
tests/results.

3.1 Architecture

An overview of the general architecture can be found in Fig. ?7. In this figure we
find the four main steps of the MBT approach (MBT modeling, test generation,
test implementation and execution) presented in Section ?7.

However, to the difference of a classical MBT process, MBTAAS implements
several webservices, which communicate with each other in order to realise test-
ing steps. A webservice, uses web technology such as HTTP, for machine-to-
machine communication, more specifically for transferring machine readable file
formats such as XML 4 and JSON °.

In addition to the classical MBT process, the central piece of the architecture
is the database service ® that is used by all the other services. We will see its
involvement as we describe each service individually. Nevertheless, the database
service can be separated from all the other services, it can be running in the

* https://www.w3.org/XML/
® http://www.json.org

Test Design '
e O e (D) WEB FRONT-END (WFE)
Personal test reports Dashboard

MBT Models HTML reports with results
Test Configuration
+0CL 1gu;
Custom Test - Custom test data
Generate tests ‘ Configuration layer - Tests selection
Test Plan doc
(HTML) MBT Tests
=@
— ®
Test data

EGM_TAAS 9
WFE Publisher
=
EGM_TAAS —/
(XML)
a
1- execute tests e
EGM_TAAS EGM_TAAS
sut Backend TestExec Reporting Server
2- Get test results 2- Send results

Fig. 7. MBTAAS architecture

Test Analyst

cloud where it is accessible. The database stores important information such
as test data (input data for test execution) and test results. The entry point
of the system is the web-front end service (customization service). This service
takes a user input to customize a testing session and it communicates it to a
Publication service @. The purpose of the publisher service is to gather the
MBT results file and user custom data in order to produce a customized test
description file (EGM_TAAS file). This file is then sent to an Execution service @
which takes in charge the execution of the customized tests. It stimulates the
SUT with input data in order to get response as SUT output data. The execution
service then finally builds a result response and sends it to a last service, the
Reporting service. The reporting service is configured to feed the database
service with the test results. These test results are used by the web-front end
service in order to submit them to the end-user. This testing architecture is taken
to a modular level in order to respond to the heterogeneity of an IoT platform.
In the following sections, a detailed description of each services is provided.

3.2 Customization Service

In order to provide a user friendly testing as a service environment, we cre-
ated a graphical web-front end service to configure and launch test campaigns®.
The customization service is a web site where identified users have a private
dashboard. The service offers a pre-configured test environment. The user input
can be reduced to the minimum, that is: defining a SUT endpoint (URL).
User specific test customization offers a wide range of adjustments to the test
campaign. The web-service enables:

e Test selection: from the proposed test cases, a user can choose to execute
only a part of them.

5 http://193.48.247.210 /egm_taas/users/login (for reviewing purpose login:isola, pass-
word:isola)

10

e Test Data: pre-configured data are used for the tests. The user is able to
add his own specific test data to the database and choose it for a test. It is
a test per test configurable feature.

e Reporting: by default the reporting service will store the result report in
the web-front end service database (more details on this in Sec. ??). The
default behaviour can be changed to fit the user needs for example, having
the results in an other database,tool,etc.

After completion of the test configuration and having the launch tests button
pressed, a configuration file is constructed. The configuration file as can be seen
in Fig. ??: Configuration File excerpt, defines a set of {key = value}. This file is
constructed with default values that can be overloaded with user defined values.

3333222

15 $434834204848388 REQ
sissstitittttttitiiiataaiiiite

4MAME OF THE OWNER OF T
OWNER=EGM TE XML FPUBLIS

#HOW TO OR (
REFORT_TYPE=FOST I
#URL OF SUT TO TE
ENDFOINT URL=htrty
#URL of EGM_TAAS

EGM_TAAS_BACKEND = localhost:

#Where to Cutput th
EGM_TAAS OUTEUT = tmp

bW R R R R R R R R R R
- i] i

Fig. 8. Configuration File excerpt

The configuration file is one of three components that the publisher service
needs to generate the test campaign. The next section describes the publication
process in more details.

3.3 Publication service

The publisher service, as it name states, publishes the abstract tests generated
from the model into concrete test description file. It requires three different in-
puts (Fig. ?? step @) for completion of its task: the model, the configuration
file and test data. The model provides test suites containing abstract tests. The
concretization of abstract tests is made with the help of the database and config-
uration file. For example, the abstract value ENDPOINT_URL taken from the model,
is collected from the configuration file and PAYLOAD_TYPE (Fig. ??) parameter is
gathered from the database service ®.

The concrete test description file is for our |
use case, an XML file that instantiates the ab- root sute L.
stract tests. The test description file has two Test Cases
main parts, general informations and at least [Teststeps 1.
one test suite (Fig. ?7). A test suite is com-
posed by one or more test cases and a test case
itself is composed of one or more test steps.

Fig. 9. Published file parts

11

This hierarchy respects the IEEE 829-2008, Standard for Software and System
Test Documentation.

The general information part of the file is useful to execute the tests (Sec. 7?)
and report the results. Here are some of the most important parameters that
can be found in that part:

e owner: used for traceability purposes. It allows to know who is the detainer
of the test in order to present it in his personal cloud dashboard.

e sut_endpoint: the hostname/ip address of the System Under Test. This
address should be reachable from the execution service point of view.

e location: the hostname/ip address of the reporting service (Sec. 77).

The test suites contain all useful test information. In our case, for FIWARE,
the applications are HTTP-based RESTful applications. The mandatory infor-
mations required to succeed a RESTful query are: the URL (SUT endpoint)
and the HTTP method (GET, POST, PUT, DELETE). The Test suite and test
cases purpose is the ordering and naming of the test but the test information and
test data are stored in the test steps. Each test step have its own configuration.
Once the file published, it is sent to the execution service in order to execute the
tests.

3.4 Execution service

The execution service is the functional core of the MBTAAS architecture. The
execution service will run the test and collect results depending on the configu-
ration of the received test description file. FIWARE RESTful interface tests are
executed with the REST execution module. Each test is run against the SUT
and a result report (Listing ??) is constructed on test step completion. The re-
sult report contains information on date-time of execution, time spent executing
the step and some other test specific values. The ”endpoint” represent the URL
value and validity of where the step should be run. An invalid endpoint would
allow to skip the type check on the endpoint value and thus allowing to gather an
execution error. The response of each step is validated within the ”assertion_list”
tags (test oracle). It validates each assertion depending on the assertion type and
values with the response received.
Listing 1.1 — Test step result report

<teststep name="UpdateEntityl”> <key>code</key>
<executionResults> <value>404</value>
<timestamp>{TIMESTAMP}</timestamp> <result>false</result>
<executionTimeMs>22</executionTimeMs> </assertion>
</executionResults> </assertion-list>
<endpoint> <result>false</result>
<value>{IP}: {PORT}/upContext</value> <response>{
<isinvalid>false</isinvalid> 7errorCode” : {
</endpoint> ”code” : 74007,
<method>POST</method> "reasonPhrase” : ”"Bad Request” ,
<headers>{HEADERS}</headers> "details” : "JSON Parse Error”
<payload>{PAYLOAD}</payload> }
<assertion-list> }
<assertion> </response>
<type>JSONZ/type> </teststep>

Figure 7?7 shows an excerpt of the execution service log. In order to execute
one test step, the endpoint (URL) must be validated. Then a REST request is

12

created and executed. A response is expected for the assertions to be evaluated.
At the end, an overall test result is computed. The overall assertion evaluation
algorithm is as simple as: " All test assertions have to be true”, that implies if
one assertion is false, the step is marked as failed.

[egu.nodelTools . HttpRequestExecuter] Validating url : htep:// [N 1026/+1/updateContext
[egn.nodelTools . HtrpRequestExecuter] URL is VALID
[egn.nodelTools. HotpRequestExecuter] Starcing Jetty HITE Client
[egn.nodelTools . HttpRequestExecuter] Jetty HITF Client Started with Success
[egm.nodelTools . HetpRequestExecuter] Creating reguest : URL = heep:/ /| : 1026/ v/ updateContext, HITPMETHOD = POST
[egm.nodelTools . HotpRequestExecuter] Request created
[egn.nodelTools . HttpRequestExecuter] Request status code: 200
[egm.modelTools . HttpRequestExecuter] Response contenmt:
merrorCode™ : {
"code™ @ "4007,
"reasonPhrase” : "Bad Request”,
"details" : "JSON Parse Error"
B
b

[egm.nodelTools . HttpRequestExecuter] Stopping Jetty HTTE Client
[egm.modelTools . HttpRequestExecuter] Jetty HITP Client Stopped
[egn.nodelTools . HetpRequestExecuter]

[egm.model.Assertion] Asserting...expression to be assert: is key "code" contains value: "4047
[egm.nndelTools . TestStepResponseFParser] is JSON data key "code” containg value: "404"
[egm.nodelTools . TestStepResponseParser] no value of : "404" has been found for id: "errorCode™
[egm.nodelTools. TestStepResponseParser] no value of : 74047 has been found for id: "code"
[egm.nodel.TescStep] Execution Result of step UpdateEnticylds : false

Fig. 10. Execution snapshot

Once the execution service has finished all test steps, their results are gath-
ered within one file, we call this file Test Results, and it is sent to the reporting
service.

3.5 Reporting service

After executing the test, a file containing the test description alongside their
results are sent to and received by the reporting service. The reporting service
configuration is made in the web front-end service. The configuration is passed
with the test configuration file where the publisher service re-transcribes that
information to the file sent to the execution service. The execution service then
includes the reporting configuration in the report file where it is used in the
reporting service once it receives it. By default the reporting service will save the
results in the database service ®. For our use case, the database is implemented
as a MySQL database. This database is afterwards used by the web front-end
service to present the test results to the user.

4 Evaluation

We present results on requirements coverage, test execution and time spent to
apply the approach in order to show the cost-benefits of MBTAAS.

4.1 Results

We have created two test suites for the Orion Context Broker. One test suite
for automated test generation (to cover compliance requirements) and an other
test suite with user defined scenarios to use the tester’s experience (to cover
specific functional requirements (as also available with Certifylt [?]). For our
FIWARE scope 22 requirements were manually extracted from the FIWARE

13

standard, traced into the MBT model using the tagging feature with REQ/AIM.
This automatically produced a coverage matrix between the generated test cases
and the requirements, which in our case is 100% (for more details consider the
following report [?]. To further evaluate our approach we gathered information
on the test case generation (number of generated tests) and test execution time.
We compare these results with respect to a manual approach, a tester crafting
the test cases to cover the same test objectives.

In total, the two Certifylt test suites contain together 31 test cases and 172
test steps. The execution time including the response evaluation is accomplished
in less than six seconds (5438 ms). Compared to a manual test step execution,
where the execution and the evaluation can take up to approximatively 1 min
by test step in the best conditions (all testing environment pre-set up) we have
a 1720 times improvement in time consumption. The test execution resulted
in 165 successful test steps (25 tests) and 7 failed test steps (6 tests). Failed
tests are due to a gap between specification and implementation. The model
showed that some test result were noted as ”success” in specification and does
not state a clear result which we could match with actual implementation results.
Applying our MBT approach on an enablement API made possible to clearly
identify the benefits of applying a service oriented MBT approach in terms of
APIs interoperability verification thus ensuring the respect of the specifications.
In terms of project planning, it took us 26 person/hours to create the MBT
model. More specifically, it took 10 person/hours to model the static view of the
system (the class diagram) suitable for testing and 16 person/hours to model the
dynamic view of the system (to write the OCL). These metrics abstract away the
domain knowledge on FIWARE standards and the FIWARE NGSI specification
itself. If the MBT approach is integrated within the project, the testing teams
have already this knowledge. This is linked to the developers/testers experience
and we consider the process of getting additional knowledge of the platform as
negligible. The MBT part of our approach is transparent for the community, thus
the community will simply submit their application for FIWARE compliance
testing and use the MBT output artefacts i.e. the test cases produced by our
MBT approach. Additionally, time spent on building the service approach is also
given. And it is important to notice that the services are modular. They are only
developed once for RESTFul application and each new model comes as input to
the MBTAAS system already in place. In case of an other IoT platform protocol,
lets take MQTT (http://mgtt.org/) for example, adjustments to the services is
required. The web front-end service should include the possiblity to choose the
new type of platform and a new execution module needs to be developped and
integrated in the execution service. The same modifications are needed in the
reporting service if we want to propose for example to export the results to a
mongo-DB (hitps://www.mongodb.org/) database rather than MySQL.

4.2 Discussion

We are confident in our work and results following that the paper user case
”QOrion Context Broker” testing is a continuation of a preceding proof of con-

14

cept on FIWARE enablers testing. The last use case was on the Espr4FastData
enabler: a complex event processing tool [?]. We demonstrated that a classi-
cal MBT approach is suited to test an IoT platform thus encouraging us move
forward and bring the service layer to our proof of concept.

One major advantage we saw in applying the MBT approach on FIWARE
is that the test repository remains stable, while the project requirements and
specification may evolve within the time. MBT is a suitable approach for emerg-
ing technologies and especially on IoT platforms where the maturity level is still
increasing while technology development is still on going. Being able to generate
tests automatically and in a systematic way, as we did, makes possible to con-
stitute a test suite covering the defined test objectives. The MBT further allows
generating reports to justify the test objective coverage, which can be easily
used for auditing for instance. These couple of examples show the usefulness
of an automated and systematic use of an MBT approach on applications that
should comply to specific standards. Combined with a user friendly and ease of
access through service oriented solution, first experiments with MBTAAS show
that it is a promising powerful tool.

5 Related Works

In this section, we review work related to our proposed approach in the areas
of model-based testing (MBT) related to Internet of things (IoT) systems, more
specifically mobile and cloud testing, and Model-Based Testing as a service.
Model-based testing has been extensively studied in the literature [?] [?]. How-
ever, the majority of existing approaches in connexion to the IoT domain are
mostly designed for mobile application. For instance, authors in [?] design a GUI
(Graphical User Interface) ripping approach based on state machine models for
testing Android applications. Other work concentrates on vulnerability testing
of mobile application based on models, for instance authors in [?] propose an
MBT approach to generate automatically test cases using vulnerability patterns,
that target specifically the Android instant Messaging mechanism.

In addition, recent survey by Incki et al. [?] reports on the work done on
testing in the cloud, including mobile, cloud applications and infrastructures,
testing the migration of applications in the cloud. They realized a categorization
of the literature on cloud testing based on several elements among which: test
level and type, as well as contribution in terms of test execution, generation and
testing framework. They underlined that testing as a service for the interoper-
ability for cloud infrastructures today remains still a challenge. Authors in [?]
propose a model-based testing approach based on graph modeling for system
and functional testing in cloud computing. Hence, contrary to these approaches
that refer to testing approaches of the different layers of the cloud: Software as a
service, Platform as a service and Infrastructure as a service, our approach pro-
poses Model-Based Testing as a service for compliance testing of IoT systems,
were the cloud is one element of it.

Testing service can be provided to cloud consumers as well as cloud providers
generally called Testing as a Service (TaaS)[?]. Previous work on testing as a

15

service, to the best of our knowledge, specifically relates to web services and cloud
computing. Zech et al. in [?] propose a model-based approach using risk analysis
to generate test cases to ensure the security of a Cloud computing environment
when outsourcing IT langscapes. More recently Zech et al.[?] proposed a model-
based approach to evaluate the security of the cloud environment by means
of negative testing based on the Telling Test Stories Framework. Model-Based
Testing provides the benefit of being implementation independent. In this paper,
we propose MBT as service to the Internet of Things, making thus the test cases
available for any platform implementation of the specification. Contrary to the
existing works, our approach proposes an abstraction on model construction, it is
configuration over development. Our model-based test generation does not take
into account risk analysis elements neither security requirements, which can be
one possible extension of this module of our Model-Based Testing as a Service
approach.

6 Conclusion and future works

This paper presented a successful application of an MBT approach with a service
oriented solution. We believe that this approach can be generally applied on a
wide range of specifications defining APIs for FIWARE. Within the FIWARE
context, the created MBT model, NGSI compliant, can be reused for testing
any range of enablers respecting that specification. New developments focus on
the test configuration layer which is made in the front-end service, in order to
make the tests compatible with the System Under Test. The modularity, will
be explored to be used in integration testing between IoT platform applications
(Fig. ??). Furthermore, one of our concerns was to provide the IoT platform
tests to the community in the easiest way possible, including the possibility to
choose the version of standard compliance only by model selection. This is done
with the service oriented approach, providing to all involved stakeholders (not
only testers) the capacity to test their generic enabler installation remotely from
an online webpage in a Plug and Test approach. IoT platforms can be used by
third party entities (data consumers/providers) that connect to the platform to
verify their compliance to the platform’s standard. The next step of the research
work is to explore to what extent the models of an IoT platform can be used to
test those third party applications in order to validate their behaviour on the
platform.

Acknowledgments This research was supported by the projects FP7 FICORE
& H2020 ARMOUR.

References

1. FIWARE test repository and requirements matrix. http://fiware.eglobalmark
.com/html/, [Online; accessed 29-april-2016]

2. Open Mobile Alliance. http://technical.openmobilealliance.org/Technical /technical-
information/release-program/current-releases/ngsi-v1-0, [Online; accessed 18-
april-2016]

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Reinhart Richter, Xcerra Corporation, Does the Inter-
net of Things force us to rethink our test strategies?
http://xcerra.com/ep_doestheinternetofthingsforceustorethinkourteststrategies-
vision

The FIWARE Project. https://www.fiware.org/2015/03/27 /build-your-own-iot-
platform-with-fiware-enablers/, [Online; accessed 8-april-2016]

AHMAD, A.: Iot interoperability model-based testing, a fiware case study (2015),
poster at UCAAT, ETSI, Sophia-Antipolis, France

Amalfitano, D., Fasolino, A.R., Tramontana, P., De Carmine, S., Memon, A.M.:
Using GUI ripping for automated testing of android applications. In: 27th
IEEE/ACM ICSE. pp. 258-261. ASE 2012, ACM, New York, NY, USA (2012),
http://doi.acm.org/10.1145/2351676.2351717

Bernabeu, G., Jaffuel, E., Legeard, B., Peureux, F.: MBT for global platform com-
pliance testing: Experience report and lessons learned. In: 25th IEEE ISSRE Work-
shops, Naples, Italy. pp. 66-70 (2014)

Botella, J., Bouquet, F., Capuron, J., Lebeau, F., Legeard, B., Schadle, F.: Model-
based testing of cryptographic components - lessons learned from experience. In:
6th IEEE ICST, Luxembourg, Luxembourg. pp. 192-201 (2013)

Chan, W.K., Mei, L., Zhang, Z.: Modeling and testing of cloud applications. In:
Services Computing Conference, 2009. APSCC 2009. IEEE Asia-Pacific. pp. 111—
118 (Dec 2009)

Incki, K., Ari, 1., Sozer, H.: A survey of software testing in the cloud. In: 6th IEEE
International Conference SERE-C. pp. 18-23 (June 2012)

Kramer, A., Legeard, B.: Model-Based Testing Essentials - Guide to the ISTQB
Certified Model-Based Tester: Foundation Level. Wiley (May 2016)

Legeard, B., Bouzy, A.: Smartesting Certifylt - model-based testing for enterprise
IT. In: ICST’13, 6th IEEE Int. Conf. on Software Testing, Verification and Vali-
dation, Testing Tool Track. pp. 192-201. IEEE, Luxembourg (Mar 2013)

Nebut, C., Traon, Y.L., Jezequel, J.M.: Software Product Lines, chap. System
Testing of Product Lines: From Requirements to Test Cases, pp. 447-478. Springer
(2006), http://dx.doi.org/10.1007/978-3-540-33253-4_12

Riungu, L.M., Taipale, O., Smolander, K.: Research issues for software testing in
the cloud. In: 2nd IEEE International Conference CloudCom,. pp. 557-564 (Nov
2010)

Salva, S., Zafimiharisoa, S.R.: Data vulnerability detection by security testing for
android applications. In: Information Security for South Africa, 2013. pp. 1-8.
IEEE (2013)

Utting, M., Legeard, B., Bouquet, F., Fourneret, E., Peureux, F., Vernotte, A.:
Chapter 2 - recent advances in model-based testing. Advances in Computers 101,
53-120 (2016), http://dx.doi.org/10.1016/bs.adcom.2015.11.004

Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing ap-
proaches. STVR 22(5), 297-312 (2012), http://dx.doi.org/10.1002/stvr.456

Zech, P., Felderer, M., Breu, R.: Towards a model based security testing approach
of cloud computing environments. In: 6th International Conference SERE-C. pp.
47-56 (2012)

Zech, P., Kalb, P., Felderer, M., Breu, R.: Chapter 40 - threatening the cloud:
Securing services and data by continuous, model-driven negative security testing.
Transportation Systems and Engineering: Concepts, Methodologies, Tools, and
Applications 3, 789-814 (2015)

