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Abstract. Investigating how to construct a secure hash algorithm needs
in-depth study, as various existing hash functions like the MD5 algorithm
have recently exposed their security flaws. At the same time, hash func-
tion based on chaotic theory has become an emerging research in the
field of nonlinear information security. As an extension of our previous
research works, a new chaotic iterations keyed hash function is proposed
in this article. Chaotic iterations are used both to construct strategies
with pseudorandom number generator and to calculate new hash values
using classical hash functions. It is shown that, by doing so, it is possible
to apply a kind of post-treatment on existing hash algorithms, which pre-
serves their security properties while adding Devaney’s chaos. Security
performance analysis of such a post-treatment are finally provided.

Keywords: chaotic iterations, keyed hash function, security performance anal-
ysis

1 Introduction

A hash function is any function that can be used to map data of arbitrary size
to data of fixed size, which has many information-security applications. Rivest
designed the first famous hash function called MD4 (Message Digest 4) in 1990,
which is based on Merkle-Damgard iterative structure [6]. Later, various hash
functions with an improved but similar design have been proposed. The latter
encompass the well-known MD5 [7] and SHAs secure hash algorithm series [2].
However, recent researches have shown that security flaws exist too in these
widely used standard hash functions. For instance, Lenstra, cooperated with
Xiaoyun Wang, forged a digital certificate with different keys [8]. Then they
improved the MD5 collision course and constructed an effective certificate [9].
This research result shocked cryptologists.

Some relationships can be emphasized between chaos properties and some
targeted aims in cryptology. Thus it may be a good idea to investigate the use
of chaos to enrich the design of cryptographic systems. In our previous work,
we have proven that discrete chaotic iterations (CIs) produce topological chaos
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as described by Devaney [1]. This topological chaos is a well studied framework
and we have applied it in hash function, pseudorandom number generation, data
hiding, and so on. However, all of them are used separately. In this research work,
we intend to combine pseudorandom number generation and hash functions using
CIs. Then we will check if this combination can improve the security performance
of standard hash functions. More precisely, we will apply chaotic iterations on
classical hash functions, adding by doing so provable chaos while preserving
security properties like the collision. With such chaos, our desire is to reinforce
diffusion and confusion of the inputted hash functions. In the meantime, General
Formulation of the Chaotic Iterations (GFCIs) will be introduced and used,
to deal with the output of standard hash functions and to construct chaotic
strategies.

The remainder of this article is organized as follows. The first next section is
devoted to some basic recalls on the general form of chaotic iterations. The third
section introduces pseudorandom number generator with CIs. Our CI-based hash
function is proposed and reformulated in this section too. Experimental evalua-
tion is shown in the fourth section. This article ends by a conclusion section, in
which our research work is summarized.

2 General Formulation of the Chaotic Iterations

In this section, we focus on the general formulation of chaotic iterations. Let
us first define some notations. N is the set of natural (non-negative) numbers.
The domain N∗ = {1, 2, 3, . . .} is the set of positive integers and B = {0, 1}.
[[1;N ]] = {1, 2, 3, . . . , N}. A sequence which elements belong in [[1;N ]] is called a
strategy. The set of all strategies is denoted by S . Sn denotes the nth term of a
sequence S , Xi stands for the i th components of a vector X .

In here a new kind of strategies is introduced, namely a sequence of subsets
of J1, NK, that is, a sequence of P(J1, NK)N, where P (X) is for the powerset of
the set X (i.e., Y ∈ P (X) ⇐⇒ Y ⊂ X). So we can now change multiple bits
between two adjacent outputs, as follows.

The general form of the discrete dynamical system in chaotic iterations is

x0 ∈ BN , (Sn)n∈N ∈ P(J1, NK)N

∀n ∈ N∗,∀i ∈ [[1;N ]] , xni =

{
xn−1i , if i /∈ Sn(
f
(
xn−1

))
Sn , if i ∈ Sn

(1)

In other words, at the nth iteration, only the cells whose id is contained into
the set Sn are iterated.

Let us now rewrite these general chaotic iterations as usual discrete dynamical
system of the form Xn+1 = f(Xn) on an ad hoc metric space. Such a formulation
is required in order to study the topological behavior of the system.



Let us introduce the following function:

ψ : J1;NK× P ([[1;N ]]) −→ B

(i,X)←−

{
0 if i /∈ X,
1 if i ∈ X.

(2)

Given a function f : BN −→ BN , define the function:

Ff : P ([[1;N ]])× BN −→ BN ,

(P,E) 7−→
(
Ej · ψ(j, P ) + f(E)j · ψ(j, P )

)
j∈[[1;N ]]

. (3)

Consider the phase space:

X = P ([[1;N ]])
N × BN , (4)

and the map defined on X :

Gf (S,E) = (σ(S), Ff (i(S), E)) , (5)

where, in a similar formulation than previously, σ is the shift function defined
by σ : (Sn)n∈N ∈ P ([[1;N ]])

N −→ (Sn+1)n∈N ∈ P ([[1;N ]])
N

and i is the initial

function i : (Sn)n∈N ∈ P ([[1;N ]])
N −→ S0 ∈ P ([[1;N ]]). Then the general

chaotic iterations defined in Equ.6 can be described by the following discrete
dynamical system: {

X0 ∈ X
Xk+1 = Gf (Xk).

(6)

To study the Devaney’s chaos property, a relevant distance between two
points X = (S,E), Y = (Š, Ě) of X must be defined. Let us introduce:

d(X,Y ) = de(E, Ě) + ds(S, Š), (7)

where 
de(E, Ě) =

N∑
k=1

δ(Ek, Ěk) is once again the Hamming distance,

ds(S, Š) =
9

N

∞∑
k=1

|Sk∆Sk|
10k

.

(8)

where |X| is the cardinality of a set X and A∆B is for the symmetric difference,
defined for sets A, B as A∆B = (A \B) ∪ (B \A).

It has been proven in [4] that:

Theorem 1. The general chaotic iterations defined on Equ.1 satisfy the De-
vaney’s property of chaos.



3 Security tools based on CIs

We now investigate how to apply chaotic iterations on existing security tools. By
such kind of post-treatment, we will add chaos to these tools, hoping by doing
so to improve them in practice (increasing the entropy of random generators,
the diffusion and confusion of hash functions, etc.) Such improvement must be
such that existing security properties are preserved through iterations.

3.1 Pseudorandom number generator with CIs

In this section, we consider that the strategy (Sn)n∈N is provided by a pseudo-
random number generator, leading to a collection of so-called CIPRNGs [3]. The
XOR CIPRNGs, for instance, is defined as follows [4]:{

x0 ∈ BN

∀n ∈ N∗, xn+1 = xn ⊕ Sn,
(9)

where N ∈ N∗ and ⊕ stands for the bitwise exclusive or (xor) operation between
the binary decomposition of xn and Sn. In the formulation above, chaotic strat-
egy (Sn)n∈N∗ ∈ [[1;N ]]

N
is a sequence produced by any standard pseudorandom

number generator, which can be the well-known Blum Blum Shub (B.B.S.), Lin-
ear Congruential Generator (LCG), Mersenne Twister (MT), XORshift, RC4, or
the Linear-Feedback Shift Register (LFSR). XOR CIPRNGs, which can be writ-
ten as general chaotic iterations using the vectorial negation (see [4]), have been
proven chaotic. They are able to pass all the most stringent statistical batteries
of test, for well-chosen inputted generators.

3.2 CIs-based hash function

Let us now present our hash function Hh : K×B∗ → BN that is based on GFCIs.
The key k = {k1, k2, k3} is in key space K, where k1, k2, and k3 are parameters
of the function. The proposed hash function Hh is realized as follows.

The first step of the algorithm is to choose the traditional hash function h
that it will be used in the proposed hash function. For our implementations,
we have chosen MD5, SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512. The
selected hash function determines the length N of the output hash value.

Then, the input message x is needed to transform into a normalized bits
sequence of length a multiple of N , by applying the SHA-1 normalization stage.
After this initialization, the length of the treated sequence X is L.

In the third step, k1 is used as seed to generate k2 pseudorandom binary
vectors of length N , with XOR CIPRNGs. This sequence is the chaotic strategy
S =

{
S0S1S2 . . . Sk2−1

}
.

In the forth step, k3 is considered as a binary vector of length N . Si ∈ S
is then combined with k3 using exclusive-or operation. After that we get a N
bit binary output. Then we split X into X =

{
X0X1 . . .

}
. Each Xi will be



combined with the output of S and K3 using exclusive-or operation. After that,
we use this result as the input of traditional hash function h.

Lastly, to construct the digest, chaotic iteration of Gf are realized with the
traditional hash function output h(k3,m,X) and strategy S as defined above.
The result of these iterations is a N bits vector. It is translated into hexadecimal
numbers to finally obtain the hash value.

So, the keyed hash function Hh : K×B∗ → BN is described as Algorithm 1.

Algorithm 1 The proposed hash function Hh

Input:
The key k = (k1, k2, k3) ∈ K;
The input message x ∈ B∗;
The standard hash function h();

Output:
Hash value Hh;

1: Transform x to sequence X which length is L;
2: Use XOR CIPRNGs to generate m using k1 as a seed and construct strategy
S =

{
S0S1 . . . Sk2−1

}
with m

3: Use standard hash function to generate hash value H = h(k3,m,X);
4: for i = 0, 1, 2, . . . , k2 − 1 do
5: Use GFCIs to generate hash value: Hh = Gf (Si, H);
6: end for
7: return Hh;

Hh is thus a chaotic iteration based post-treatment on the inputted hash
function. If h satisfies the collision resistance property, then it is the case too
for Hh. Moreover, if h satisfies the second-preimage resistance property, then it
is the case too for Hh, as proven in [5]. With this post-treatment, we can thus
preserve security while adding chaos: the latter may be useful to improve both
confusion and diffusion.

4 Experimental Evaluation

In this section, experimental evaluations are provided including hash values,
diffusion and confusion, and crash analysis. Let us consider that the input mes-
sage is the poem “Ulalume” (E.A.Poe) and the selected pseudorandom number
generator is B.B.S.

4.1 Hash values

The standard hash function that we use here is MD5. To give illustration of the
key properties, we will use the proposed hash function to generate hash values
in the following cases:

– Case 1. k1 = 50, k2 = 2, k3 = 50, and B.B.S.



– Case 2. k1 = 51, k2 = 2, k3 = 50, and B.B.S.
– Case 3. k1 = 50, k2 = 3, k3 = 50, and B.B.S.
– Case 4. k1 = 50, k2 = 2, k3 = 51, and B.B.S.

The corresponding hash values in hexadecimal format are:

– Case 1. F69C3F042ABA1139FF443C278FDF3F7F.
– Case 2. C31BFBDD43273913C7CC845EC5E3D1EE.
– Case 3. 43353FA45B9560413C059F7FD4F485FB.
– Case 4. BEA4CAD480333117292F421BFA401BEB.

From simulation results, we can see that any little change in key space K
can cause a substantial modification in the final hash value, which is coherent
with the topological properties of chaos. In other words, it seems to be extremely
sensitive to initial parameters.

A secured hash function should not only be sensitive to initial parameters,
but also to initial values. This is why we test now our hash function with some
changes in the input message, and observe the distribution of hash values. The
key we use here is k1 = 50, k2 = 2, k3 = 50, and standard hash function is MD5.

– Case 1. The input message is the poem “Ulalume” (E.A.Poe).
– Case 2. We replace the last point ‘.’ with a coma ‘,’.
– Case 3. In “The skies they were ashen and sober”, ‘The’ become ‘the’.
– Case 4. In “The skies they were ashen and sober”, ‘The’ become ‘Th’.
– Case 5. We add a space at the end of the poem.

The corresponding hash values in binary format are shown in Figure 1.
Through this experiment, we can check that the proposed hash function is sen-
sitive to any alteration in the input message, which will cause the modification
of the hash value.

For a secured hash function, the repartition of its hash values should be
uniform. In other words, the algorithm should make full use of cryptogram space
to make that the hash values are evenly distributed across the cryptogram space.
The cases here are the same as discussed above. In Figure 2(a), the ASCII codes
of input message are localized within a small area, whereas in Figure 2(b), the
hexadecimal numbers of the hash value are uniformly distributed in the area of
cryptogram space.

4.2 Diffusion and Confusion

We now focus on the illustration of the diffusion and confusion properties. Let
us recall that diffusion means that the redundancy of the plain text must be
dispersed into the space of cryptograms so as to hide the statistics of plain text.
Confusion refers to the desire to make the statistical relationship between plain
text, ciphertext, and keys as complex as possible, which makes attackers difficult
to get relation about keys from ciphertext. So under the situation of that when
the plain text is changed by only one bit, it leads to a modification of hash values
that can be described by the following statistics:
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Fig. 1. 128 bit hash values in various cases
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(b) Hash value use MD5.

Fig. 2. Spread of input message and the corresponding hash value

– Mean changed bit number: B = 1
N

∑N
i=1Bi;

– Mean changed probability: P = B
L × 100%;

– Mean square error of B: ∆B =
√

1
N−1

∑N
i=1(Bi −B);

– Mean square error of P: ∆P =
√

1
N−1

∑N
i=1(Bi

L − P )× 100%;

where N denotes the statistical times, and Bi denotes the changed bits of hash
value in ith test, while L denotes the bits of hash value in binary format. For
a secured hash function, the desired value of B should be L/2. The desired
distribution of hash algorithm should be that small toggle in plain text cause
50% change of hash value. ∆B and ∆P show the stability of diffusion and
confusion properties. The hash algorithm is more stable if these two values are
close to 0.

Let us check the diffusion and confusion of the proposed hash function. The
test procedure is described below. Firstly, we obtain the original hash value of
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Fig. 3. Distribution of changed bit numbers Bi with different standard hash functions

plain text. Then at each time, only one bit is changed in it. The hash values
of these modified plain texts are used to compare with the original hash value.
After N tests, B,P,∆B, and ∆P are calculated. The key used here is k1 =
50, k2 = 2, k3 = 50, N = 1000. As shown in Figure 3, we check the distribution
of changed bits of proposed hash function with MD5 and SHA-512. From these
figures, we can see that one bit changed in the plain text can cause about L/2
modifications in Bi.

Observing Table 1, even the iteration times are small, the mean changed bit
numbers B and the mean changed probabilities P are close to the desired values
L/2 and 50%. ∆B and ∆P are quit small. In other words, the proposed hash
function achieves desired values for such properties. These results illustrate the
diffusion and confusion of the proposed hash function Hh, and these capabilities
are quite stable. This feature is attributed to GFCIs that can change multi bits
in one time. To sum up, due to the fact that computational complexity can
be reduced here, we think it is better to apply it into practical applications.
Furthermore, compared with the performance of standard hash functions, which
is shown in Table 2, the proposed hash function shows better results.

4.3 Collision analysis

We now consider the analysis of impact resistance attacks. If hash function’s
ability to face collision is stronger, then the hash function is more security.
Through experiments can be quantitatively tested the collision resistance ability
of the proposed hash function. Firstly, we obtain the original hash value of plain
text and transform it to ASCII code. Then the plain text one bit modification is
applied and we obtain a new hash value in ASCII code. By comparing these two
hash values, we can get the positions where they have the same character. The



Table 1. Statistical performance of the proposed hash function (B.B.S.)

hash type Iterate Times B P (%) ∆B ∆P (%)

MD5
1 63.906 49.926 5.819 4.546
2 63.845 49.879 5.656 4.419
10 63.846 49.880 5.845 4.566

SHA-1
1 79.774 49.859 6.446 4.029
2 80.355 50.222 6.329 3.956
10 79.779 49.862 6.131 3.832

SHA-224
1 112.087 50.039 7.619 3.401
2 112.038 50.017 7.297 3.257
10 111.883 49.948 7.268 3.244

SHA-256
1 128.075 50.029 7.845 3.064
2 127.72 49.891 8.002 3.126
10 127.806 49.924 8.215 3.209

SHA-384
1 192.098 50.255 9.579 2.495
2 192.193 50.050 9.693 2.524
10 191.843 49.959 9.704 2.527

SHA-512
1 256.043 50.008 10.867 2.122
2 256.062 50.012 11.376 2.222
10 256.032 50.006 11.438 2.234

Table 2. Statistical performance of the standard hash function

hash type B P (%) ∆B ∆P (%)

MD5 63.893 49.916 5.437 4.248
SHA-1 79.770 49.856 6.359 3.975

SHA-224 112.284 50.127 7.324 3.270
SHA-256 127.746 49.901 8.405 3.283
SHA-384 191.81 49.951 10.036 2.613
SHA-512 256.084 50.016 11.232 2.194

absolute coefficient between these two hash values can be described as follows:

d =

N∑
i=1

|t(ei)− t(ěi)|, (10)

where N denotes the number of ASCII characters in the hash value, ei and ěi
are the ith character in former and new hash value separately. Function t(·) is
used to transform ei and ěi to decimal format. the theoretical value of average
absolute distance per character is 85.3333.

The key used here is k1 = 50, k2 = 2, k3 = 50, while testing times is 2048.
The experiment results are shown in Table 3. The second column shows the
number of hits, in which the fist component is the number of hits to zero, the
second component is to one, the third component is to two, the forth one is to
three, and the last one is to four. We can see that the maximum number of hits
is four with small probability. It is mainly in the number of collision to zero
and one. On the other hand, the average absolute difference d of the two hash



Table 3. Collision performance

hash type Number of hits sum of d avg d per character

MD5 (1931, 114, 3, 0, 0) 2956780 90.234
SHA-1 (1880, 159, 8, 1, 0) 3472244 84.772

SHA-224 (1837, 204, 7, 0, 0) 4629075 80.725
SHA-256 (1817, 214, 17,0, 0) 5348270 81.608
SHA-384 (1690, 328, 27,3, 0) 8398092 85.430
SHA-512 (1601, 392, 47,6, 2) 11042728 84.250

values per character, which is shown in the fifth column, is close to the desired
value 85.3333. Based on these results, the collision resistance capability of the
proposed hash algorithm is strong.

5 Conclusion

In this article, a chaotic iteration based hash function has been presented. When
constructing strategies, pseudorandom number generator is used. Then the gen-
eral formulation of chaotic iterations is exploited to obtain hash values. Through
the experimental evaluation of hash values, we can see that the proposed hash
function is highly sensitive to initial parameters, initial values, and keys. The
statistical performances show that the proposed hash function has better fea-
tures of diffusion and confusion even if the iteration times are small, which can
be considered for practical applications. And the proposed hash algorithm has
better performance of collision performance. To sum up, the proposed scheme is
believed a good application example for constructing secure keyed one-way hash
function.
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