
Diffusion and confusion of chaotic iteration based
hash functions

Zhuosheng Lin∗, Christophe Guyeux†, Qianxue Wang∗, and Simin Yu∗
∗ College of Automation, Guangdong University of Technology, Guangzhou, China

Email: zhuoshenglin@163.com, wangqianxue@gdut.edu.cn, siminyu@163.com
† Femto-st Institute, University of Bourgogne Franche-Comté, Besançon, France

Email: christophe.guyeux@univ-fcomte.fr

Abstract—To guarantee the integrity and security of data
transmitted through the Internet, hash functions are fundamental
tools. But recent researches have shown that security flaws exist
in the most widely used hash functions. So a new way to improve
their security performance is urgently demanded. In this article,
we propose new hash functions based on chaotic iterations, which
have chaotic properties as defined by Devaney. The corresponding
diffusion and confusion analyzes are provided and a comparative
study between the proposed hash functions is carried out, to make
their use more applicable in any security context.

Keywords—hash function, security flaws, chaotic iterations,
diffusion and confusion

I. INTRODUCTION

Hash functions, as one of the key technologies in infor-
mation security and cryptographic application domain, are
widely used in digital signatures, file integrity checking,
authentication, password protection, and so on. At the same
time, the analysis of hash functions has recently made some
breakthroughs. Xiaoyu Wang and her team presented new
collision search attacks on SHA0 and SHA1 [1]–[3]. These
research results not only shocked people, but also encouraged
researchers to construct more secure hash functions.

Chaos, with its high sensitiveness to small changes and
initial conditions and long-term unpredictable characteristics,
has become an important branch of modern nonlinear science
and applications. For instance, a lot of one-way hash functions
that are based on chaotic characteristics have been recently
proposed [4], [5]. However, through research, we found that
most of these chaotic systems are on real domain. Due to the
limited-length when realized in computer or digital devices,
this will inevitably lead to finite precision effects and result
in dynamical degradation of chaotic systems [6]. Such flaws
will make the security performance of hash function declines.

Chaotic iterations (CIs), defined on integer domains, have
been proven to achieve a real chaotic system under the defi-
nition of Devaney topological chaos [7], which solves degra-
dation of chaotic dynamic properties fundamentally. CIs have
been applied to pseudorandom number generation, information
hiding, symmetric cryptography, and so on [8], [9]. In this
article, we intend to construct a one-way keyed hash function
with CIs. Then the diffusion and confusion are analyzed.

The remainder of this article is organized as follows. The
basic recalls of CIs and hash function are given in Section
II. Our CI-based hash function is proposed and reformulated

in Section III. Section IV shows its experimental evaluation.
This research work ends by a conclusion section in which our
article is summarized and intended future work is outlined.

II. BASIC RECALLS

This section gives some recalls on topological chaotic
iterations and hash functions.

A. Chaotic iterations

Let us first define some notations that are used in the
remainder of this article. N is the set of natural (non-negative)
numbers. The domain N∗ = {1, 2, 3, . . .} is the set of positive
integers and B = {0, 1}. [[1;N ]] = {1, 2, 3, . . . , N}. A
sequence which elements belong in [[1;N ]] is called a strategy.
The set of all strategies is denoted by S . Sn denotes the nth

term of a sequence S , Xi stands for the i th components of a
vector X .

Definition 1. Let f : BN → BN be a function and S ∈ S be
a strategy. The so-called chaotic iterations are defined by:

x0 ∈ BN ,

∀n ∈ N∗,∀i ∈ [[1;N ]] , xni =

{
xn−1
i , if Sn 6= i(
f
(
xn−1

))
Sn , if Sn = i

(1)

In other words, at nth iteration, only the Sn-th component
of vector xn is updated.

For a given function f , let us define a function Ff : [[1;N ]]×
BN → BN by:

Ff (k, x) =
(
xj · δ (k, j) + (f (x))k · δ (k, j)

)
j=1,2,3,...,N

(2)
where δ (k, j) = 0 ⇔ k = j. Consider the phase space: X =
[[1;N ]]× BN , and the map defined on X by:

Gf (S,E) = (σ (S) , Ff (i (S) , E)) , (3)

where σ is the shift function that removes the fist term of
the strategy. So the chaotic iterations defined in Equ.1 can be
described by the following iterations:{

X0 ∈ X

Xk+1 = Gf (Xk)
(4)

ar
X

iv
:1

70
8.

02
79

3v
1 

 [
nl

in
.C

D
] 

 9
 A

ug
 2

01
7



For given two points X = (S,E) , Y =
(
Š, Ě

)
∈ X , we

define the distance between these two points by:

d (X,Y ) = de
(
E, Ě

)
+ ds

(
S, Š

)
,where

de
(
E, Ě

)
=

N∑
k=1

δ
(
Ek, Ěk

)
ds
(
S, Š

)
= 9

N

∞∑
k=1

‖Sk−Šk‖
10k

(5)

in which bd (X,Y )c = de
(
E, Ě

)
is the Hamming distance

between E and Ěk. So d (X,Y ) − bd (X,Y )c = ds
(
S, Š

)
measures the difference between strategies S and Š. More
precisely, this floating part is lower than 10−k if and only if
the first k terms of the two strategies are equal. Moreover, if
the kth digit is nonzero, then Sk 6= Šk.

Considering the distance between d on X , it has already
been proven that [10]:
• Gf is continuous.
• Iterations defined in Equ.4 are regular.
• Gf is topologically transitive.
• Gf has sensitive dependence on initial conditions.
Thus, according to the Devaney’s definition [7], [11], Gf is

chaotic.

B. Hash functions

Let k ∈ K be a key in a given key space K. So a function
hk () that maps a key k and a binary bit string x to a string
of a fixed length l is a Secure Keyed One-Way Hash Function
(SKOWHF) [12], if it satisfies the following properties:
• Given k and x, it is easy to compute h (k, x).
• Without knowledge of k, it is hard to compute h (k, x).
• For any x or given (possibly many) pairs x and h (k, x),

it is hard to compute k.
• For a given k, it is hard to find two values x and y such

that h (k, x) = h (k, y), but x 6= y.
• Length l has to be larger than 128 bits in order to counter

birthday attack.
• Key space K has to be sufficiently large in order to

counter exhaustive key search.

III. CI-BASED HASH FUNCTIONS

Let us now present our hash function Hh : K × B∗ → BN

which is based on chaotic iterations recalled before. The key
k = {k1, k2, prng type} is in key space K = Bk1×Bk2×N.
All the steps are described in the following paragraphs.

The first step of the algorithm is to choose the traditional
hash function h that we will use in our own hash function.
For our implementations, we have chosen MD5, SHA-256,
and SHA-512. And the selective traditional hash function
determines the length (N ) of the output hash value. For
MD5, N = 128, for SHA-256, N = 256, and for SHA-512,
N = 512.

Then for the input message x, we need to transform the it
into a multiple normalized N bits sequence. This pre-treatment
is similar to the SHA-1 case. After that, the length of the
treated sequence X is L.

In the third step, we use k2 as a seed to generate L bits pseu-
dorandom numbers m. In our implementation, the Pseudo-
Random Number Generator can be Mersenne Twister (MT),
Blum Blum Shub (B.B.S.), XORshift, or Linear Congruential
Generator (LCG). This is the prng type in key space K.
The generated pseudorandom numbers are used to construct
the strategies. As 2n = N , we split its sequence to be
m = S0S1 . . ., where the length of Si is n. Then the strategy
is S =

{
S0S1 . . .

}
, where Si is transformed to the decimal

value.
In the forth step, we first transform the input k1 to

binary value which length is N . Here we split X into
X =

{
X0X1 . . .

}
. Each Xi will be combined with k1

using exclusive-or operation. Then we combine the result with
pseudorandom numbers m using exclusive-or operation too.
After that, we use this result as the input of traditional hash
function h.

Lastly, to construct the digest, chaotic iteration of Gf are
realized with the traditional hash function output h(k1, X,m)
and strategies S as defined above. The result of these iterations
is a N bits vector. It is translated into hexadecimal numbers
to finally obtain the hash value.

So we define the keyed hash function Hh : K × B∗ → BN

by the following procedure

Algorithm 1 The proposed hash function Hh

Input:
The key, k = (k1, k2, prng type) ∈ K;
The input message x ∈ B∗;

Output:
Hash value H;

1: Transforming x to sequence X which length is L;
2: Use PRNG to generate m which using k2 as a seed and

construct strategy S =
{
S0S1 . . .

}
with m;

3: Use standard hash function to generate hash value H =
h(k1, X,m);

4: for i = 1 . . . do
5: Chaotic iterations, to generate hash value: H =

Gf (Si, H);
6: end for
7: return H;

Thus Hh is a chaotic iterations based post-treatment on the
inputted hash function. If h satisfies the collision resistance
property, then it is the case too for Hh. Moreover, if h satisfies
the second-preimage resistance property, then it is the case too
for Hh, as proven in [8].

IV. EXPERIMENTAL EVALUATION

Before discussing diffusion and confusion, we will give
some examples of hash values.

A. Hash Value

Let us now consider that the input message is the poem
Ulalume (E.A.Poe), which is constituted by 104 lines and 3582
characters. The traditional hash function used here will be the



MD5. So N = 128. To give illustration of the keys properties,
we will use this hash function Hh to generate hash values in
the following cases:

Case 1. k1 = 50, k2 = 50, prng type is B.B.S..
Case 2. k1 = 51, k2 = 50, prng type is B.B.S..
Case 3. k1 = 50, k2 = 51, prng type is B.B.S.
Case 4. k1 = 50, k2 = 50, prng type is LCG.
Case 5. k1 = 50, k2 = 50, prng type is MT.
Case 6. k1 = 50, k2 = 50, prng type is XORshift.

The corresponding hash values in hexadecimal format are:
Case 1. D8ED0DDD1A611C1AEDE0915BE2CA91D3.
Case 2. 54B7B1E2C2239CF0FBC327D55CFA7BF2.
Case 3. 8453BA95FB088DA84219F1AFCD14E9EE.
Case 4. 663F90CB4ECD5E8AF53D2760E01491C8.
Case 5. 01C142B339413DEF49E7A65FF43A50DF.
Case 6. FD2B8ABC6BE956718669D92367E1680A.

From simulation results, we can see that any change in key
space K seems to cause a substantial modification in the final
hash value, which is coherent with the topological properties
of chaos.

For a security hash function, the repartition of its hash
values should be uniform. In other words, the algorithm should
make full use of cryptogram space to make that the hash
values are evenly distributed across the cryptogram space. The
parameter we use here is the same as in Case 1. In Figure 1a,
the ASCII codes are localized within a small area, whereas
in Figure 1b the hexadecimal numbers of the hash values are
uniformly distributed in the area of cryptogram space.

We will now test our hash function with some changes in the
input message, and observe the distribution of hash values. The
hash function is set with k1 = 50, k2 = 50, and prng type is
B.B.S.. The hash function used here will be the MD5.

Case 1. The input message is the poem Ulalume
(E.A.Poe).
Case 2. We replace the last point ‘.’ with a coma ‘,’.
Case 3. In “The skies they were ashen and sober”, ‘The’
become ‘the’.
Case 4. In “The skies they were ashen and sober”, ‘The’
become ‘Th’.
Case 5. We add a space at the end of the poem.

The corresponding hash values in binary format are shown
in Figure 2. Through this experiment, we can check that the
propose hash function is sensitive to any alteration in the input
message, which will cause the modification of the hash value.

B. Diffusion and Confusion

In cryptography, diffusion and confusion are two important
properties of a secure cipher that has been identified by Claude
Shannon in his 1945 classified report “A Mathematical Theory
of Cryptography”. Diffusion means that the redundancy of the
plain text must be dispersed into the space of cryptogram space
so as to hide the statistics of plain text. Confusion refers to
the desire to make the statistical relationship between plain
text, ciphertext, and keys as complex as possible, which makes

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

(a) Plain text sequence (ASCII)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

(b) Hash value (Hexadecimal)

Fig. 1: Distribution of Ulalume poem

0 20 40 60 80 100 120
0.0
0.2
0.4
0.6
0.8
1.0

Ca
se

1

0 20 40 60 80 100 120
0.0
0.2
0.4
0.6
0.8
1.0

Ca
se

2

0 20 40 60 80 100 120
0.0
0.2
0.4
0.6
0.8
1.0

Ca
se

3

0 20 40 60 80 100 120
0.0
0.2
0.4
0.6
0.8
1.0

Ca
se

4

0 20 40 60 80 100 120
0.0
0.2
0.4
0.6
0.8
1.0

Ca
se

5

Fig. 2: 128 bit hash values in various cases

attackers difficult to get relation about keys from ciphertext.
These concepts are important too in the design of robust hash
functions. We now focus on the illustration of diffusion and
confusion properties.

To analyze the statistic of diffusion and confusion, the
following common statistics are used:

• Mean changed bit number: B = 1
N

∑N
i=1Bi.

• Mean changed probability: P = B
L × 100%.

• Mean square error of B: ∆B =
√

1
N−1

∑N
i=1(Bi −B).



0 200 400 600 800 1000
45

50

55

60

65

70

75

80

85

Fig. 3: Distribution of changed bit numbers Bi

• Mean square error of P:
∆P =

√
1

N−1

∑N
i=1(Bi

L − P )× 100%,
where N denotes the statistical times, and Bi denotes the
changed bits of hash value in ith test, while L denotes the
bits of hash value in binary format.

We use again the poem Ulalume (E.A.Poe) as input mes-
sage. Using our hash function Hh, we will get the original
hash value. For this sequence, we toggle only one bit each
time. Then we will obtain another hash values. Let k1 =
50, k2 = 50, and prng type is B.B.S. The hash function h
used is MD5 while test times N = 1000. The distribution of
Bi is shown in Figure 3. From the figure, we can see that a
one bit change in the plain text will modify about 64 bits in
the 128 bits hash value. In other words, the proposed hash
function achieves desired value for such properties.

TABLE I: Statical performance of the proposed hash function

prng type hash type B P (%) ∆B ∆P (%)

B.B.S
MD5 64.008 50.006 5.788 4.522

SHA-256 128.085 50.033 7.880 3.078
SHA-512 256.353 50.069 10.911 2.131

Mersenne Twister
MD5 63.977 49.982 5.452 4.260

SHA-256 128.316 50.123 7.858 3.070
SHA-512 255.534 49.909 11.691 2.283

LCG
MD5 64.355 50.277 5.795 4.528

SHA-256 128.056 50.022 7.842 3.063
SHA-512 256.106 50.021 11.539 2.254

XORshift
MD5 63.963 49.971 5.648 4.412

SHA-256 127.596 49.842 8.036 3.139
SHA-512 255.955 49.991 11.573 2.260

TABLE II: Statical performance of the standard hash function

standard hash function B P (%) ∆B ∆P (%)
MD5 63.893 49.916 5.437 4.248

SHA-256 127.746 49.901 8.405 3.283
SHA-512 256.084 50.016 11.232 2.194

The desired distribution of hash algorithm should be that
small toggle in plain text causes 50% change of hash value.
∆B and ∆P show the stability of diffusion and confusion
properties. The hash algorithm is more stable if these two
values are close to 0. Observing Table I, both the mean
changed bit number B and the mean changed probability P

are close to the desired value. ∆B and ∆P are quite small.
Both of them illustrates the diffusion and confusion of our
hash function Hh and these capabilities are quite stable. From
Table I, we can also know that when prng type = LCG or
prng type = B.B.S, all P are larger than 50%. But when
prng type = LCG, ∆B and ∆P are smaller. To sum up,
in our proposed hash function, it is better to choose B.B.S. as
pseudorandom number generator. Furthermore, compared with
the performance of standard hash functions which is shown in
Table II, the proposed one in some situations shows better
results.

V. CONCLUSION AND FUTURE WORK

In this article, a new hash function based on chaotic
iterations has been presented. We used pseudorandom number
generator to construct a strategy S. Then we simulated the
proposed hash function’s sensitivity to keys and plain text. At
last, the performance of diffusion and confusion is discussed.
The experimental results show that this hash function is a
secure keyed one-way hash function. Through the statical
performance of the proposed hash function, we found that
B.B.S is a better pseudorandom number generator to construct
strategies.

In future work, we will try to apply chaotic iteration to
construct pseudorandom number generators. Then we will use
this kind of PRNG to construct strategies for hash functions.
At the meantime, other properties induced by CIs will be
explored.

REFERENCES

[1] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for hash functions
md4, md5, haval-128 and ripemd.” IACR Cryptology ePrint Archive, vol.
2004, p. 199, 2004.

[2] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full sha-1,”
in Advances in Cryptology–CRYPTO 2005. Springer, 2005, pp. 17–36.

[3] X. Wang, H. Yu, and Y. L. Yin, “Efficient collision search attacks on
sha-0,” in Advances in Cryptology–CRYPTO 2005. Springer, 2005, pp.
1–16.

[4] Y. Wang, X. Liao, D. Xiao, and K.-W. Wong, “One-way hash function
construction based on 2d coupled map lattices,” Information Sciences,
vol. 178, no. 5, pp. 1391–1406, 2008.

[5] W. Guo, X. Wang, D. He, and Y. Cao, “Cryptanalysis on a parallel
keyed hash function based on chaotic maps,” Physics Letters A, vol.
373, no. 36, pp. 3201–3206, 2009.

[6] S. Li, G. Chen, and X. Mou, “On the dynamical degradation of digital
piecewise linear chaotic maps,” International Journal of Bifurcation and
Chaos, vol. 15, no. 10, pp. 3119–3151, 2005.

[7] R. L. Devaney, L. Devaney, and L. Devaney, An introduction to chaotic
dynamical systems. Addison-Wesley Reading, 1989, vol. 13046.

[8] C. Guyeux, Q. Wang, X. Fang, and J. M. Bahi, “Introducing the truly
chaotic finite state machines and theirs applications in security field,”
in Nolta 2014, International Symposium on Nonlinear Theory and ITS
Applications, 2014.

[9] C. Guyeux, Q. Wang, and J. M. Bahi, “Improving random number
generators by chaotic iterations. application in data hiding,” Computer
Science, vol. 13, pp. V13–643 – V13–647, 2010.

[10] C. Guyeux and J. M. Bahi, “Topological chaos and chaotic iterations
application to hash functions,” in Neural Networks (IJCNN), The 2010
International Joint Conference on. IEEE, 2010, pp. 1–7.

[11] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, “On devaney’s
definition of chaos,” The American mathematical monthly, vol. 99, no. 4,
pp. 332–334, 1992.



[12] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk, “Keyed hash functions.”
in Cryptography: Policy and Algorithms, International Conference,
Brisbane, Queensland, Australia, July 3-5, 1995, Proceedings, 1995,
pp. 201–214.


	I Introduction
	II Basic recalls
	II-A Chaotic iterations
	II-B Hash functions

	III CI-based hash functions
	IV Experimental Evaluation
	IV-A Hash Value
	IV-B Diffusion and Confusion

	V Conclusion and Future Work
	References

