
Serial In-network Processing for Large Stationary Wireless
Sensor Networks

Mohammed Amine Merzoug
Department of Computer Science

Faculty of Exact Sciences
University of Bejaia
06000 Bejaia, Algeria

amine.merzoug@univ-batna2.dz

Azzedine Boukerche
PARADISE Research Lab.
University of Ottawa

Ottawa, Canada
boukerch@site.uottawa.ca

Ahmed Mostefaoui∗
FEMTO-ST Institute, DISC Dept.,
Univ. of Burgundy-Franche-Comte

Belfort 90000, France
ahmed.mostefaoui@univ-fcomte.fr

ABSTRACT
In wireless sensor networks, a serial processing algorithm browses
nodes one by one and can perform different tasks such as: cre-
ating a schedule among nodes, querying or gathering data from
nodes, supplying nodes with data, etc. Apart from the fact that
serial algorithms totally avoid collisions, numerous recent works
have confirmed that these algorithms reduce communications and
considerably save energy and time in large-dense networks. Yet,
due to the path construction complexity, the proposed algorithms
are not optimal and their performances can be further enhanced.
To do so, in the present paper, we propose a new serial process-
ing algorithm that, in most of the cases, approximates the optimal
number of hops (i.e., it requires n − 1 communications to traverse
a network of n nodes). The extensive OMNeT++ simulations con-
firm the outperformance and efficiency of the proposal in terms of
scalability and energy/time consumption.

CCS CONCEPTS
•Mathematics of computing→ Paths and connectivity prob-
lems; •Networks→ In-networkprocessing; Sensor networks;

KEYWORDS
In-network data aggregation; sensor query processing; serial data
fusion; wireless sensor networks

1 INTRODUCTION
Usually in wireless sensor networks, the mission of the randomly
deployed sensor nodes is to respond as quickly and efficiently as
possible to the queries of the sink node (e.g., maximum sensed
value, alive nodes count, etc.). To meet this goal and ensure commu-
nication efficiency, numerous recent research works have proposed
a more effective alternative to the in-network structure-based ap-
proaches [5, 8, 15], namely the serial localized algorithms [3, 9, 11,
13, 14].
∗Dr. A. Mostefaoui is a visiting Professor at PARADISE Research Lab.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSWiM ’17, November 21–25, 2017, Miami, FL, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5162-1/17/11. . . $15.00
https://doi.org/10.1145/3127540.3127568

The three main features that differentiate serial algorithms from
their structure-based counterparts are:
• Compact operation: in fact, one of the main reasons behind
the bad performance of structure-based approaches is their
mode of operation. Actually, these approaches operate in
three separate phases: structure construction, query dissemi-
nation, and data processing. For example, at first, a spanning
tree must be created. Once the whole network is covered, a
query can be spread throughout the tree ordering nodes to
perform a certain processing on data. After query dissemi-
nation, data processing starts from leaf nodes and goes up
towards the root/sink. Performing these three phases sepa-
rately not only increases energy consumption but also delays
the response time. With regard to serial algorithms, energy
and time are considerably saved through the combination
of the three previous phases into one step. While the path
is being gradually laid out throughout the network, at the
same time, the query is disseminated and data is processed.
• Collision-free: in serial algorithms, the desired task is exe-
cuted sequentially by each node while the network is gradu-
ally traversed. Hence, serial algorithms are inherently collision-
free and no elaborated MAC layer is needed in these algo-
rithms. As regards tree-based approaches, the network in
this case is traversed in a parallel fashion. So, from a theo-
retical point of view, we can say that this feature would give
an advantage to tree-based approaches and enhances their
response time. In reality however, as many recent works
have shown [3, 11], the parallel traversal creates a lot of
collisions, which considerably wastes time and dissipates
energy especially in large-dense networks. In fact, even the
tree construction process is deeply affected by collisions.
• Structure-free: unlike structure-based approaches, serial al-
gorithms do not rely on any pre-established structure (no
path is built in advance). Instead, each time a query is issued,
a new path will be gradually built by each traversed node.
This characteristic makes serial algorithms more resistible to
topology changes and links/nodes failures. On the contrary,
the main concern in structure-based approaches is topology
changes because rebuilding or fixing a structure that covers
a large dense network, is a very time and energy-consuming
task.

1.1 Motivation
The major challenge faced when designing a serial algorithm is en-
suring the traversal of the entire network while reducing time and

https://doi.org/10.1145/3127540.3127568

energy consumption. Recently, several localized serial algorithms
have been proposed in the literature [3, 11, 13]. Despite their inter-
esting features and outperformance compared to structure-based
approaches, these serial algorithms require an extra overhead to
construct the path. So, our primary objective is to develop a scal-
able serial algorithm that shortens the traversal path and reduces
communications to the maximum extent possible. We aim the op-
timal number of communications (i.e., n − 1 packets to traverse a
network of n nodes). No extra overhead or control packets must be
required. Second, the proposed algorithm has to be able to traverse
any connected network and ensure the visit of all nodes regardless
of the topology (hole topology, regular or irregular topology, sparse
or large-scale topology, etc.).

1.2 Contribution
We present in this paper a new serial processing algorithm, called
GSS (for Geometric Serial Search). In this algorithm, no control
packets are required, in fact, just one data packet that can be issued
by any node, moves from node to node and traverses the entire net-
work. As confirmed by the obtained OMNeT++ simulation results,
in most of the cases, GSS approximates the optimal traversal path,
which means that GSS scales well in large networks and signifi-
cantly saves energy and time. For example, for a network of 500
nodes, GSS requires approximately 510 packets to visit each and
every node. As the present paper shows, we have also compared
GSS with other existing approaches. The obtained results confirm
the efficiency and superiority of our proposal.

The remainder of this paper is organized as follows. In the next
section, we specify the problem. Section 3 details the proposed
solution. Section 4 presents and discusses the simulation results.
Finally, the paper is concluded by Section 5.

2 PROBLEM SPECIFICATION
We consider a finite set of n stationary wireless sensor nodes, and
we make the following assumptions. We suppose that the network
is connected. Further, we assume that all nodes are aware of their lo-
cations through GPS or any other localization technique [4]. Finally,
each node is aware of its one-hop neighbors and their correspond-
ing locations.

Our objective is to start from any node and be able to traverse
the entire network using one single packet. This latter must jump
sequentially from node to node and browse the network while
reducing communications to the extent possible. That is, mini-
mizing or avoiding the visit of any node more than once. Also,
in order to reduce communications, the next hop of the packet
must be determined locally by each traversed node using only its
local pre-collected one-hop neighbors table (no extra communica-
tions or collaboration between nodes should be required). In simple
words, the problem that we are trying to solve can be boiled down
to a distributed graph traversal. We recall that perfectly, a network
with n connected nodes, should be traversed using exactly n − 1
communications. Thus, theoretically, the path must cross every
node precisely once. But, realistically, not every graph or network
contains such optimal Hamiltonian path [14], and even if it does,
determining that path constitutes an NP-complete problem [6].

3 PROPOSED SOLUTION
This section describes the proposed algorithm and details its behav-
ior through illustrative examples.

3.1 Traversal tool
The whole operation of our proposal is based on a geometric form
called rolling-ball (or rolling-disc) [10]. To summarize, a rolling-ball
is a virtual circle that is hinged at a node and must be empty of
any other node. Figure 1 shows a rolling-ball hinged at node N1
with c1 ∈ IR2 as its center and r/2 as its radius (where r is the
communication range of nodes [2]).

Figure 1: Rolling-ball.

Originally the rolling-ball has been used as a solution for the
void problem encountered in geographic routing [10]. For instance,
as demonstrated in Figure 1, in order to reach the destination Nd ,
node N1 which is a local minimum creates a rolling-ball and spins
it counterclockwise. The first touched neighbor, i.e., node N2, in
its turn, spins the received rolling-ball and determines the next
hop. The process is repeated at each visited node until the greedy
routing is resumed or until the whole boundary is traversed.

In this paper we make use of the rolling-ball as a network traver-
sal tool. The reason behind this option resides in the fact that the
rolling-ball is localized and other than the one-hop neighbors table
of its owner, it does not require any other information to move to
the next node. The second reason behind this choice is to guarantee
the visit of all nodes in the network.

3.2 Initialization of the algorithm
In our algorithm, the node that launches the serial processing, which
we refer to as the trigger node, can be any node in the network.
Saying that the trigger node can be anywhere and knowing that
the rolling-ball must be all the time empty of nodes, signifies that
two cases are possible: the trigger node can be external or internal.
The definition of external and internal nodes is given as follows:

Definition 3.1. External and internal Node
Given a set of wireless nodes with a communication range r , a node
Ni is said to be external (resp. internal), iff at least one rolling-ball
(resp. no rolling-ball) with radius r/2 can be hinged at this node.

Definition 3.1 simply means that an internal node cannot hold a
rolling-ball while an external one can. Therefore, as Algorithm 1
shows, an external trigger node is considered as the starting point
of the traversal, whereas an internal one is not. Actually, in the case
of an internal trigger node, a starting point must be determined.
In order to efficiently find a starting point (i.e., a random external
node in the network), several techniques can be utilized. The goal is
to find an external node as quickly as possible, because minimizing
communications reduces the overall required time and energy.

Algorithm 1 Initialization

1: if (current_node.isExternal()) then
2: call Algorithm 2;
3: else
4: // current_node is internal
5: Calculate boundary_point coordinates;
6: Find nearest neighbor to boundary_point;
7: Send init_packet to this neighbor;
8: Upon receiving init_packet: current_node calls

Algorithm 1;
9: end if

Figure 2: Boundary point determination by internal trigger
node.

The technique used to find an external node may differ accord-
ing to the considered scenario. To illustrate this, let us assume that
the field in which nodes are deployed is a rectangle. And let us
assume that this rectangle is defined by two points: left-down and
right-top corners. In this situation, the best way to find an external
node is to aim the external boundary of the network. To do so, as
Figure 2 shows, the internal trigger node calculates its perpendicu-
lar projection on each side of the rectangle. Once calculated, the
internal trigger node picks the closest perpendicular projection and
determines the nearest neighbor to this point. Finally, as shown in
Algorithm 1, an initialization packet has to be sent to this neighbor.
Upon receiving the initialization packet, the destination node re-
sumes the execution of Algorithm 1 (i.e., it checks if it is external
or internal, and acts accordingly).

Note that the initialization packet does not have always to go all
the way to the external boundary of the network. For example, if a
hole is encountered halfway (i.e., an external node has been found),
this condition is sufficient to stop the execution of Algorithm 1.

3.3 Algorithm’s key idea
The idea of our traversal algorithm is to launch a rolling-ball (pro-
cessing packet) and let it visit the network node by node (Figure 3).
In order for this technique to work, initially, all nodes must be
unmarked and each time a node is traversed, it has to be marked. In
addition to that, in order to correctly determine the next hop, each
node must keep track of its unmarked neighbors. In fact, thanks
to the broadcast communication model used in wireless networks,
this process does not require any additional communications or
overhead other than the processing packet. Because, when a node
forwards the processing packet to the next hop, all its neighbors
can receive it and hence can update their neighbors table (locally
mark the source of the received packet).

Figure 3: Traversal process using the rolling-ball.

3.4 Connectivity issue
The main issue faced by our distributed algorithm is ensuring the
connectivity of the unmarked nodes while saving energy and time.
In general, the problem arises in the case where a node that is
essential for the unmarked nodes connectivity, marks itself. For
example, as Figure 4 shows, if node N6 and the subsequent nodes
in the path mark themselves, data processing will end at node
N15, while nodes N16, N17 and N18 have not been visited yet. We
underline that processing termination is detected at a node when
the neighbors of this latter have all been marked.

To solve the connectivity problem, we have introduced two new
states for nodes. Thus, each node will have four possible states:
unmarked, potential-cut, actual-cut, and marked. The unmarked,
potential-cut, and actual-cut nodes are considered as alive, while
the marked ones are seen as dead (they do not participate in the
traversal process).

To keep things clear, we are going to start by introducing the
concept of actual-cut nodes. As we go along, we will explain why
the concept of potential-cut nodes has been introduced.

Definition 3.2. Actual-cut node
An actual-cut node in a connected network is a node whose removal
(marking) disconnects the set of alive nodes into two or more sub-sets.

Figure 4: Connectivity issue

The goal behind determining the actual-cuts is to avoid network
partitioning and hence ensuring the traversal of all nodes. For
example, in Figure 4, node N6 and the subsequent nodes in the path
(except node N15) are all actual-cuts and must remain involved in
the traversal process. Once an actual-cut is no longer needed (to
ensure the connectivity), it passes to the marked state.

In fact, having a network topology overview, it is easy to cor-
rectly determine the actual-cuts. For example, as Figure 5 shows,
having an overview, it is easy to say that node N11 is an actual-cut
while N0 is not. As a matter of fact, being able to correctly deter-
mine the actual-cuts, the steps described above are sufficient to
traverse any connected network while considerably saving both
time and energy. Nevertheless, the assumption of having a network
topology overview, holds only in two cases: (1) the algorithm is
executed by nodes that have each a global knowledge about the
network topology or (2) the algorithm is executed in a centralized
fashion by one entity possessing a global knowledge. Despite their
advantages or disadvantages, these two cases are out of scope of
this paper. In the remainder, we treat only the distributed version of
the algorithm in which each node must rely only on its immediate
one-hop neighbors. For instance, as shown in Figure 5, all that node
N0 and node N11 are aware of, is that they have two neighbors that
cannot communicate with each other without their help. That is to
say, both nodes see the same thing.

With that being said, we conclude that a node cannot locally
determine if it is an actual-cut. In other words, Definition 3.2 cannot
be fulfilled locally and necessitates communications and collabora-
tion between nodes. A first intuitive solution for determining the
actual-cuts consists of using probing (or control) packets. Before
explaining this solution, let us first define what is a potential-cut.

Definition 3.3. Potential-cut node
A potential-cut node in a connected network is a node whose removal
(marking) disconnects the set of its one-hop alive neighbors into two
or more sub-sets.

For example, in Figure 5, nodes N0 and N11 are potential-cuts
while node N6 is not (i.e., it can be marked). We underline that
unlike the actual-cuts case, a node can locally (i.e., using its one-
hop neighbors table) determine if it is a potential-cut. Note also

Figure 5: Concept of actual and potential-cuts

that an actual-cut is necessarily a potential-cut but the opposite is
not true.

For a potential-cut to determine if it is an actual-cut, this node
can issue a rolling-ball probing packet that due to its nature will
make a tour and come back to it. When the probing packet gets back
to its sender, this latter based on which side the packet has come
back from, can properly decide if it is an actual-cut. As a simple
illustrative example, let us consider Figure 5. In order for node N0
and node N11 to decide if they are actual-cuts, these two nodes
send a probing packet and wait to receive it back. Once this is done,
N11 concludes that it is an actual-cut because the probing packet
got back from the same side (there is no other path connecting
its neighbors). Whereas, N0 concludes that there is another path
connecting its neighbors and hence it can mark itself and pass the
processing packet to the next hop.

Without entering into details, we can say that from one side, the
solution of probing packets solves the connectivity problem but
from the other side, it violates the localized design of our distributed
algorithm and forces it to spend an extra overhead (i.e., extra time
and energy). We recall that our objective is to propose a distributed
algorithm that excludes any use of control packets and relies only
on the processing packet and the local one-hop neighbors table of
each node.

The solution that we propose to determine the actual-cuts makes
use of the processing packet itself. This latter besides its ordinary
role, plays the role of a probing packet, which considerably reduces
communications and saves both energy and time. The solution
can be explained briefly as follows. If a node detects (locally) that
it is a potential-cut then instead of issuing a probing packet, this
node changes its status to potential-cut and forwards the processing
packet. Given its nature, the processing packet will certainly get
back to its sender. Once revisted, the node decides whether (1) it
becomes actual-cut, (2) remains as a potential-cut, or (3) marks
itself (no longer needed for the traversal). Our serial processing
technique is summarized in Algorithm 2, which can be divided into
three big steps:

(1) Processing packet received for thefirst time: (statements
3 to 9). When a node receives the processing packet for the

Algorithm 2 Serial data processing

1: The starting point (which must be an external node):
change its state to potential-cut or marked;
forwardProcessingPacket();

2: Upon receiving the processing packet, the destination node
executes the following steps:

3: if (current_node.state == unmarked) then
4: // Processing packet received for the first time.
5: process_data();
6: change_state(); // to potential-cut, actual-cut or marked.
7: forwardProcessingPacket();
8: return;
9: end if
10:
11: // Processing packet has already been received.
12: if (not current_node.isPotentialCut()) then
13: // current_node is no longer a potential-cut
14: current_node.state = marked;
15: forwardProcessingPacket();
16: else
17: if (current_node.state == actual_cut) then
18: call Algorithm 4;
19: else
20: // current_node.state == potential_cut
21: call Algorithm 3;
22: end if
23: end if

first time, it executes the required task (query), changes its
state to potential-cut, actual-cut or marked, and finally for-
wards the processing packet to the next hop. We mention
that a node can become actual-cut if it is potential-cut just to
ensure the connectivity of other actual-cuts. In other terms,
a potential-cut can become actual-cut, if without considering
its actual-cut neighbors, it is not a potential-cut.

(2) Processing packet has already been received and node
is no longer a potential-cut: (statements 12 to 15). Being
no longer a potential-cut means also that the node cannot be
either an actual-cut. In such a case, the current node marks
itself and forwards the processing packet to the next hop.
We underline that isPotentialCut() method applies Defi-
nition 3.3.

(3) Processing packet has already been received and node
is still potential-cut: (statements 16 to 23). Being a potential-
cut according to isPotentialCut()method, means that the
current node can be also an actual-cut. In this situation, the
node refers to its local stored state and executes the corre-
sponding code. The steps executed by potential-cuts and the
ones executed by actual-cuts are described respectively in
Algorithm 3 and Algorithm 4.

As mentioned earlier, when a potential-cut receives the process-
ing packet back, it can decide to whether become actual-cut, remain
potential-cut or mark itself. In fact, a potential-cut determines its

Algorithm 3 Code executed by potential-cuts

1: if (current_node.canBecomeActualCut()) then
2: current_node.state = actual_cut;
3: forwardProcessingPacket();
4: return;
5: end if
6: switch (previous_hop.state){
7: case marked: {
8: if (processing_pkt came back from the same set
9: and this set still contain alive nodes) {
10: current_node.state = actual_cut;
11: }
12: break;
13: }
14: case potential_cut: {
15: if (processing_pkt came back from the same set) {
16: current_node.state = actual_cut;
17: }
18: else {
19: Cut link with previous_hop;
20: Change state to marked or potential-cut;
21: sendCycleBreakPacket(previous_hop);
22: return;
23: }
24: }
25: }
26: forwardProcessingPacket();

next state according to two factors: the state of its immediate neigh-
bors, and the side (set) from which the processing packet has come
back. The code executed by a potential-cut (Algorithm 3) can be
divided into three main steps:

(1) Current node can become actual-cut: (statements 1 to 5).
As mentioned earlier, a node can become actual-cut if it is
potential-cut only to ensure the connectivity of other actual-
cuts. In other words, a potential-cut can become actual-cut,
if without considering its actual-cut neighbors, it is not a
potential-cut.
If the potential-cut can become actual-cut, it changes its state
accordingly, forwards the processing packet, and stops the
execution of Algorithm 3. In the opposite case (i.e., node is
not an actual-cut), the execution of Algorithm 3 continues
according to the previous-hop state (i.e., marked or potential-
cut).

(2) Current node cannot become actual-cut and previous-
hop is a marked node: (statements 7 to 13). To determine
its state, besides the state of the previous-hop, in this case,
the current node relies also on which set the processing
packet has come back from. If the processing packet came
back from the same set it was sent to, and this set still con-
tain alive neighbors, then the current node is ensuring the
connectivity of this set. So, it changes its state to actual-cut
(statement 10) and forwards the processing packet (state-
ment 26). The opposite case means that, (1) the processing

packet came back from the same set, but this set does not
contain any alive neighbors, or (2) processing packet came
back from a different set. In both cases, the current node re-
mains as a potential-cut and forwards the processing packet
to the next hop (statement 26).

(3) Current node cannot become actual-cut and previous-
hop is a potential-cut: (statements 14 to 24). Here also, to
determine its state, besides the state of the previous-hop, the
current node relies also on which set the processing packet
has come back from. Actually, if the processing packet came
back from the same set (to which it was sent), then there is no
need to check if this set still contain alive neighbors because
the previous-hop is alive. In such a case, the current node
changes its state to actual-cut (statement 16) and forwards
the processing packet (statement 26). The opposite case (i.e.,
the processing packet came back from a different set) means
that there is a cycle that must be broken.
To well illustrate the cycle break process, let us consider the
example depicted in Figure 6(a). In this example, node N0
which is the trigger node changes its state to potential-cut
and forwards the processing packet. This latter makes a tour
and comes back to N0 from N7 which is also a potential-cut.
In this case, to break the cycle, as Figure 6(b) shows, node
N0 executes the following steps:
• It cuts its link with node N7
• After cutting the link with the previous-hop, N0 cannot
be marked, so it remains as a potential-cut.
• The last step consists of sending a cycle break packet to
the previous-hop. This packet, as Figure 6(b) shows, orders
the previous-hop and other nodes to cut the proper links.

Once the cycle has been broken, the previous-hop, i.e., node
N7 continues the traversal by forwarding the processing
packet.

Figure 6: Example of cycle break.

In the previous paragraphs, we have treated the cases where the
previous-hop can be marked or potential-cut, but we did not talk
about the case of a previous actual-cut. We mention that even if
the previous-hop is an actual-cut then this does not mean that the
current node can become actual-cut. In fact, if the previous-hop is

an actual-cut and the current node cannot become actual-cut, the
execution of Algorithm 3 will jump to statement 26 (i.e., current
node remains potential-cut and forwards the processing packet).

The fact that a node is an actual-cut does not mean that it will
remain in this state. Similarly as a potential-cut, when an actual-cut
receives the processing packet back, it decides to whether remain
actual-cut, become again a potential-cut or mark itself. The next
state of an actual-cut is determined by the state of its immediate
neighbors and the set from which the processing packet has come
back. The steps followed by an actual-cut when it receives back the
processing packet, are summarized in Algorithm 4.

Algorithm 4 Code executed by actual-cuts

1: switch (previous_hop.state){
2: case marked: {
3: if (set for which current_node is actual-cut
4: contains no alive nodes) {
5: current_node.state = potential_cut;
6: }
7: break;
8: }
9:
10: case potential_cut: {
11: if (processing_packet came back from a different
12: set than the one it was sent to) {
13: Cut link with previous_hop;
14: Change state to marked or potential-cut;
15: sendCycleBreakPacket(previous_hop);
16: return;
17: }
18: }
19:
20: case actual_cut: {
21: if (processing_packet came back from a different
22: set than the one it was sent to) {
23: current_node.state = potential_cut;
24: }
25: break;
26: }
27: }
28:
29: forwardProcessingPacket();

4 SOLUTION EVALUATION
Given the fact that numerous research works have already shown
the superiority of serial algorithms over structure-based ones [3, 11],
in this paper, we consider only serial algorithms. More exactly, we
chose to compare our solution with three other serial algorithms,
namely: the Peeling Algorithm (PA) [11], the Greedy and Bound-
ary Traversal algorithm (GBT) [3], and the well-known depth-first
search algorithm (DFS).

In summary, the Peeling Algorithm uses a curved-stick [12] as a
network traversal tool and must start from the external boundary
of the network. The term peeling came from the fact that each
time, the visited node is removed from the external boundary. As

Table 1: Simulation parameters

Parameter Value(s)

Number of nodes 100, 150, 200, . . . , 500
Deployment field 1000 x 1000 m2

Nodes deployment Uniform
Location of the trigger node Random
Transmission range of nodes 150 m
Processing packet size 50 Bytes

regards GBT, this algorithm operates in two alternative distinct
modes: greedy forwarding and boundary traversal. At first, the
path is extented towards the unvisited nodes as long as possible,
and when there is no more left unvisited neighbors, the boundary
traversal will be launched. During boundary traversal, if a non-
visited node is encountered, the greedy mode will be resumed. This
way, GBT switches between the two modes until visiting all nodes.
DFS extends the path as far as possible towards the unmarked
nodes, and when it gets stuck at some node (all neighbors have
been marked), it goes back to the parent of that node and so forth.

4.1 Evaluation metrics and simulation settings
To evaluate the performance of all four algorithms, we have opted
for OMNeT++ along with Castalia [1]. The first considered evalua-
tion metric is the total number of packets required to process data.
In fact, given the serial nature of the evaluated algorithms, this met-
ric is the most important because it affects the two other metrics,
which are the time and energy necessary for data processing.

By processing time, we mean the time elapsed between the in-
stant when the trigger node launches data processing and the mo-
ment when it receives the processed data. In the chosen simulation
scenario, while being traversed one by one, nodes have been queried
to compute the average sensed value in the network.

As regards processing energy, this metric represents the total
energy dissipated by all nodes to process data. The energy con-
sumed by the radio of each node has been estimated using the
model proposed by Heinzelman [7]. In this well-known energy
consumption model, in order to send a k-bit packet a distance d ,
the radio consumes ETX (k,d) = Eelec ∗ k + ϵamp ∗ k ∗ d2, and it
consumes ERX (k) = Eelec ∗ k to receive this packet. Where:
• Eelec = 50 nJ/bit: energy for running the transmitter/receiver
circuitry.
• ϵamp = 100 pJ/bit/m2: energy for running the transmitter
amplifier.

The parameters used in the simulations are summarized in Ta-
ble 1.

4.2 Evaluation results
The number of packets spent by GSS (proposed algorithm), PA (Peel-
ing Algorithm) [11], GBT (Greedy and Boundary Traversal) [3] and
DFS (Depth-First Search) to process data are shown in Figure 7.
This figure shows also the number of packets that an optimal al-
gorithm (if it existed) would have spent. As a matter of fact, the
number of packets used by both, the optimal theoretical algorithm

and DFS, have been depicted to serve as a reference to measure the
effectiveness of the evaluated serial algorithms in terms of commu-
nications. We recall that an optimal algorithm traverses a network
of n connected nodes using n − 1 packets, whereas DFS, due to its
backtracking behavior, requires 2 ∗ (n − 1) packets.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

100 150 200 250 300 350 400 450 500
N

u
m

b
e
r

o
f
s
e
n
t
p
a
c
k
e
ts

Number of nodes

DFS
GBT
GSS

PA
Opt.

Figure 7: Required communications (sent data and control
packets).

As Figure 7 demonstrates, our proposal is clearly superior. Actu-
ally, GSS outperforms all the other algorithms and spends a number
of packets that is very close to the optimal algorithm’s number. We
can say that the denser the network, the better the performance
of GSS will be. In low density networks, GSS is slightly different
than the optimal algorithm because in such networks, cycles have
a high occurrence probability. In such scenarios, due to the limited
knowledge of nodes, the processing packet has to make a tour in
order to be able to detect the existence of a cycle. In spite of that,
the performance of GSS is not drastically affected as it is the case
for PA and GBT. In fact, as demonstrated in Figure 7, in sparse
networks, even DFS outperforms PA and GBT.

The good performance of GSS comes from the idea used to solve
the connectivity issue and overcome the limited knowledge of nodes.
This solution attributes a twofold role to the processing packet: at
the same time it serves as a network traversal tool and as a probing
packet.

The time and energy consumed by the four algorithms to process
data are depicted respectively in Figure 8 and Figure 9. Given its
sequential behavior, the more a serial algorithm requires packets,
the longer it will take to finish and the more energy it will consume.
As Figure 8 and Figure 9 show, since GSS requires less communica-
tions, it outperforms the other algorithms it in terms of processing
time and energy.

5 CONCLUSION AND FUTUREWORK
Lately, serial in-network processing has proven its efficiency in
large-dense networks. However, due to the complexity of path
building process, the proposed solutions are not optimal and require
an extra overhead. To overcome this drawback, we have proposed
in this paper a new scalable serial processing algorithm that reduces

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

100 150 200 250 300 350 400 450 500

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of nodes

DFS
GBT
GSS

PA

Figure 8: Processing time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

100 150 200 250 300 350 400 450 500

P
ro

c
e
s
s
in

g
 e

n
e
rg

y
 (

J
o
u
le

s
)

Number of nodes

DFS
GBT
GSS

PA

Figure 9: Processing energy.

further the processing time and energy. The extensive simulations
have demonstrated that the proposed solution approximates the
optimal number of hops. The obtained results have confirmed also
that the proposed algorithm traverses all nodes in the network and
does not loop.

As a future work, we plan to formally prove the correction of
the proposed algorithm. More specifically, prove that (1) it is free
of looping, and (2) it visits all connected nodes. First, in order to
prove that GSS terminates and does not loop indefinitely, we base
on the fact that all cycles (which can be generated due to the use
of potential and actual-cuts) are detected and properly removed.
Second, in order to prove that GSS visits all nodes, we base on the
fact that the network is initially connected and its connectivity is
maintained throughout the traversal.

REFERENCES
[1] OMNeT++ : Simulation Environment. http://www.omnetpp.org/. (????).
[2] Azzedine Boukerche, Xin Fei, and Regina B Araujo. 2007. An optimal coverage-

preserving scheme for wireless sensor networks based on local information

exchange. Computer Communications 30, 14 (2007), 2708–2720.
[3] A Boukerche, A Mostefaoui, and M Melkemi. 2016. Efficient and robust serial

query processing approach for large-scale wireless sensor networks. Ad Hoc
Networks 47 (2016), 82–98.

[4] Azzedine Boukerche, Horacio Oliveira, Eduardo F. Nakamura, and Antonio A. F.
Loureiro. 2007. Localization systems for wireless sensor networks. IEEE Wireless
Communications 14, 6 (2007), 6–12.

[5] Elena Fasolo, Michele Rossi, Jorg Widmer, and Michele Zorzi. 2007. In-network
aggregation techniques for wireless sensor networks: a survey. IEEE Wireless
Communications 14, 2 (2007).

[6] Michael R. Garey and David S. Johnson. 1983. Computers and Intractability: A
Guide to the Theory of NP-completeness. W. H. Freeman, New York.

[7] Wendi B. Heinzelman, Anantha P. Chandrakasan, and Hari Balakrishnan. 2002.
An application-specific protocol architecture for wireless microsensor networks.
IEEE Transactions on Wireless Communications 1, 4 (2002), 660–670.

[8] Mo Li, Yajun Wang, and Yu Wang. 2011. Complexity of data collection, aggre-
gation, and selection for wireless sensor networks. IEEE Trans. Comput. 60, 3
(2011), 386–399.

[9] Stephanie Lindsey and Cauligi S Raghavendra. 2002. PEGASIS: Power-efficient
gathering in sensor information systems. In Aerospace conference proceedings,
2002. IEEE, Vol. 3. IEEE, 3–3.

[10] Wen-Jiunn Liu and Kai-Ten Feng. 2009. Greedy routing with anti-void traversal
for wireless sensor networks. IEEE Transactions on Mobile Computing 8, 7 (2009),
910–922.

[11] Ahmed Mostefaoui, Azzedine Boukerche, Mohammed Amine Merzoug, and
Mahmoud Melkemi. 2015. A scalable approach for serial data fusion in Wireless
Sensor Networks. Computer Networks 79 (2015), 103–119.

[12] Ahmed Mostefaoui, Mahmoud Melkemi, and Azzedine Boukerche. 2012. Routing
through holes in wireless sensor networks. In Proceedings of the 15th ACM inter-
national conference on Modeling, analysis and simulation of wireless and mobile
systems. ACM, 395–402.

[13] Swapnil Patil, Samir R Das, and Asis Nasipuri. 2004. Serial data fusion using space-
filling curves in wireless sensor networks. In Sensor and Ad Hoc Communications
and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE Communications
Society Conference on. IEEE, 182–190.

[14] Michael G. Rabbat and Robert D. Nowak. 2005. Quantized incremental algorithms
for distributed optimization. IEEE Journal on Selected Areas in Communications
23, 4 (2005), 798–808.

[15] Ramesh Rajagopalan and Pramod K. Varshney. 2006. Data Aggregation Tech-
niques in Sensor Networks: A Survey. IEEE Comm. Surveys & Tutorials 8 (2006),
48–63.

http://www.omnetpp.org/

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Problem specification
	3 Proposed solution
	3.1 Traversal tool
	3.2 Initialization of the algorithm
	3.3 Algorithm's key idea
	3.4 Connectivity issue

	4 Solution evaluation
	4.1 Evaluation metrics and simulation settings
	4.2 Evaluation results

	5 conclusion and future work
	References

