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Abstract—In this paper, we present a toolbox for a specific
optimization problem that frequently arises in bioinformatics or
genomics. In this specific optimisation problem, the state space is
a set of words of specified length over a finite alphabet. To each
word is associated a score. The overall objective is to find the
words which have the lowest possible score. This type of general
optimization problem is encountered in e.g 3D conformation
optimisation for protein structure prediction, or largest core
genes subset discovery based on best supported phylogenetic tree
for a set of species. In order to solve this problem, we propose
a toolbox that can be easily launched using MPI and embeds
3 well-known metaheuristics. The toolbox is fully parametrized
and well documented. It has been specifically designed to be
easy modified and possibly improved by the user depending on
the application, and does not require to be a computer scientist.
We show that the toolbox performs very well on two difficult
practical problems.

I. INTRODUCTION

Many biological data can be described as finite sequences
over a finite alphabet. For instance, from a computer science
viewpoint, a gene is nothing but a sequence of nucleotides A,
C, G, T , and a protein is a sequence of amino acids (a.a., a set
of 20 elements). In various situations, we can assign a score
value to each finite sequence, that can account for its ability to
solve a biological problem. For instance, these finite sequences
can be the mapped to the descriptions of the protein’s spatial
configuration in the 3D square lattice; in this case, the score
of the considered conformation is simply its energy. The main
problem considered in this paper is the one of optimising the
score value over all possible sequences. As is well known,
most such problems are NP-hard and we often have to resort
to efficient heuristics.

The main contribution of the present paper is to propose
an handy and efficient toolbox that can solve such problems
using a combination of metaheuristics. The toolbox is carefully
designed in such a way that the sequences, their updates
and the score function are easy to define and work with.
Our toolbox – which is still in alpha stage, but in active
development – incorporates the state of the art computation
standards in computer science. It is mainly written in Python,
it is MPI compliant, and it uses XML configuration files. The
toolbox can be launched on a collection of computers through
the network. After completion, the toolbox provides a report
summarising various information concerning its convergence.
We provide examples of application to phylogenetics and
protein structure predictions.

The remainder of this article is as follows. In the next
section, we present the main problem and motivate its rel-
evance to bioinformatics via some illustrative examples. In
Section III, 3 currently embedded metaheuristics are presented.
The toolbox’s architecture is described in Section IV. Appli-
cation examples are provided in Section V. The article ends
with a conclusion, in which the contribution is summarized
and future work is outlined.

II. WHAT TYPES OF PROBLEMS ?

A. Main objective

Given an integer n > 0 and a finite set A, we consider the
set Sn of sequences of length n whose elements belong to
A. In an equivalent manner, Sn is the finite set of n-words
w = w1...wn whose letters wi belongs to the alphabet A. We
consider a distance d : Sn × Sn −→ R+, and we suppose
that d (Sn,Sn) ⊂ N∗: all distances between words are integer
values. Finally, we consider a “scoring function” s : Sn −→
R+, that is, a function that maps each n-word to a real positive
value. Our objective is to design a software that uses various
heuristics to find the minimum value of s on Sn.

Another way of seeing is to construct an undirected graph.
Each n-word can be identified with a node of a graph, while
two nodes w and w′ are connected with an edge if and only if
d(w,w′) = 1. At each node is associated its score. Our goal
is then to design a way of moving from a node to the next in
the graph, in such a way that the scoring function decreases
over successive iterations. As will be clarified later, some sort
of continuity will be needed : two nodes close enough must
have, most of the times, approximately the same score. Some
jumps will be acceptable, but should remain quite rare.

We will now motivate that this kind of problem arises in
various instances in the field of bioinformatics by providing
three important applications.

B. A first example: core genes and phylogeny

In the first example, we consider a set of species from
which we want to infer a biomolecular phylogeny. For each
species, we have a list of genes, i.e. a dictionary whose key
is the gene name and value the DNA sequence. Although two
given species do not necessarily have the same genes, any
phylogenetic tree is based on the similarity of their common
genes. Indeed, a phylogenetic tree can be computed as follows.
Given a set of species, we extract a set of “core” genes (genes
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present everywhere in this set of species). Each core gene
is multi-aligned using a toolbox such as e.g. Muscle [1],
and then the alignments are concatenated. A mutation matrix
between nucleotides is then built and the estimation of the
tree corresponds to finding the most likely tree that, given this
model of evolution, is able to explain the mutations found
in the alignment. Statistical techniques like bootstrapping can
provide support values on the obtained tree, and these supports
provide information on the reliable character of the associated
branch. In other words, a branch with a large support value
will be considered as trustworthy.

For the same species, the phylogenetic trees inferred by
using two different subsets of common genes are not equal
in general. At least, it is unlikely that they share the same
branch length. More dramatic, some sister relationship be-
tween species may be different (the trees do not have the
same topology). Finally, the two obtained trees may share
the same topology, but with different support values: some
weakness may appear in the first tree in branches considered
as trustworthy in the second one. If the given set of species
have n genes in common (their core genome has n genes),
then we can consider 2n − 1 different phylogenetic trees that
show a certain variability in terms of topology and supports.
To choose a tree that faithfully represents the phylogenetic
relationship between the species at hand, we may consider
that: (1) it is as well supported as possible, and (2) it is based
on a nucleotidic sequence which is as large as possible. If
such an approach is chosen, our objective is now to find the
largest subset of core genes that leads to the tree that receives
the largest support. This can be achieved as follows.

The n core genes are sorted alphabetically, and to each
subset we associate a binary word of length n: its i-th character
is 1 if and only if the i-th core gene is in the considered subset.
The alphabet A is then equal to {0, 1}. Given a binary word
w, after alignment, we can use a tool like RAxML [2] to
infer a tree as well as its supports. The score s(w) of this
binary word can be the average value of the percentage of 1’s
inside w (number of considered core genes) and the lowest
support within the tree (an integer ranging between 1 and 100).
This provides us with a score we will have to maximise. We
can also consider the inverse of this score, so as to turn the
optimisation problem into a minimisation one.

C. A second example: self-avoiding walks and protein folding

Nowadays, it is relatively easy to have access to the genome
of a given species, and to predict its coding sequences, either
by blasting [3] a set of known genes (basis of knowledge)
on it or by using ad hoc prediction tools like Glimmer
for bacterias [4]. It is thus quite easy to obtain the DNA
sequence of a gene. A more difficult task is to predict its
3 dimensional shape, since this latter is mostly determined by
the physico-chemical properties of its amino acid sequence,
their coupling interactions, and so on. The protein prediction
tools for conformation usually try to find the best conformation
according to an optimization function. To do so, they focus on
the hydrophylic/hydrophobic properties of each amino acid,

Fig. 1. Protein Structure Prediction by folding SAWs

and they try to find the 3D conformation that optimizes
the number of hydrophobic a.a. inside the conformation (as
proteins mainly evolve in aqueous solutions like cytoplasms).

In order to solve this optimization problem, a lattice is
first considered, like the 2D or 3D square one, and then, a
protein conformation in this lattice will be a self-avoiding
walk (SAW [5]), i.e. a succession of adjacent nodes of the
lattice connected with edges, and such that each node strictly
inside the walk has a degree of 2 (as two a.a. cannot lie in
the same location), see Figures 1 and 2. Given its sequence of
hydrophobicity, finding the best 2D conformation of a protein
is not an easy task. When considering the set of self-avoiding
walks having n−steps and whose vertices are either black
(hydrophobic) or white squares (hydrophylic residues), the
authors of [6] have indeed proven that determining the SAWs
that maximize the number of neighboring black squares in this
set, which is supposed to be the conformation chosen by the
protein, is NP-hard.

Given a sequence of amino acids, we will resort to using
relevant heuristics for predicting the most probable conforma-
tion of the protein. The translation in terms of Sn and scoring
function of Section II-A is obvious. Each self-avoiding walk
is a word on the {North, East, South, West} alphabet, which
describes its absolute encoding. The scoring function, here, is
the number of neighboring black squares.

D. A third example regarding the protein folding process

The problem described in the previous subsection also leads
naturally to the study of various subsets of self-avoiding
walks [7], [8], [9]. In the first approach, starting from the
straight line, we obtain by a succession of pivot moves of ±90◦
(to choose a node as center of a rotation of the tail) a final
conformation being a self-avoiding walk. All the intermediate
conformations must be self-avoiding too (see Fig. 1). Such a
procedure is one of the two most standard implementations



Fig. 2. Protein Structure Prediction by stretching SAWs

of the so-called “SAW requirement” in the bioinformatics
literature, which is for instance presented in [10], [11], [12].
We have previously shown in [9] that, in this first category of
prediction software, it is impossible to reach all the possible
conformations.

The other main approach of protein structure prediction
using self-avoiding walks starts with an 1−step SAW, and at
iteration k, a new branch is appended to the current tail of
the walk, in such a way that the new k−step self-avoiding
walk has a larger number of neighboring black squares (see
Fig 2). The protein is thus constructed step by step, reaching
the best local conformation at each iteration. It is easy to see
that such an approach leads to all the possible self-avoiding
walks having the length of the considered protein [9].

As stated above, these two approaches cannot reach the
same set of conformations. One very bad problem faced by
the community is that the difference between the two sets
is far from negligible, leading to the necessity of comparing
their respective sizes. Clearly, non unfoldable self-avoiding
walks, that is, SAWs on which any pivot move introduces
an intersection between the head and the tail of the new walk
(like in Fig. 3), cannot be reached as the result of performing
iterative pivot moves starting with the straight line. Our goal is
to generate unfoldable self-avoiding walks. In order to do this,
a relevant score will be the number of possible pivot moves,
which must reduce to zero in the case of an unfoldable self-
avoiding walk.

III. THREE EMBEDDED HEURISTICS

In the present section, we outline the three heuristics that
we have embedded within our toolbox. Further details can be
found in [13], [14] or in the software documentation1.

1The software is currently downloadable on demand at https://bitbucket.
org/rjpGarnier/projetm2recuit.git

Fig. 3. An unfoldable self-avoiding walk

A. Genetic algorithm approach

The population is initialized with a collection of 50 random
words. Then, the genetic algorithm iterates until discovering
a word whose score is larger than a threshold, or at most
for 200 iterations. Each iteration, which produces a new
population, consists of the following steps:

1) Repeat 5 times a random pickup of a pair (w1, w2)
of words and mix them using a crossover approach.
In this step, indexes {1, . . . , n} are partitioned into k,
k ≤ n

2 , subsets I1, . . . Ik. A new word w is then defined
by wi = w1

i if i belongs to some Ij where j is odd;
otherwise wi = w2

i . The obtained words are added to
the population P , resulting in population Pc.

2) Mutate 5 words of the population Pc. More precisely,
for each of these words w, k randomly selected values
of w are replaced by a character randomly picked in A,
leading to a new word. The mutated words are added to
Pc leading to population Pm.

3) Produce population Pr by adding 5 new random words
to Pm.

4) Select the 50 best words in population Pr to form the
new population P .

The whole set of produced words with their associated scores
contains valuable information about which parts of the words
tend to decrease the scores. A Lasso test [15] may then be
applied, to rank the word positions according to their impact
on the scoring function. In this case, a last genetic algorithm
phase is launched on the updated population, in order to mix
these candidate words.

B. Particle swarm optimization approach

The particle position is a vector of N values belonging in
A, an alphabet of positive numbers. The objective is to define
a way to move the particles in the N dimensional search
space so that they produce the optimal vectors with respect
to the scoring function. A swarm of L particles is then a
list of position vectors (X1, X2, . . . , XL) together with their
associated velocities (V1, V2, ..., VL), which are n-dimensional
vectors of real numbers between 0 and 1. The latter are

https://bitbucket.org/rjpGarnier/projetm2recuit.git
https://bitbucket.org/rjpGarnier/projetm2recuit.git


initialized randomly. At each iteration, a new velocity vector
is computed as follows:

Vi(t+ 1) = wVi(t) + φ1
(
P best
i −Xi

)
+ φ2

(
P best
g −Xi

)
, (1)

where w, φ1, and φ2 are weighted parameters setting the level
of each three trends for the particle, which are respectively: to
continue in its adventurous direction, to move in the direction
of its own best position P best

i , or to follow the gregarious
instinct to the global best known solution P best

g . Both P best
i

and P best
g are computed according to the scoring function. The

new position of the particle is then obtained, by applying the
sigmoid function [16] on each velocity, and by considering the
value of A the most close to this latter.

C. Simulated annealing approach

After an initialization step, the Simulated Annealing loop is
composed by (a) a move in the neighborhood of the current
solution, (b) an evaluation of this new position by a real-valued
scoring function, then (c) a test, given a well chosen criterion,
to store this position as the new best one. Various criteria
can be considered, they all have been embedded within the
software. A detailed description of the simulated annealing
algorithm is provided in Figure 4.

We are now able to describe the software that embeds
these metaheuristics, in order to solve the general problem
of Section II-A.

IV. SOFTWARE DESCRIPTION

A. Requirement Guidelines

Let us first outline the requirements that were set up before
the conception of our toolbox.
• We need to assess the efficiency of the meta-heuristics

(MH) for various models of solution spaces. Therefore,
we focus on measuring and keep track of the perfor-
mances, record events or messages (logfiles) related to
our algorithms. In other words, introspection is preferred
to speed.

• We need to allow for easy application to new problems
the users might come up with. Similarly, new algorithms
and heuristics must be easy to embed, as well as batteries
of tests.

• As we intend to work on multi-cores or clusters and with
scoring functions that putatively need a long computation
time, we look for a scalable, ready, and reliable network
solution. Furthermore, as the heuristic methods under
consideration need various amount of resources during
computation, we need a convenient scalability mecha-
nism. For this purpose, we chose the Message Passing
Interface (MPI) 2.2.

• Various existing scripts and third party applications need
to be embedded or reused without code duplication, and
both must be launchable for testing purposes or specific
needs. Therefore, we need an easy to use but reliable shell
script launcher, with basic communication and logging
capabilities.
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(a) Generic threshold class algorithm

greedy local descent

s

stop

s0(time0) ← simul(s)

s0(time0,E0) ← eval(s0)

E(s0)<E(s) OR rand[0,1[ <P( δEkT )

s ← s0

s(time,energy) ← initial state
T ← initial temperature

stop

stop

T ← calc(T)

s0(time0) ← simul(s)

s0(time0,E0) ← eval(s0)

E(s0)<E(s) OR rand[0,1[ <P( δEkT )

s ← s0

s(time,energy) ← initial state
T ← initial temperature

s

(b) Metropolis algorithm

greedy local descent

T ← calc(T)

s0(time0) ← simul(s)

s0(time0,E0) ← eval(s0)

E(s0)<E(s) OR rand[0,1[ <P( δEkT )

s(time,energy) ← initial state
T ← initial temperature

s

stop

stop

s(pos,cost) ← initial solution

s

stop

s0(pos0,score0) ← score(s0)

s0(pos0) ← move(s)

acceptance(s0)<acceptance(s)

s ← s0

stop

stop

T ← calc(T)

s0(time0) ← simul(s)

s0(time0,E0) ← eval(s0)

E(s0)<E(s) OR rand[0,1[ <P( δEkT )

s ← s0

s(time,energy) ← initial state
T ← initial temperature

s

s

stop

s0(time0) ← simul(s)

s0(time0,E0) ← eval(s0)

E(s0)<E(s) OR rand[0,1[ <P( δEkT )

s ← s0

s(time,energy) ← initial state
T ← initial temperature

s ← s0

(c) Simulated annealing algorithm

Fig. 4. Simulated annealing as a threshold class algorithm.

• Finally, targeted end-users like bioinformaticians are typi-
cally familiar with the use of terminals and code scripting,
but they are not necessarily computer scientists. This is
why the Python language has been chosen. But with a C-
like flavor syntax when possible, to produce codes easy
to read for everyone.

B. Architecture Guideline

Software architecture is meant to convert requirements in
a small list of well-known design patterns. Objectives of the
latter is to provide a coherent approach that allows to easily
reuse, maintain, and upgrade the proposal. Indeed, a pattern
is used whenever possible, while they are reused as soon as
possible to reduce their number, leading to an architecture of
low complexity as depicted in Fig. 5. It is described hereafter.



Fig. 5. Detailed architecture

1) Introspection – Decorators: Oriented Object Program-
ming (OOP) is the main chosen paradigm of the framework
but, as Python offers convenient ways to use it, a kind of
Aspect Oriented Programming (AOP) has been preferred to
separate some technical functions from domain ones. Python
decorator (wrapper) has been the chosen pattern, which is
in this language a simple decoration on a class, function,
or method. Basically a decorator provides a way to intercept
communication to or from a designated function. So inputs,
outputs, and capability of a decorated class could be analyzed
(loggers), validated (contracts), have methods replaced (mon-
key patching) or enhanced without modifying its code. Without
the necessity to launch tests again on the decorated domain
specific code. The function domain is also more readable and
simpler to write. Note that a decorator can be shared with as
much domain functions as needed. So decorators maximise
the reuse of codes, leading to a decrease of both the testing
time and the failure risk.

2) Framework – low coupling, helpers, and DAO:
a) Coupling and cohesion, Liskov principle: Coupling

property is a quality metric that describes the interdependence
degree between software modules. Cohesion, for its part, is
another metric that describes how much elements of a given
module are related on. Our objective was to increase as
much as possible these two metrics, for each module within
the software. As all MJs use both move and score concepts

Fig. 6. Dependency Injection, Factory and Mapping Example (slightly
simplified)

(we called them “field functions”), separated libraries have
been built for these functions. Indeed, the generalization of a
concrete move function leads to a common interface with all
other move functions. Some characteristics are also shared by
all score functions, which leads to a second interface. So, each
member of our class of functions respects the so-called Liskov
substitution principle: if S is a subtype of T, then objects of
type T can be replaced with objects of type S.

b) Factory, generic programming, and mapping: If we
have substitutive functions but call a specific type of them in
the main MH template, we need to change code of template
each time we change experiment conditions. The coupling
must be lower. We could call a function that is interface
compatible. So we need a tool to select function in a cohesive
collection from a XML hashtables and return instance of this
function. This is provided by the factory and dependency
injection pattern.

As no reference to effective calculus function remains in
the main MH code, we abusively speak about templates,
in a C++ terminology. Launcher scripts are mostly strategy
patterns, i.e., they could be launched by any elemnts of
the templates. By doing so, the targeted quality metric was
genericity: it measures the ability for effective types of data
to be defined dynamically, i.e., only when instantiated. With
this low-decoupling approach, the framework allows a zero-
modification reuse of old field functions with a new template,
and vice versa.

c) Template helpers: MH templates often share same
concepts but with specific implementation. Associated func-
tions of common concept are outsourced. This approach has
been chosen as we wanted not to allow any lambda user to
practice a top-down programming. Furthermore, the objective
was to discourage a “scripting” bottom up style for templates,



as authors considered that users will want to plan neither unit
nor integration tests on templates. By doing so, code review
is more easy to achieve.

d) DAO and loggers: As stated previously, various for-
merly existing shell scripts were at the beginning of this soft-
ware, and we tried to group them in a unique benchmarkable
and reliable environment. Scripts usually pipe applications,
while inputs and outputs of these applications are usually files.
To be readable, all these files must follow specific standards.
As a consequence, conversions, sorting, or subset selection
are sometimes required regarding these files. To prevent from
issues that may be raised by such a variety of inputs and
outputs, two priorities have been kept in mind: an improved
and stringent logging and a file system (Data Access Object,
i.e., DAO pattern) helpers.

3) Maintainability – Third-party libraries policy: Authors
of this software have a priori considered that Python is not
the most used language, and so developers may not be familiar
with its ecosystem. This lack of background does not allow
all developers to sort available libraries according to their
maturity or their reliability, while various libraries from the
Python ecosystem are still in an early reversion designed from
scratch. Consequently, we decided to use as few dependencies
as possible, leading to a very simple proposal easy to improve,
customize, and fork.

4) Scalability – MPI 2.2 and sockets libraries, server MPI
factory: Let us firstly recall that Message Passing Interface
(MPI) is a concurrency inter-process communication system
based on message-passing. The message-passing paradigm
implies than process code execution is message-driven, i.e.,
the type and content of message select the code to invoke
for its receiver. MPI is a Language Independent Specifications
(LIS), point to point, and multicast communication protocol.
It mainly provides a set of basic tools for synchronisation
and data exchange, being an ISO 5th, 6th, and 7th level
middleware and application framework using TCP sockets.
APIs are provided for C, C++, and Fortran languages so, in
Python, a binding library or a MPI standard implementation
is needed. This latter is described hereafter.

a) MPI4py and OpenMPI: MPI for Python (MPI4py) is
based on the standard MPI 2.2 C++ bindings and it provides a
similar interface. But MPI4py adds an unique Python capabil-
ity, pickling, to send/receive objects in RAM or HDD buffers.
The widely used middleware OpenMPI 2 has been chosen, as
this is a software of production quality which is fully MPI 2.2
and 3.1 compliant. It allows process spawning, network and
process fault tolerance, safe threads, a good portability, and so
on. Last, but not least, it is well documented and supported.

b) Client/server mode and libraries: MPI4py over Open-
MPI third party library was a prerequisite as most of existing
scripts use it. However, after an intensive evaluation, its low
reliably with long series of connections, spawning, or big
message exchanges was quite disappointing. Unfortunately, no
good alternative has been found.

As a consequence, we decided to focus on the MPI 2.2
client/server (CS) mode, while minimizing as possible the

coupling between MPI4py and the other codes within the
software. Indeed, only a MPI-helper library requires it.

c) MPI process server factory: Using OpenMPI name
server, a socket helper library and the OpenMPI helper, we
allow a MPI process to launch another MPI 2.2 subprocess
(Fig. 7). And to free resources after results return. This server
XML configured factory with socket communication channel
is a standalone script (singleton).

d) MPI most used pattern – Master and Workers:
In this parallel computation pattern, a main thread called
the master splits a given problem and merges partial results
effectively computed by a set of forked processes, which
are called the workers. This pattern can rely on a message-
passing architecture to broadcast data to workers and regroup
partial obtained results. This is typically a good choice when
a problem can be sliced in a set of same smaller and simpler
ones, splitting and merging times being small when compared
with sub-problems computation ones.

5) Reuse with low-coupling – Executor library: The MPI
server factory needs to execute MPI and Python codes in a
shell, and with a maximum of security. As a set of applications
and scripts has been added that use XML configuration files
for their environment, a shell launcher has been required,
which should follow an “easy to use” philosophy like in
Java 5 executor with easy contracting and centralized logging
abilities.

6) Introspection – general architecture and dataflow pro-
gramming: According to the observation granularity, the pro-
posed framework uses various classical software architectures.
Some components as the MPI factory server induce their own
main architecture, and the classical architecture erosion (gap
between models and implementation) is observed. This is why,
as much as possible, Separation of Concerns (SoC) is used at
high level structures.

But a significant choice has been forced and preserved over
versions concerning the “state” data of each MH process.
Each problem (that is, the combination of a MH script, field
functions like the move or score ones, and their parameters)
is defined in an unique XML file. This XML is validated by
XSD; it is parsed, and then converted in a Python dictionary,
i.e., a hash-table implementation. So (almost) all the needs
start in an unique entity. The choice has been made to preserve
this entity, and to add in it all what MH templates require to be
instantiated. In other words, this is principally a memory for
current coordinates and score when moving on the solution
space. This state token, which is a dataflow programming-
inspired architecture, is passed to each function and all of
them return new version of the token.

With this approach, MH templates can be modeled by
graphs, thus simplifying both software monitoring and tuning.
Additionally, the check-pointing strategy that corresponds to
store this token leads to various interesting properties, like the
possibility to restore a computation from a given saved point,
to study the convergence speed, to benchmark various physical
platforms on a same computation, or to launch in parallel
various instances to maximize the chance to find interesting



Fig. 7. Multi-level MPI 2.2 with Server MPI Factory and Executor Class functioning Principles (slightly simplified)

solutions (or to study the dispersion of solutions). We thus
improve both introspection and reliability.

C. How to construct a MH in practice

As a framework, a toolbox for computing resources is
provided, together with a methodology to create MH. In broad
outline some simple templates are created, helper are written
with DOA and helpers, then when needed, MPI processes
are nested with MPI helper and standalone MPI C/S factory.
Figure 8 illustrates a SA evolution build by iterating SA and
greedy local descent basic algorithms. The first step was to
construct both SA and local descent in an one-core version.
They are then linked by a constructor to apply a descent on
each solution selected by the SA Metropolis criterion. In a
second step, the descent is replaced by a MPI version: some
descents are launched in Workers and the Master returns the
best Worker result. The simple Executor is replaced by a call
to the MPI server factory. Then, in a third step, the simple SA
execution itself is injected in a Worker and a Master, created
to make a synchronisation after each Markov chain.

On Figure 8, dashed arrows represent data circulation, and
then moves of the token instances.

V. APPLICATIONS

A. Protein folding

The first illustrative example of the effectiveness of the
proposed software is related to the protein folding problem
presented in Section II-D. More specifically, given a sequence
length, the objective is to find a self-avoiding walk of this
length which is non unfoldable: to apply a pivot move at each
internal node always leads to a new walk that does not satisfy
the self-avoiding requirement.

Accession Nb Name Nb. of genes
NC 024082.1 Cylindrotheca closterium 257
NC 014808.1 Thalassiosira oceanica CCMP1005 138
NC 025313.1 Cerataulina daemon 195
NC 028052.1 Pelargonium cotyledonis 271
NC 015403.1 Fistulifera solaris 192
NC 024084.1 Leptocylindrus danicus 155

TABLE I
FAMILY NUMBER 1 (PELARGONIUM COTYLEDONIS AS OUTGROUP).

We considered the number of nodes on which a pivot move
can be applied as the scoring function. When this score is zero,
then a non unfoldable self-avoiding walk has been obtained.
As a first basic experiment, we considered the SA meta-
heuristic on short sequences, to reduce the computation time.
Obtained results are depicted in Figure 9, which emphasize the
convergence ability of the proposed software on the considered
problem.

B. Phylogeny

We have first considered phylogenetic issues, with the
family listed in Table I. This family is constituted by 6
genomes, with a number of detected genes that ranges from
138 to 271, and a core genome of 122. The phylogeny with
the alignment of these core genes leads to a small weakness
in one branch (bootstrap lower than 95). To wonder whether
some genes may be responsible of such weak uncertainty, we
have firstly launched the genetic algorithm, which has stopped
after 29 iterations, in systematic investigation mode, leading
to 2 topologies:

• Topology 0 depicted in Fig. V-B, that has occurred 27
times. The best obtained tree has a lowest bootstrap of
96, while in average the lowest bootstrap is equal to 86.



Fig. 8. 2-level MPI 2.2 application : SA with Basin Hopping algorithm (simplified)

• Topology 1, for its part, has occurred twice, with a non
supported branch of 64 in its best tree. It is the same
than Top. 0, except that the clade in newick format
((C.closterium,F.solaris),(C.daemon,L.danicus)) becomes
(((C.closterium,F.solaris),C.daemon),L.danicus).

The PSO, for its part, has rapidly found a first
well supported phylogenetic tree in a third different
topology, and with all supports equal to 100, namely:
(((C.closterium,F.solaris),L.danicus),C.daemon). However, the
PSO has used only 47.5% of the core genes to reach such a
tree. According to our stop criterion, this tree has not been
returned by the algorithm. Indeed, this example illustrates the
ability of the particle swarm optimization algorithm to more
globally visit the whole space at the beginning, in order to
discover regions of interest.

The simulated annealing, for its part, raised these 3 topolo-
gies. A remarkable element is that these 3 topologies have
the whole bootstraps equal to 100. Furthermore, Topology 2
appears as the best one according to the produced result (it was
Topology 0 according to the GA, while PSO has not succeeded
in separating these two topologies). Obviously, both PSO and
SA have converged to local minima that are not global ones
if we consider that both minimum bootstraps and proportion
of core genes must be maximized. Launching them again with
other initial values and parameters may select other optimal

positions in the cube.

VI. CONCLUSION

In this article, we have detailed the general principles at the
bases of an efficient software we propose for the bioinformati-
cian community. This software iterates on finite words on a
finite alphabet, such that each word has a score. Using one of
the three most classical metaheuristics, this software is able to
discover the optimums in a distributed manner. The software is
easy to configure, to use, and to update. It can resolve a variety
of bioinformaticians problems, like to measure the effects of
genes on a phylogeny.

In future work, we intend to improve the following el-
ements. First of all, the XML “problem” configuration file
must have a more common structure, to allow state token
to be used by more than one specific MH template. The
objective is as follows: a problem, started to be resolved by
a SA, should be finalized by a PSO, and vice versa. An
improvement of the execution speed must be achieved, among
other things by substituting some of our functions by more
efficient and reliable ones provided by third-party libraries.
Finally, the number of tests, contracts, and code factoring
must be enlarged, together with logs, error management, and
documentation, to help bug tracking, maintainability, safety,
and data integrity.



Fig. 9. Example of output exploitation using the SA on a short size problem.

Fig. 10. First obtained supported topology.
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