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Abstract applications for security will be done to further investi-
gate and learn more about the Cls framework.

Design and cryptanalysis of chaotic encryption schemesThe remainder of this research work is organized as

are major concerns to provide secured information syetlows. The basic recalls of Cls are given in Secfion 2,

tems. Pursuing our previous research works, somaile results of Devaney’s chaos are provided in Sec-

well-defined discrete chaotic iterations that satisfy thien[3. Section§l4.15, arid 6 show applications to pseu-

reputed Devaney’s definition of chaos have been prerandom number generation, hash functions, and sym-

posed. In this article, we summarize these contributiomgtric cryptography respectively. This article ends by a

and propose applications in the fields of pseudorasenclusion section in which the article is summarized.

dom number generation, hash functions, and symmetric

cryptography. For all these applications, the proofs of

chaotic properties are outlined. 2 Basicrecalls

) 2.1 Devaney’s theory of chaos
1 Introduction . -
In the remainder of this articl&§" denotes the™ term
Applying chaotic systems to construct cryptosysterf§ @ sequencé while X™ is the set of all sequences
has been extensively investigated since 1990s, and {f{ose elements belon%m Vi stands for the com-
field of research has attracted more and more attentRR€Nt Of @ vectoW. = f o...o f is for thek

in the near decades. Some researchers have pointed?8[POSition of a functiorf. IN is the set of natural

that there exists tight relationship between chaos aftPn-negative) numbers, whils™ stands for the posi-
.. Finally, the following notation is

randomness, thus it is a natural idea to use chaodt§ INtégers 12,3, .

enrich the design of cryptographic applications. HoWtS€d:[1;N] ={1,2,....N}. .

ever, almost all current researches of chaotic system&onsider a topological spack (r) and a continuous
consider real domain. Since all operations (iterationjnctionf : X — X on (X, 7).

are on the real numbers, Real Domain Chaotic Syste_ Sfinition 1. The function f igopologically transitive

(RDCSs) realized in a computer or a digital device wi . .
inevitably lead to finite precisionfiects, and ma re-I , for any pair of open sets W ¢ X, there exists an
y P ; y int?ger k> O such that f(U) NV # @.

sult in consequent dynamic degradation, such as shor
cycle-length, non-ideal distribution and correlationy1o pefinition 2. An element x is geriodic pointfor
linear complexity, and so on. Chaotic iterations (CIs}, of period n € N, n > 1, if fi(X) = x.

for its part, refers to chaotic systems defined on integefis regularon (X, 7) if the set of periodic points for

domain. They have been deeply studied in our previis dense inX: for any point x inX, any neighborhood
ous collaborative works, in order to solve degradation gf x contains at least one periodic point.

chaotic dynamic properties by finite precisidfeets on

traditional RDCSs. In this research work, we intend efinition 3 (Devaney’s formulation of chads|[8])The
deepen the theoretical and practical knowledge alreddpction f ischaoticon (X, 7) if f is regular and topo-
obtained on Cls. More general theoretical designs alodically transitive.
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Bankset al. have proven in[7] that, when the topofunctioni: (S"nen € [LN]N — S° € [1;N]. Then
logical space is a metric on&(d), chaos implies sen-the chaotic iterations proposed in Definitidh 5 can be
sitivity, defined below: described by the following discrete dynamical system,

. ) . whose topological chaos can now be studied:
Definition 4. The function f hasensitive dependence

on initial conditionsif there existss > 0 such that, for { XE € X ; 3)
any x € X and any neighborhood V of x, there exist X% = G(XY).

y € V and n> 0 such that df"(x), f"(y)) > 6. To do so, a relevant distance between two pokits

¢ is called theconstant of sensitivitgf f. (S,E).Y = (S,E) € X has been introduced ifnl[5] as

follows: d(X,Y) = de(E, E) + ds(S, S), where
2.2 Chaotic Iterations

N
Define bySx the set of sequences whose elements be- d(E. B) = kZ_; 6(Bw B,
longinX c IN, X # @, that is,Sx = XN, § @ sk — &K (4)
ds(S,S) = = Z .
Definition 5. The setB denoting{0, 1}, let N € IN*, N & 10¢
. N N i
f - BY — B be afunction, and S Spiny be @ i pas paen established [5] that,
sequence of integers between 1 ahd The so-called
chaotic iterationsire defined by %e BN and Proposition 1. G is continuous in the metric space
(X, d).
, Xt if S" i . '
vne IN*,Vi e [1;N], X" = (1 Fan i The chaotic property ofG; has been firstly
( (x ))sn ISt =1. established for the vectorial Boolean negation

(D) fo(xq,.... %) = (X5,....%n) [B]. To obtain a charac-

terization, we have secondly introduced the notion of

asynchronous iteration graph recalled thereaftér [2].
Let f be a map fromBN to itself. Theasynchronous
iteration graphassociated witlf is the directed graph

r]l"(f) defined by: the set of verticesi&V; for all x € BN
andi € [1;N], the grapH’(f) contains an arc from to
F:(i, X). We have then proven in|[2] that,

L. Theorem 1. Let f : BN — BN. Gy is chaotic (accord-
3 Chaos results about chaotic iter- ingto Devaney)if and only ff( f) is strongly connected.

ations Finally, we have established in/[2] that,

In other words, at the™ iteration, only theS"—th
component of the vector” is updated. Note that in a
more general formulation, ea@f can be a subset of
{1,2,...,N}. Let us remark that the term “chaotic”, i
the name of these iterations, hagpriori no link with
the mathematical theory of chaos, recalled before.

eorem 2. Let f: B" — B", I'(f) its iteration graph,

We now recall how to define a suitable metric spa%itS adiacency matrix and M axn matrix defined b
where chaotic iterations are continuous. For further ex- ) J y y

~ T . n ~ .
planations, sees.g, [5]. Let § be thediscrete Boolean Mij = ;M;j ifi # jand M = 1—% 2. Mjj otherwise.

. _ _ : : . j=L j#i
metriq 6(_X’ y)=0ex= y.Nleen %functlonf, define If I'(f) is strongly connected, then the output of the
the functionF : [1;N] x BY — B" by:

chaotic iterations follows a law that tends to the uni-
form distribution if and only if M is a double stochastic

(k, E) > (Ejé(k» J) + f(E)ké(k’ j))jeﬂl;N]] matrix.

where+ and . are the Boolean addition and product These results of topological chaos and uniform dis-
operations. Consider the phase spates [1;N]N x tribution have led us to study the possibility of build-

BN, and the map defined oY by: ing a pseudorandom number generator (PRNG) based
on chaotic iterations. A&;¢, defined on the domain
Gt (S,E) = (o-(s), F(i(S), E)), 2) [L;N]™xBN, is built from Boolean networks : BN —

BN, we can preserve the theoretical propertiesan
whereo is theshift function defined byr : (S")new € during implementations (due to the discrete nature of
[LN]N — (S™Ynew € [1,N]N andi is theinitial ~ f).



4 Application to pseudorandom between verticesx and y if and only if y =

number generation Fra( (@ .ap)).

We have finally proven that
LetN € IN*, f : BN — BN, and® c IN* a non empty

and finite set of integers. Any couple,{) € S;iny X Theorem 3. The pseudorandom number generator
Sp defines a “chaotic iterations based” PRNG, which [§IPRNGZf is chaotic onXy if and only if its graph
denoted b;CIPRNGZf(u, v) [11]. Itis defined as follows: G+ is strongly connected.

e 5 Application to hash functions
¥ne IN,Vi e [1,N], Xin+1 _ { f-rgxn)i glsle: u" pp
vne N,y = x". s For the interest to add chaos properties to an hash func-

(5) tion, among other things regarding theiffdsion and

The outputted sequence produced by this generatoF‘i)é‘fUSiO”' reader.is referred ?:o [1]. Recall thatz among
Ve other cryptographical properties, an hash function must

The formerly proposeleRNC%(u) [3,6] is equal to be resistant to collisions: an adversary should not be

CIPRNG (U, (1)neny), Where(1) oy is the sequence thatEbrLe tf :nn(i twg d'tf]tht messag::}mz;n;jmt_such thattb
is uniformly equal to 1. It has been proven as chaoti((, ) = h( .)' urinermore, an has unc.|0n must be
for the vectorial Boolean negatiofy : BN —> BN second-preimage resistant, that is to say: an adversary

— . iven a messagm should not be able to find another
(X1,...,Xn) — (Xg,...,Xy) in [3] and for a larger set 9 N
of well-chosen iteration functions inl[2] but, as 0nI3Fn (Ia_ssiagaa: ajcir\]/tham ;ttrﬂ andth(m) _S(Tr’])' t b
one bit is modified at each iteration, this generator | €Lus how give a post-operative mode that can be ap-

is. . . :
not able to pass any reasonable statistical tests. ‘Fi' dto a cryptographmally_secure h‘.”‘Sh function with-
XOR CIPRNGS), for its part [4], is defined as follows: Y loosing the cryptographic properties recalled above.

X% € BN, andvn € IN, x™! = X" ® S" whereS € Sjin;  Definition 6. Let

ande stands for the bitwisexclusive oixor) operation

between the binary decomposition xifandS". This @ ki, kp,ne IN*,

is indeed aCIPRNG (u,v) generator: for any given .

S € Spny, V' is thSzrorgum)bgr of 1's in the biga?y de- h: (km < B x B — h(km) € B" a keyed
composition ofS" while u”',u"+1,...,u""-! are the hash function,
positions of these ones. TH6OR CIPRNGhas been o S:ke B — (S(') . € [1,n]™:
proven chaotic and it is able to pass all the most strin-

gent statistical batteries of tesfs [4], namely the well- — either a cryptographically secure pseudoran-
known DieHARD, NIST, and TestUO1. Furthermore, dom number generator (PRNG),

the output sequence is cryptographically secure when —or, in case of a binary input stream
S is cryptographically securé|[4]. Following the same m = mPmYyml... whereVi,jm| = n,
canvas than in the previous section, we have then char- (s(k)i)' = (mk) _

acterized whiclCIPRNG(u, v) is chaotic according to N N

Devaney. e K = BX x B% x IN called thekey space

Denote byXyp = BN X Sy», whereSy p = Spinp X o L
Sp. We then introduce a directed graghy as follows. ~ ® and f: B" — B" a bijective map.

We define the keyed hash functitlh : K x B* — B"
by the following procedure
Inputs. k= (kg, ko,n) € K

e Its vertices are theelements ofBN.

p
e Each vertex hasZ: NP arrows, namely all the

m e B*
i=1 . .
P1. P2.....Pp tuples having their elements in Runs. X = h(ky, m), or X = h(ky, ) if m is a stream
[1,N]. fori:l,...,_n:
X =G¢(S", X)
e There is an arc labelled;,...,a,, i € [1p] return X



‘Hy is thus a chaotic iteration based post-treatmemhich removes the first block of a message. igtoe
on the inputted hash functiom The strategy is pro- the j-th bit of integer, or block message € [0, 2N —
vided by a secured PRNG when the machine operaigsexpressed in the binary numeral system, and when
in a vacuum whereas it is redetermined at each iteratioounting from the left. We define:
from the input stream in case of a finite machine open

to the outside world. By doing so, we obtain anew hasfrs : BYx[0,2V-1] — BN
functionHy, with h, and this new one has a chaotic de- (x, m) — (my + FO0m).
pendence regarding the inputted stream. Furthermore, =
we have stated thet [10], This function returns the inputted binary vectsr

Theorem 4. If h satisfies the collision resistance prop/hosem;-th components,, have been replaced by

erty, then it is the case too fdi,. And if h satisfies the f(X)m;, forall j = 1..N such thaim; = 1. So the CBC

second-preimage resistance property, then it is the c48@de Of operation can be rewritten as the following dy-
namical system:

too for H,.

Finally, asH, simply operates chaotic iterations with X0=  (IV,m)
strategyS provided at each iterate by the media, we { XN+l — (8k o Fy, (i(xg),xg),a(xg)) (6)
have [10]:

Theorem 5. In case where the strateg¥is the bitwise WherelV is the input vectonmthe message to encrypt,

XOR between a secured PRNG and the input stregidEx the key.ed syanetric cprherthch has been se-
the resulted hash functioh, is chaotic. lected. Forg : [0,2" - 1] x BY — BY, we denote
Gy(X) = (9(i(X1), X2); o(X1)). So the reccurent rela-

) ) ) tion of Eq.[®) can be rewritten in a condensed way, as
6 Application to symmetric cryp- follows.
tography XM = Geor, (X7). @
Let us now present our last discoveries in the field Using all this material, we have proven that:
of chaotic iteration based security. We have re_cgn%eorem 6. Let g = & o Fy,, Wheresy is a given
proven that the well-known Cipher Block Chamlng(eyed block cipher andy f BN — BN, (x4, ..., Xx) —>

(CBC) mode of operation, invented by IBM in 1976(x_,...,x_N) is the Boolean vectorial negation. We con-
can behave chaotically. The demonstration of this resyil er the directed graplyy, where:

is outlined thereafter, while details regarding the CBC
mode of operation can be found in Patént [9]. e vertices are all the-bit words.

Let us consideX = BN x Sy, where:

« N is the size for the block cipher, e there is an edge ra [0, 2N - 1] from x tox if and
only if g(m, x) = X.

e Sy = [0,2V - 1]V, the set of infinite sequences of
natural integers bounded by 2 1, or the set of So ifGy is strongly connected, theny@ strongly tran-
infinite N-bits block messages, sitive, and so the CBC mode of operation is chaotic.

in such away thaX is constituted by couples of internal
states of the mode of operation together with sequenegs :
of block messages. Let us consider the initial functioj Conclusion

i SN — 0,2V -1] In this article, the research works we have previously

(Mien  +— m° done in the field of chaotic iterations are summarized

) o and clarified. Applications for pseudorandom number

that rgturns the first block of a (infinite) message, a’@%neration, hash function, and symmetric cryptography

the shift function: have then been outlined. Both theoretical analysis and
— experimental results confirm the feasibility of this ap-

SN SN
(mP,mt,m?, ) — (M me, ) proach.

(o
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