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Abstract. A huge and continuous increase in the number of completely
sequenced chloroplast genomes, available for evolutionary and functional
studies in plants, has been observed during the past years. Consequently,
it appears possible to build large-scale phylogenetic trees of plant species.
However, building such a tree that is well-supported can be a difficult
task, even when a subset of close plant species is considered. Usually,
the difficulty raises from a few core genes disturbing the phylogenetic
information, due for example from problems of homoplasy. Fortunately, a
reliable phylogenetic tree can be obtained once these problematic genes
are identified and removed from the analysis. Therefore, in this paper
we address the problem of finding the largest subset of core genomes
which allows to build the best supported tree. As an exhaustive study
of all core genes combination is redhibitory, since the combinatorics of
the situation made it computationally infeasible, we investigate three
well-known metaheuristics to solve this optimization problem. More
precisely, we design and compare distributed approaches using genetic
algorithm, particle swarm optimization, and simulated annealing. The
latter approach is a new contribution and therefore described in details,
whereas the two former ones have been already studied in previous
works. They have been designed de novo in a new platform, and new
experiments have been achieved on a larger set of chloroplasts, to compare
together these three metaheuristics. Finally, the ways genes affect both
tree topology and supports are assessed using statistical tools like Lasso or
dummy logistic regression, in an hybrid approach of the genetic algorithm.
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1 Introduction

These last years the investigation of the evolutionary relationship between dif-
ferent plants has benefited from the multiplication of the available chloroplast
sequences. Indeed, thanks to various tools it is possible to process these sequences
in order to build a phylogenetic tree that accurately characterizes the evolu-
tionary lineages among the chloroplasts. Efficient coding sequence prediction



and annotation tools have been developed to deal specifically with chloroplasts,
for example DOGMA [1], and there is also a great choice for the alignment of
sequences. Moreover, given a set of sequences or characters, many well-established
bioinformatics programs based on Bayesian inference or maximum likelihood,
like BEAST or RAxML [2], can be used to reconstruct a phylogenetic tree. The
objective is to obtain the most reliable and robust phylogeny, for instance in
order to perform ancestral analysis with a high confidence level. Several methods
can be used to estimate the robustness of the produced tree, the most widely
used are the bootstrap and the decay (or Bremer) analyses.

Obviously, a first condition to be able to build a phylogenetic tree for a given
set of close plant species is to identify as precisely as possible the corresponding
core genome (the set of genes in common). However, even if the core genome is
large and accurate, the resulting phylogeny is not necessarily well-supported. In
fact, the core genome genes are not constrained through evolution in a similar
way. On the one hand some evolve under strong evolutionary constraints and
thus reflect the story of the species while, on the other hand, other genes evolve
more freely due to a lower role in the survival and adaptability of a species.
The latter tell their own history and thus disturb the phylogenetic information.
Furthermore, the way the robustness and accuracy of the obtained phylogenetic
tree are altered by the amount of used data for the reconstruction process is
not completed understood. Nevertheless, if we consider a set of species reduced
to lists of gene sequences, an obvious dependence between the chosen subset of
sequences and the obtained tree (topology, branch length, and/or robustness)
can be observed. This dependence is usually regarded by the mean of gene trees
merged in a phylogenetic network. In fact, phylogenetic networks are necessary
to represent events like horizontal gene transfers, but statistical methods to infer
such networks are still limited and under development.

In this article, we consider the situation from a dual point of view, that
consists in starting with the complete core genome and then to remove the genes
responsible for inconsistent phylogenetic signal. In other words, the objective
is to find the largest part of the core genome that produces a phylogenetic
tree as supported as possible, and which therefore gives the fairest view of the
relationships between most of the sequences under consideration. Searching the
problematic genes by exhaustively testing the combinations of core genome
genes is nonsense due their huge number. Therefore, to speed up the finding
of a satisfactory combination we rather consider metaheuristics. The first one,
introduced in a previous work [3], is an ad hoc Genetic Algorithm (GA) which in
some cases is not able to converge towards a suitable solution. Next, a Binary
Particle Swarm Optimization (PSO) approach has been published in the the CIBB
proceedings book [4]. Finally, in this article, which extends and improves the two
former ones, we study the relevance of the Simulated Annealing (SA) algorithm
to fulfill the optimization task. Also notice that the different metaheuristics have
been executed in a distributed manner using supercomputing facilities. To sum
up, the contribution of this article is threefold: first, it proposes a new simulated



annealing approach, second a new version of the PSO, and third a comparison of
the three metaheuristics on a large number of new groups of species.

The rest of this article proceeds as follows. Section 2 gives a general presen-
tation of the problem. The next section describes the different metaheuristics.
It begins with a brief recall of the already published GA and PSO approaches,
followed by a deeper insight of the new SA one. Section 4 is devoted to the
experimental comparison of the three metaheuristics Finally, this article ends
with a conclusion section, in which the article is summarized and intended future
work is outlined.

2 Problem description

Let us introduce the problem of determining a phylogeny (evolution tree) for a
given set of species by considering a set of chloroplast genomes that have been
annotated using DOGMA [1] (the approach we applied is detailed in Section 4).
To start we need to pick one or several genes on which the phylogeny will
be based. Therefore we use the restricted core genome [5,6], which consists
of conserved genes present everywhere, whose size is larger than one hundred
genes when the species are close enough. Then multiple sequence alignments are
performed using muscle [7] and finally a phylogenetic tree is inferred thanks to
the maximum-likelihood tree builder RAxML [2].

The relevance of the obtained tree is then assessed by its bootstrap values:
if these ones are all above 95 the tree is well-supported, in which case we can
reasonably estimate that the phylogeny of these species is solved. Bootstrapping
is a random sampling technique commonly used to estimate the significance of
branches of a phylogenetic tree. It consists to randomly select columns in the
aligned DNA core sequences to be neglected during the tree building process and
to check whether the same nodes are recovered. A large number of bootstrap
repetitions, usually between 50 and 1000, are used to assess the tree reliability.
As an illustration, a node which appears 95 times out of 100 by dropping a
column means that the node is well-supported. Conversely, a low support value
claims that a reduced part of the alignment supports the node, since by removing
columns the node is reconstructed in different ways.

When such a well-supported tree is not built, but rather a tree having
some branches exhibiting low supports, some genes of the core genome can be
responsible of this lack of support. The objective is then to identify the most
supported tree using the largest subset of core genes, a typical optimization
problem. Obviously, the optimization problem we face cannot be solved by a
brute force approach checking all possible combination of genes, due to the
resulting combinatorial explosion. Indeed, for a core genome of n genes there
would be 2n trees to infer and that is clearly intractable in practice. To overcome
such a combinatorial situation, a typical choice is to use a metaheuristic method.

In [3], we have first investigated the mixing of a genetic algorithm with Lasso
tests to find problematic genes. Unfortunately, thorough and careful experimental
investigations have led to results, recalled in Table 1, showing that this proposal



Group occ c # taxa b Terminus Likelihood Outgroup
Gossypium_group_0 85 84 12 26 1 -84187.03 Theo_cacao
Ericales 674 84 9 67 3 -86819.86 Dauc_carota
Eucalyptus_group_1 83 82 12 48 1 -62898.18 Cory_gummifera
Caryophyllales 75 74 10 52 1 -145296.95 Goss_capitis-viridis
Brassicaceae_group_0 78 77 13 64 1 -101056.76 Cari_papaya
Orobanchaceae 26 25 7 69 1 -19365.69 Olea_maroccana
Eucalyptus_group_2 87 86 11 71 1 -72840.23 Stoc_quadrifida
Malpighiales 422 78 10 96 3 -91014.86 Mill_pinnata
Pinaceae_group_0 76 75 6 80 1 -76813.22 Juni_virginiana
Pinus 80 79 11 80 1 -69688.94 Pice_sitchensis
Bambusoideae 83 81 11 80 3 -60431.89 Oryz_nivara
Chlorophyta_group_0 231 24 8 81 3 -22983.83 Olea_europaea
Marchantiophyta 65 64 5 82 1 -117881.12 Pice_abies
Lamiales_group_0 78 77 8 83 1 -109528.47 Caps_annuum
Rosales 81 80 10 88 1 -108449.4 Glyc_soja
Eucalyptus_group_0 2254 85 11 90 3 -57607.06 Allo_ternata
Prasinophyceae 39 43 4 97 1 -66458.26 Oltm_viridis
Asparagales 32 73 11 98 1 -88067.37 Acor_americanus
Magnoliidae_group_0 326 79 4 98 3 -85319.31 Sacc_SP80-3280
Gossypium_group_1 66 83 11 98 1 -81027.85 Theo_cacao
Triticeae 40 80 10 98 1 -72822.71 Loli_perenne
Corymbia 90 85 5 98 2 -65712.51 Euca_salmonophloia
Moniliformopses 60 59 13 100 1 -187044.23 Prax_clematidea
Magnoliophyta_group_0 31 81 7 100 1 -136306.99 Taxu_mairei
Liliopsida_group_0 31 73 7 100 1 -119953.04 Drim_granadensis
basal_Magnoliophyta 31 83 5 100 1 -117094.87 Ascl_nivea
Araucariales 31 89 5 100 1 -112285.58 Taxu_mairei
Araceae 31 75 6 100 1 -110245.74 Arun_gigantea
Embryophyta_group_0 31 77 4 100 1 -106803.89 Stau_punctulatum
Cupressales 87 78 11 100 2 -101871.03 Podo_totara
Ranunculales 31 71 5 100 1 -100882.34 Cruc_wallichii
Saxifragales 31 84 4 100 1 -100376.12 Aral_undulata
Spermatophyta_group_0 31 79 4 100 1 -94718.95 Mars_crenata
Proteales 31 85 4 100 1 -92357.77 Trig_doichangensis
Poaceae_group_0 31 74 5 100 1 -89665.65 Typh_latifolia
Oleaceae 36 82 6 100 1 -84357.82 Boea_hygrometrica
Arecaceae 31 79 4 100 1 -81649.52 Aegi_geniculata
PACMAD_clade 31 79 9 100 1 -80549.79 Bamb_emeiensis
eudicotyledons_group_0 31 73 4 100 1 -80237.7 Eryc_pusilla
Poeae 31 80 4 100 1 -78164.34 Trit_aestivum
Trebouxiophyceae 31 41 7 100 1 -77826.4 Ostr_tauri
Myrtaceae_group_0 31 80 5 100 1 -76080.59 Oeno_glazioviana
Onagraceae 31 81 5 100 1 -75131.08 Euca_cloeziana
Geraniales 31 33 6 100 1 -73472.77 Ango_floribunda
Ehrhartoideae 31 81 5 100 1 -72192.88 Phyl_henonis
Picea 31 85 4 100 1 -68947.4 Pinu_massoniana
Streptophyta_group_0 31 35 7 100 1 -68373.57 Oedo_cardiacum
Gnetidae 31 53 5 100 1 -61403.83 Cusc_exaltata
Euglenozoa 29 26 4 100 3 -8889.56 Lath_sativus

Table 1. Results of genetic algorithm approach on various families.

is not able to predict the phylogeny of some particular plant orders. As can be
seen, the lowest bootstrap value (or bootstrap score) obtained for 15 group of
species is below 95 (column b in the table). The relevance of binary particle
swarm optimization to find the largest subset of core genes has been studied
in [4], producing slightly better bootstrap scores than GA with Lasso. In this
paper we introduce a third well-known metaheuristic method, namely simulated
annealing, and we compare the three approaches considering new sets of species.
Like the two former ones, the computations with SA algorithm will be done in a
distributed manner. Multiple algorithm instances will be launched using a same
cooling schedule and at the end of each Markov chain, for a same temperature, a
centralized communication scheme will take place.

To sum up, Figure 1 gives an overview of the proposed pipeline to obtain the
ancestral history of a set of species.
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Fig. 1. Overview of the proposed pipeline.

3 Phylogenetic predictions using metaheuristics

3.1 Genetic algorithm approach

To make this article self-content, we summarize hereafter the main steps of the
genetic algorithm combined with Lasso test proposed in [3] aiming at finding
problematic genes in core genome.

The n core genes are sorted alphabetically, and at each subset we associate a
binary word of length n: its i-th character is 1 if and only if the i-th core gene is
in the considered subset. In the proposed GA, a first stage to initialize the GA
population (1) computes the set of n-length binary words containing the word
having only 1’s (the whole core genome which is composed of n genes), (2) all
words having exactly one 0 (all but 1 gene) further denoted as systematic mode,
and (3) 200 words having between 2 and 10 0’s randomly located. Each of these
words is associated with the score b+p

2 where b is the lowest bootstrap of the
reconstructed phylogenetic tree and p is the percentage of considered core genes.

More precisely, the population is initialized with the 50 best words. Then, the
GA iterates until discovering a word whose score is larger than 95, or at most for
200 iterations. Each iteration, which produces a new population, consists of the
following steps:

1. Repeat 5 times a random pickup of a pair (w1, w2) of words and mix them
using a crossover approach. In this step, indexes {1, . . . , n} are partitioned
into k, k ≤ n

2 , subsets I1, . . . Ik. A new word w is then defined by wi = w1
i if

i belongs to some Ij where j is odd; otherwise wi = w2
i . The obtained words

are added to the population P , resulting in population Pc.
2. Mutate 5 words of the population Pc. More precisely, for each of these words,
k randomly selected binary values of w are switched leading to a new word.
The mutated words are added to Pc leading to population Pm.

3. Produce population Pr by adding 5 new random binary words having less
than 10% of 0’s to Pm.

4. Select the 50 best words in population Pr to form the new population P .

The aforementioned GA may not produce well-supported trees. Nevertheless,
the whole set of produced words with their associated scores contains valuable



information about which gene breaks supports. The idea is to focus on each
topology having a frequency of occurrence larger than 10%. Then for each best
word of these best topologies, and for each problematic bootstrap in its associated
tree, we apply a Lasso test [8], which is recalled hereafter.

Let W be a m × n matrix where each line Wi = (Xi1, . . . , Xij , . . . , Xin),
1 ≤ i ≤ m, is a word. For each Wi, let Yi be the real positive support value
for each problematic bootstrap b per topology and per gene. The Lasso test
β = (β1, . . . , βi, . . . , βn) is thus defined by:

β = argmin


m∑

i=1

Yi −
n∑

j=1
βjXij

2

+ λ

n∑
j=1
|βj |

 . (1)

It is not hard to see that the sign of βj is positive (resp. negative) if the bootstrap
support increases (resp. decreases) with respect to j.

This test allows thus to remove problematic genes, i.e., genes j, 1 ≤ j ≤ n,
such that βj is negative. Finally, a last genetic algorithm phase is launched on
the updated population, in order to mix these promising words.

3.2 Binary particle swarm optimization approach

Particle swarm optimization is a stochastic optimization technique developed
by Eberhart and Kennedy in 1995 [9]. PSO has been successfully applied on
various optimization problems like function optimization, artificial neural network
training, and fuzzy system control. In this metaheuristic, particles follow a very
simple behavior that is to learn from the success of neighboring individuals. An
emergent behavior enables individual swarm members, particles, to take benefit
from the discoveries, or from previous experiences, of the other particles that
have obtained more accurate solutions. In the case of the standard Binary PSO
model [10], the particle position is a vector of N binary values parameters. A
function associates a score (real number) to such kind of vector according to
the optimization problem. The objective is then to define a way to move the
particles in the N dimensional binary search space so that they produce the
optimal binary vector with respect to the scoring function.

In more details, each particle i is represented by a binary vector Xi (its
position, which has the same meaning than binary words in GA, indicating
the gene contents of the associated core subset). Its length n corresponds to
the dimension of the search space, that is, the number of binary parameters to
investigate. Again, an 1 in coordinate j of this vector means that the associated
j-th parameter is selected. A swarm of L particles is then a list of position
vectors (X1, X2, . . . , XL) together with their associated velocities (V1, V2, ..., VL),
which are n-dimensional vectors of real numbers between 0 and 1. The latter
are initialized randomly. At each iteration, a new velocity vector is computed as
follows:

Vi(t+ 1) = wVi(t) + φ1
(
P best

i −Xi

)
+ φ2

(
P best

g −Xi

)
, (2)



where w, φ1, and φ2 are weighted parameters setting the level of each three
trends for the particle, which are respectively to continue in its adventurous
direction, to move in the direction of its own best position P best

i , or to follow the
gregarious instinct to the global best known solution P best

g . Both P best
i and P best

g

are computed according to the scoring function.
The new position of the particle is then obtained using the equation below:

Xij(t+ 1) =
{

1 if rij ≤ Sig(Vij(t+ 1)),
0 otherwise,

(3)

where rij is a threshold that depends on both the particle i and the parameter j,
while the Sig function is the sigmoid one [10], that is:

Sig(Vij(t+ 1)) = 1
1 + e−Vij(t+1) . (4)

Let us now recall how to use a PSO approach to solve our optimization problem
related to phylogeny [4].

In the PSO context the search space is {0, 1}n. Each node of this n-cube is
associated with the set of following data: its subset of core genes, the deduced
phylogenetic tree, its lowest bootstrap b and the percentage p of considered
core genes, and, finally, the score b+p

2 (as in the previous section). We thus
have to construct two phylogenies based on close sequences, leading with a high
probability to the same topology with close bootstraps. In other words, the score
remains essentially unchanged when moving from a node to one of its neighbors.
During swarm initialization, the L particles are randomly distributed among all
the vertices (binary words) of the n-cube that have a large percentage of 1’s. The
objective is then to move these particles in the cube so that they will converge
to an optimal node.

At each iteration, the particle velocity is updated by taking into account its
own best position and the best one considering the whole particle swarm (both
identified according to the fitness value). It is influenced by constant weight
factors as expressed in Eq. (2). We have set φ1 = c1 · r1 and φ2 = c2 · r2, where
c1 = 1 and c2 = 1, while r1, r2 are random numbers belonging to [0.1,0.5], and
w is the inertia weight that is computed based on the following formula:

w = wmax −
wmax − wmin

Imax
× I ′cur (5)

where Imax represents the maximum number of iterations (or time step) and
I ′cur is the current iteration. This equation determines the contribution rate of a
particle’s previous velocity and is determined as in [11].

To increase the number of included components in a particle, we have reduced
the interval of Eq. (2) to [0.1,0.5]. For instance, if the velocity Vij of an element (a
core gene) is equal to 0.51 and rij = 0.83, then Sig(0.51) = 0.62. So rij > Sig(Vij)
and this leads to 0 in the vector element j of the particle (Xij = 0). By minimizing
the interval, we increase the probability of having rij < Sig(Vij) and consequently



the number of 1s, which means more included elements in the particle (a larger
number of core genes). Note that a large inertia weight facilitates a global search,
while a small inertia weight tends more to a local investigation [12]. In other
words, a larger value of w facilitates a complete exploration, whereas small values
promote exploitation of areas. This is why Eberhart and Shi [13] suggested to
decrease w over time, typically from 0.9 to 0.4, thereby gradually changing from
exploration to exploitation. Finally, each particle position is updated according
to Eq. (3).

Traditional PSO algorithms are time consuming in sequential mode, a dis-
tributed version is thus appealing. The general idea of the proposed distributed
PSO algorithm is simple: a processor core is employed for each particle in order
to compute its fitness value, while a last core called the master centralizes the
obtained results. In other words, if we have a swarm of ten particles, we use
ten cores as workers and one core as master (or supervisor). More precisely, the
master initializes the particles of the swarm and distributes them to the workers.
When one worker finishes its job, it sends a “terminate” signal with the fitness
value to the master. This latter waits until all the workers have finished their jobs.
Then, it determines the position of the particle that has the best fitness value as
the global best position and sends this information to the workers that update
their respective particle velocity and position. This mechanism is repeated until
a particle achieves a fitness value larger than or equal to 95 with a large set of
included genes. In the following, two distributed versions of the PSO described
previously are considered.

The former, further denoted as PSO version I, updates the velocity as follows:

Vi(t+ 1) = x · [Vi(t) + C1(P best
i −Xi) + C2(P best

g −Xi)] (6)

where x, C1, and C2 are weighted parameters setting the level of each three trends
for the particle. The default values of these parameters are C1 = c1 · r1 = 2.05,
C2 = c2 · r2 = 2.05, while x, which represents the constriction coefficient, is
computed according to formula [14,15]:

x = 2× k
|2− C − (

√
C × (C − 4))|

, (7)

where k is a random value between [0,1] and C = C1 + C2, C ≥ 4. According
to Clerc [15], using a constriction coefficient results in particle convergence over
time. This latter, denoted as PSO version II, updates the velocity as formalized
in Eq. (2).

3.3 A new simulated annealing approach

General presentation The original Simulated Annealing (SA) method is a
local search based threshold class algorithm. Basically, a threshold algorithm is a
loop in which a move is either done or not, according to a given criterion and until
reaching a freeze [16]. Specifically, after an initialization step, this loop is composed



by (a) a move in the neighborhood of the current solution, (b) an evaluation of
this new position by a real-valued scoring function, then (c) a test, given a well
chosen criterion, to store this position as the new best one. Various criteria can
be considered. For instance, if a position is evaluated as a better solution than the
best existing one, it becomes the reference solution for next iterations when the
acceptation criterion is “only if best cost (score)” algorithm, which is a variant
of a classical greedy local search [17]. The “all is accepted” algorithm produces,
for its part, a random walk. Finally, between these two extremal situations, an
acceptation criterion allows to store sometimes too positions with poorer scores
than the best solution, which is an upward move via a stochastic component to
avoid local minima. Such a stochastic approach facilitates theoretical analysis of
asymptotic convergence. As such algorithms can be successfully used for a broad
range of optimization problems, SA has been largely covered in the literature
during the last decades [18,17], for both empirical [19,20] – typically on NP-hard
problems – and theoretical perspectives [21,17].

In simulated annealing, the criterion is inspired by the Metropolis-Hastings
statistical (Markov chain Monte Carlo) thermodynamics algorithm [17]. SA
simulates the cooling of a material in a heat bath until a steady (frozen or
thermodynamic equilibrium) state. When the solid material is heated over its
melting point, its solidification rate induces its structural properties. Two major
antagonistic strategies are commonly used. On the one hand, after a fast cooling
(quenching), the steady state is constituted by different thermodynamic free level
areas. This corresponds to a local minimum for a local search, when considering
energy as a score. On the other hand, after a slow cooling (annealing), almost
one sole thermostatic level is expected, which corresponds to a global minimum.
As feasible solutions of SA are system states, the structural proximity of the
latter leads to the concept of solution neighborhood.

Thermodynamic laws show that at temperature t, the probability to increase
in energy of the value δE is given by p(δE) = exp(−δE/kt) with k equal to the
Boltzmann’s constant. Metropolis simulations [22] consist in the generation of
a state perturbation, in the evaluation of energy modification, and finally in
the decision to reject or not the new state according to the probability p(δE).
That is, the probability to keep a better (lower) level of energy is 1, while the
one to keep an infinitely worst level of energy is equal to 0. Or, in other words,
the likelihood to save a given state decreases as the energy level increases. A
best global solution is reached by searching series of equilibria. Each equilibrium
is obtained by series of Metropolis thresholds. The stop condition is typically
an arbitrary duration or a number of loop iterations. Then the temperature is
decreased and the last obtained equilibrium becomes the starting state for a new
series of thresholds. The final stop is triggered if no improvement has been found
since an arbitrary number of equilibria.

Let us finally notice that, as a large set of temperature cooling schedules (de-
creasing function [23,24]), of moving functions, of criteria, of strategies regarding
initial values, of improvements on score function, of stop criteria, and even of
theoretical modeling [25,26,17,27] have been proposed in the literature [28,26,29],



simulated annealing should be regarded more as a large family of algorithms than
as a single one. Some members of the family including Basin Hopping [30] are
themselves described as frameworks for ad-hoc global optimization algorithms.

A general overview of our proposal can be found in Figure 2, while algorithm
details are provided hereafter.

Designing SA for phylogenetic studies The objective is now to apply the
simulated annealing method to find the largest subset of core genes that leads to
the most supported phylogenetic tree. Intermediate computations of subsets will
help to understand, using regressions, the effects of given genes on both topology
and supports. However, SA is complex to set up in practice, and finding new
optima in finite time cannot be guaranteed, as related by Aarts, Korst, and van
Laarhoven [16]. To enlarge the probability of success, we targeted the following
requirements during our experiments:

– a concise representation for the problem under consideration;
– a cooling schedule fitting with complexity, time, convergence, and precision

considerations;
– a moving function adapted to the state (solution) space;
– and, similarly, an acceptation function adapted to the state space.

These four requirements are discussed hereafter.

Temperature scheduling. A criterion to increase the probability to reach conver-
gence is the so-called logarithmic fading of control parameter (i.e., temperature).
The most simple choice is tn+1 = C · tn, where C ∈]0, 1[ is a constant. However,
according to our experiments, such a solution is not able to produce relevant
results in the phylogenetic problem under consideration. This is why the control
parameter has been updated following a tiered approach, leading to an inho-
mogeneous Markov model: the temperature decreases only after the end of its
associated Markov chain. Additionally, near an equilibrium, the Markov chain
length must increase when the control parameter decreases. But, as above, at
low temperature the computation time may become prohibitive without any syn-
chronisation between the control parameter and the Markov chain characteristics.
To solve such an issue, various schedule solutions proposed in the literature link
these two parameters. After having tested classical benchmarking functions like
the well known three-hump camel, Levi, and Booth, we finally have chosen:

tn+1 =

 tf

t
1

nm−1
i

× tn
where t is the control parameter, ti and tf are respectively the maximum (initial)
and minimum (final) of allowed control parameter values for the SA computation,
while nm is the maximal number of Markov chains (equal to the temperature
steps) allowed during computation.
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Fig. 2. Simulated annealing as a threshold class algorithm.



About a relevant configuration of SA according to the state space. As in the
other methods, the state space is constituted by Boolean vectors Xi of the form
(Xi1, . . . , Xin), where n is the number of core genes. Xij is equal to 1 if and
only if gene number j in alphabetic order is in the alignment provided to the
phylogenetic tool. We thus navigate again on the n-cube on which each node
(that is, each state) corresponds to a subset of core genes and has additionally a
labeled value provided by the subset scoring function – which is again the average
between the lowest bootstrap and the number of selected core genes. We can
easily define a distance between two points inside this cube, like an Hamming
distance between Boolean vectors, and the node score can be considered as the
altitude of the current position.

To sum up, there is a topology on the state space, with neighborhood notion
between two states, while the altitude (the score of a subset of genes, which is
related to the SA energy) is varying between two locations. Both the density
and the form of energy peaks are varying through the landscape. Neighborhoods
and moves, acceptation probability, temperature scheduling functions, and their
related initial values are dependant on the characteristics, or the topology, of
this state space. Obviously, there is no general way to set up the parameters of
the simulated annealing in this situation, as usually with such heuristics. Even
choosing close configurations of closely related problems like similar chloroplasts
is not a guarantee of success.

Having these considerations in mind, we have stated some hypotheses at
the basis of the neighboring notion. First of all, we assume that a solution is
better if it is closer to the whole core genome, so improving the number of 1’s
in the Boolean vector is a desired trend. Secondly, we assume no correlation
between genes, and so removing (or adding) one gene cannot modify so much the
scoring function. As a consequence, the next investigated state should be near
the previous one, in terms of Hamming distance, and most likely with a similar
or larger number of active genes. In particular, moves in the state space cannot
be randomized as what occurs in the original SA algorithm. Furthermore, the
starting state must be the Boolean vector constituted by 1’s (that is, the whole
core genome), while the scoring function must preferably tend to add genes in
the considered subset (if possible). With such requirements, the neighborhood
function has been designed as follows:
– A number between 1 andmove_distancemax (a parameter to set) is randomly

chosen, following a Gaussian law. It corresponds to the number of coordinates
that may possibly change.

– A subset of distinct coordinates are chosen accordingly, defining this move.
– For each Boolean coordinate, if the associated gene is inactive (0), it is

activated (1). Otherwise, the gene is inactivated with a probability equal
to nz

nc × α, where nz is the number of inactivated genes in the best current
solution, nc is the total number of core genes in the problem, and α is a
user-defined parameter.

Proposed SA optimization. Scores in this proposal are obtained using RAxML [31].
As an inference of a bootstrapped and rooted phylogenetic tree may take times,



and as we need to compute several trees, each calculated state is tagged so
that it is never recomputed without an explicit user demand. Associated and
detailed results are buffered on disk. Then a simple, reliable, and not really
space-characteristics dependent solution is the synchronization of some SAs after
the end of a Markov chain [32]. In order to do so, a batch of SAs is launched
with the same configuration. After a chain, each running SA shares its own best
known solution to a server. Then, it demands to this server if a better state has
been found before starting the next chain. Finally, each SA halts after n local
non optimizing chains. So a stopped SA is not restarted, even if a better solution
is found elsewhere (i.e., the proposed SA stops as soon as possible).

Acceptance function is also selected to take advantage of previous moves, to
allow some (not too large) jumps. This is an adaptation of the so-called Tsallis
acceptance probabilities [28] with a control parameter normalization:(

1− (1− q) ∗∆
∆̄ ∗ t

) 1
1−q

,

where ∆ is the score difference between the previous and current states, ∆̄ their
mean, t is a control parameter, and q is a user-defined factor.

How to stop the SA. To fix a predefined control (temperature) value needs to
know some state space characteristics, so we choose an end criterion related to
the absence of progression in scores. In other words, the proposed simulated
annealing algorithm stops after n consecutive Markov chains without any score
improvement. As SA is very slow on low temperatures, the choice has been to
choose a small value for n. Then, a greedy local search can be launched on SA
best states.

4 Comparison of the metaheuristics

4.1 Data generation

Genomes recovery and annotations 780 complete genomes of chloroplasts
have been downloaded from the NCBI, constituting the set of all available
complete chloroplastic genomes at the date of the beginning of our study [4].
Various gene prediction methods have been previously tested, in order to translate
these complete genomes in lists of annotated coding sequences. These methods
encompass the single use of NCBI annotated genomes, the use of automatic
annotation tools specific to organelles like DOGMA [1], and the mix of both.

Indeed, annotations from NCBI website are of very variable quality: humanly
well-curated genomes go together with genomes having a lot of annotation errors,
concerning either the gene names (classification or spelling errors) or DNA
sequences (start and stop position, length). As the number of well annotated
genomes was not enough to constitute a testing set for our experiments, we
are then left to find an acceptable way to annotate the whole 780 complete
genomes. As stated above, we tested various ways to annotate the genomes, and



we evaluated them by checking their ability to recover the annotations (sequence
positions and gene names) of the subset of humanly, well-curated genomes.

According to our experiments, there was no way to improve enough the quality
of NCBI annotations [33]. Neither by cross-validating them using automatic
annotation tools, nor by trying to correct errors in gene names and positions with
these tools and some edit distances [34,35]. Furthermore, to cluster the whole
NCBI DNA sequences fail in separating well annotated genes in well separated
clusters, due to junk DNA in the NCBI sequences. The large number of obvious
errors in the NCBI annotated complete chloroplastic genomes can be explained
by the large variety of annotation tools used during sequence submission, most
of them being not specific to this kind of genomes (unlike DOGMA), to a misuse
of these tools, or due to errors in manual annotations. The absence of a clear
norm in the gene naming process adds difficulties, so that the sole method to
provide accurate annotations to these 780 complete genomes was to constitute a
basis of knowledge, with a subset of well curated genomes that represent well
the plant diversity. And, to blast each genome against the basis, which is indeed
what is done by DOGMA.

We finally have written a script that automatically send requests to the
DOGMA web service, and recovers the annotated genomes. Due to this automatic
process, the gene name spelling issue is resolved, and we can recover the clusters of
homologous coding sequences by simply considering gene names. By applying the
same tool for coding sequence prediction and naming process, we have resolved
the problem of quality variability in annotations. And as DOGMA has been
specifically designed for chloroplasts, errors in sequence positions have been
reduced as possible. At this stage, and using our script on DOGMA web service,
we have then a collection of 780 complete and “well” annotated chloroplastic
genomes, from which gene names can be used to recover core and pan genomes
of any subset of genomes.

Extracting subsets of genomes for simulations To test the ability, for the
three proposed metaheuristics methods, to find the largest subset of core genes
that leads to the most supported trees, we needed to extract, from the set of
annotated genomes, various distinct subsets that are such that:

– Using the whole core genome in the alignment, we cannot obtain a well
supported tree.

– The time to compute this tree is reasonable, as we want to compute a lot of
trees using a lot of subsets of core genes. For a given subset of core genes,
this computation time encompasses:
1. the multi-alignment of each core gene using Muscle [7],
2. the concatenation of each aligned sequence to reconstruct the “sub”

genome of each considered species (i.e., the part corresponding to the
considered subset of core genes),

3. the computation of the best phylogenetic tree corresponding to this
alignment (with RAxML [31]),

4. the addition of bootstrap supports to this best tree using RAxML again,



5. and finally the verification that one of these supports is lower than 95 at
least. If so, this tree is considered as not well supported.

Given a subset of genomes, the multi-alignment of each core gene can be
computed only once, prior to the research of the best subset of core genes leading
to the most supported tree. So we do not have to consider the alignment stage
when searching subsets of genomes with: (a) problematic phylogenies and (b) a
time to infer their tree as low as possible. We stopped the process above before
Stage 4 and we randomly pick another subset of species if the time to find their
best phylogenetic trees using their whole core genome (i.e., Stage 3) exceeds 10
seconds. If this computation time is below this threshold, we then compute 50
bootstraps and we check if the best bootstrapped tree has a problem of supports.
If so, we have found a convenient subset of annotated genomes, on which we can
test the three metaheuristics.

A simple comparison in small dimensions After having executed the three
metaheuristics previously described, we have validated them on test examples.
We have first performed a 1D/2D comparison of the three proposals, to obtain
an easy-to-understand representation of the convergence of the optimization
algorithms. Obtained results are depicted in Figure 3, circles denote successive
positions given by SA, points are for GA, while PSO corresponds to triangles.
Figure 4 represents the output evolution of the simulated annealing, with the
consecutive ends of the Markov chains and the evolution of acceptation density.
From the results, we can deduce that the desired convergence behavior is well
obtained, and that the comparison seems fair: no algorithm seems to underperform
the other ones, and the general evolution of the energy seems to be comparable
for the three algorithms. Such results allow us to further investigate simulated
annealing, particle swarm optimization, and genetic algorithm for their ability to
find the largest subset of core genes that leads to the most supported tree.

4.2 Experimenting the heuristics on small collections of genomes

We first focus on small sets of species with unresolved phylogenies, for compu-
tational reasons and because small trees are easier to compare. Even in such
small sets, as the core genome contains more than 100 genes, the number of
combinations to test is far from what is tractable using a brute force approach.
We will see that it is easy to obtain various opposed but very well supported
trees using large subsets of core genes, leading to the necessity to optimize both
parameters.

A first family of algae We have first considered the family listed in Table 2.
The detailed taxonomy information is provided hereafter.

– Cylindrotheca closterium. Stramenopiles; Bacillariophyta; Bacillariophyceae;
Bacillariophycidae; Bacillariales; Bacillariaceae.



Fig. 3. Successive positions given by the three metaheuristics: circles, points, and
triangles are respectively for SA, GA, and PSO.

– Thalassiosira oceanica CCMP1005. Stramenopiles; Bacillariophyta; Cos-
cinodiscophyceae; Thalassiosirophycidae; Thalassiosirales; Thalassiosiraceae.

– Cerataulina daemon. Stramenopiles; Bacillariophyta; Mediophyceae; Bid-
dulphiophycidae; Hemiaulales; Hemiaulaceae.

– Pelargonium cotyledonis. Viridiplantae; Streptophyta; Embryophyta; Tra-
cheophyta; Spermatophyta; Magnoliophyta; Eudicotyledons; Gunneridae;
Pentapetalae; Rosids; Malvids; Geraniales; Geraniaceae.

– Fistulifera solaris. Stramenopiles; Bacillariophyta; Bacillariophyceae; Bacil-
lariophycidae; Naviculales; Naviculaceae.

– Leptocylindrus danicus. Stramenopiles; Bacillariophyta; Coscinodisco-
phyceae; Chaetocerotophycidae; Leptocylindrales; Leptocylindraceae.

Accession Nb Name Nb. of genes Length (nuc.)
NC_024082.1 Cylindrotheca closterium 257 165,809
NC_014808.1 Thalassiosira oceanica CCMP1005 138 141,790
NC_025313.1 Cerataulina daemon 195 120,144
NC_028052.1 Pelargonium cotyledonis 271 166,111
NC_015403.1 Fistulifera solaris 192 134,918
NC_024084.1 Leptocylindrus danicus 155 125,213

Table 2. Family number 1 (Pelargonium cotyledonis as outgroup).



Fig. 4. Illustration of output provided by simulated annealing approach: three-hump
camel function, one instance of parallelled SA with final greedy local descent.

This family is constituted by 6 genomes, of length ranging from 120,144 to
166,111 nucleotides. The number of detected genes, for its part, ranges from
138 to 271, with a core genome of 122. The phylogeny with the alignment of
these core genes leads to a small weakness in one branch (bootstrap of 94),
as depicted in Figure 5. Indeed, inside this bacillariophyta phylum (eukaryotic
algae), C.closterium, and F.solaris are naturally in the same clade, being both
in the same class of bacillariophyceae, while the three other species are in three
different classes inside this phylum.

To wonder whether some genes may be responsible of such weak uncertainty,
we have firstly launched the genetic algorithm: its systematic mode (in population
initialization stage) indeed first tries to remove each core gene separately. This
GA has stopped after 29 iterations, in systematic mode, leading to 2 topologies:

– Topology 0, depicted in Fig. 6(a), has occurred 27 times. The best obtained
tree has a lowest bootstrap of 96, while in average the lowest bootstrap is
equal to 86.

– Topology 1, for its part (see Figure 6(b)), has occurred twice, with a non
supported branch of 64 in its best tree.

As during these experiments, we have not leaved the initialization phase, it
is useless to detail here the parameters set to configure the GA. The PSO, for



Fig. 5. Phylogeny of family Number 1 with the whole core genome.

its part, has been configured as follows: 3 particles, a fitness lower than 0.05
to freeze the runs, and all constants that define the velocity equal to 1. This
heuristics has rapidly found a first well supported phylogenetic tree in a third
different topology, and with all supports equal to 100, see Figure 6(c). However,
the PSO has used only 47.5% of the core genes to reach such a tree. According to
our stop criterion, this tree has not been returned by the algorithm. Indeed, this
example illustrates the ability of the particle swarm optimization algorithm to
more globally visit the whole space at the beginning, in order to discover regions
of interest.

If we compare for instance the behavior of the PSO during the same time than
the one required to finish the GA (29 iterations), we discovered 5 topologies, two
of them having all their supports equal to 100 (Topologies 0 and 2 in Figure 6,
occurring respectively 17 and 7 times). They however used only between 44.26%
and 48.36% at this starting point in the PSO. Bit by bit, over iterations, the
percentage of core genes is enlarging, and the swarms tend to prefer the Topology
0. Finally, after 350 computed trees (which was the stopping condition), this
topology has been obtained in 53.42% of the cases, and its best tree has a lowest
bootstrap of 100 using 66.39% of core genes. The number of occurrences of the
other topologies has growth more slowly and, even if all the bootstraps of their
best representatives exceed the value of 98, the latter fails in the attempt to
significantly increase the number of considered core genes in these representatives
(always lower than 55.8%).

The simulated annealing, for its part, raised 3 topologies, exactly the ones
depicted in Figure 6. It has been launched with an initial temperature equal
to 100, a final one of 1e-10, and an optimal exponential temperature function.
Acceptation function was the Tsallis normalized one, with a q factor of 0.25,
and initial (resp. final) acceptance of 0.7 (resp. 1e-05). A remarkable element is
that these 3 topologies have the whole bootstraps equal to 100. Furthermore,
Topology 2 appears as the best one according to the produced result (it was



(a) Topology 0 (b) Topology 1

(c) Topology 2

Fig. 6. Obtained topologies with the first family.

Topology 0 according to the GA, while PSO has not succeeded in separating these
two topologies). With details, the SA has stopped after 364 computed trees, with
6 occurrences of Topology 0, 43 of Topo. 1, and 315 for the Topology 2. Similarly,
the percentage of core genes leading to the best representative in each topology
is respectively of 56.56% (Topo. 0), 74.59% (Topo. 1), and 94.98% (Topo. 2),
which thus outperforms the other ones according to these simulations.

Obviously, both PSO and SA have converged to local minima that are not
global ones if we consider that both minimum bootstraps and proportion of core
genes must be maximized. Launching them again with other initial values and
parameters may select other optimal positions in the cube. The genetic algorithm
with this family is emblematic, as during its initial population generation it has
returned Topology 0 that is totally supported with 99.18% of the core genome.
This topology seems to be an acceptable representation of the phylogenetic



relationship between these chloroplasts. But it is remarkable that, using the same
large proportion of core gene, we can break in the sister relationship between
L.danicus and C.daemon. Indeed, this behavior has been obtained frequently
with various collections of data, which will be illustrated below.

Up to now, we only have considered one problematic bootstrap, which may
be easy to resolve when removing genes. New difficulties are added when there
are at least two problems in the list of bootstraps, as improving the first one may
lead to a decrease in the second value. We have investigated this point in the
second tested family.

Accession Nb Name Nb. of genes Length (nuc.)
NC_024082.1 Cylindrotheca closterium 257 165,809
NC_014808.1 Thalassiosira oceanica CCMP1005 138 141,790
NC_027721.1 Pseudo-nitzschia multiseries 267 111,539
NC_024084.1 Leptocylindrus danicus 155 125,213
NC_014340.2 Chromera velia 265 120,426

Table 3. Family number 2 (Chromera velia as outgroup).

A second family with two problematic bootstraps The second small set
of genomes is constituted by 4 Bacillariophyta plus an Alveolata as outgroup, as
listed in Table 3. Taxonomic details are provided hereafter, while the phylogenetic
tree based on the alignment of the core genome is provided in Figure 7(a).

– Cylindrotheca closterium. Stramenopiles; Bacillariophyta; Bacillariophyceae;
Bacillariophycidae; Bacillariales; Bacillariaceae.

– Thalassiosira oceanica CCMP1005. Stramenopiles; Bacillariophyta; Cos-
cinodiscophyceae; Thalassiosirophycidae; Thalassiosirales; Thalassiosiraceae.

– Pseudo-nitzschia multiseries. Stramenopiles; Bacillariophyta; Bacillario-
phyceae; Bacillariophycidae; Bacillariales; Bacillariaceae.

– Leptocylindrus danicus. Stramenopiles; Bacillariophyta; Coscinodisco-
phyceae; Chaetocerotophycidae; Leptocylindrales; Leptocylindraceae.

– Chromera velia. Alveolata; Chromerida

The phylogenetic tree is not well-supported, having two bootstrap values of 86.
Furthermore, T.oceanica and L.danicus are not sisters in this tree, while they
belong in the Coscinodiscophyceae class of diatom. More seriously, the two other
species belong to the Bacillariaceae family, which is in contradiction with this
tree. It is not a necessity to recover exactly the known taxonomy, as we focus on
chloroplasts, but this tree is at least suspicious if we consider both supports and
taxonomy. This example illustrates the fact that to use the largest common subset
of sequences is not sufficient enough to guarantee a well conducted phylogenetic
study. Conversely, and obviously, to have good supports is not enough, as all
best trees in the different topologies of the previous family are well supported



in the SA case: the largest number of core genes must be thus coupled with the
research of the best supports.

(a) Topology 0 with the whole core genome (b) Topology 1 obtained by GA

Fig. 7. Obtained topologies with the second family.

Once again, the genetic algorithm has stopped rapidly, in the systematic mode.
The 22 first genes have been tested (i.e., removed) before finding Topology 0
of Figure 7(a) with a lowest bootstrap equal to 96 (and 99.18% of the genes),
thus stopping the GA, while a new topology (Topology 1, see Fig. 7(b)) has
occurred three times (best tree having twice 94 as bootstraps). Compared with
the first family, the genetic algorithm stops here before succeeding to reinforce
the confidence put in Topology 0, which justifies to test the two other approaches.

PSO heuristics produces the same two topologies after 1165 computed trees,
with all supports equal to 100, and approximately the same number of trees
(632 for Topo. 0 and 533 for Topo. 2) and of genes (70.49% versus 74.59%). We
stopped the swarm manually, as these two scores have not been improved during
the last 500 iterations. Obviously, the 3 particles have been blocked in two local
extrema, and the way we configured their velocity (0.9 and 0.8 for φ1 and φ2)
does not allow them to leave these optima. So we still cannot choose definitively
the topology number 0.

Finally, the simulated annealing has produced 400 trees before convergence.
They all belong to the two topologies detailed above. However, produced results
show that Topology number 1 must be preferred, according to the SA, and this
latter is neither the one obtained with the whole core genome, nor the best one
according to GA. Indeed, after convergence, all bootstraps here are equal to 100
in the best tree found inside each topology. But topology of Figure 7(b) has been
obtained in 88.5% of the cases. More significantly, best tree in Topology 1 is
obtained using 96.72% of the core genome, while for Topology 0, the best tree
uses 90.98% of it. Remark that using the nine-tenths of the core genome, you can



Fig. 8. Illustration of clade analysis with a 3-parallelized SA.



obtain a first topology with all supports equal to 100, while using more than 96%
you can find a different topology with again all supports equal to 100. And, if we
consider the average between the lowest bootstrap and the proportion of core
genes as a score, the best topology according to GA has a score of 97.59/100,
while it is of 98.36 for Topology 1 found by the SA.

We will now further investigate the simulated annealing convergence process,
before studying more deeply the two other algorithms in a next section.

4.3 Early analysis on SA computed problem: an illustration

An example of a SA batch run (three clients on the first family described
previously) is depicted in Figure 8. For easy understanding, only some outputs
have been reported in the figure.

On the lower part, all moves of the simulated annealing are reported with
their nature : synchronized move in yellow (i.e., copy, from a shared memory,
of the best known solution found in the three SAs), move with an accepted
status in orange, and rejected moves in black. Active genes are filled squares
and not selected ones are white squares. Other important data for analysis are
reported, such as: temperature, accepted score of other SAs (green and purple),
and Hamming distance between two consecutive positions (moving behavior
indicator).

On the upper part, a graph of accepted scores from the three SAs is provided,
with the temperature variations due to move iterations (a lower score is a better
one). As we represented the first run on a new collection of genomes, no previous
configurations were available to set up the parameters. Consequently, a broad
range of temperatures has been considered. The Markov chains are short, in
order to reduce the computation time. From this beginning of an experiment, it
can be deduced that:

– the temperature ranges well, allowing further experiments on the same set of
data;

– even with a poor configuration, SAs have found a score “not so bad”, which
is associated to a topology that other heuristics have considered as a good
one.

Another SA evolution is provided in Figure 9, in which the three main curves do
not represent moves, but “moves of locally selected moves”, which are stabilized
over time.

4.4 A further comparison of the distributed versions of GA and
BPSO performance

During the experiments of the previous section, it was impossible to evaluate in
practice the behavior of the genetic algorithm, as this latter found an optimum
during the initialization stage. Similarly, BPSO has underperformed the two
other algorithms, while SA always produced interesting results. This is why we



Fig. 9. Illustration of convergence on 3-parallelized SA.

decided, after having studied the SA evolution on the first family, to further
investigate both BPSO (with its two velocity versions) and GA in large collections
of experiments, distributed in a supercomputer facilities. To do so, 12 groups of
plant genomes have been extracted from our set of annotated genomes. They
have been applied on our two swarm versions, and results have been compared
to the genetic algorithm ones.

Comparisons are provided in Tables 4 and 5. In these tables, Topo. column
stands for the number of topologies, NbTrees is the total number of obtained
trees using 10 swarms, b is the minimum bootstrap value of selected w, 100− p
is the number of missing genes in w and Occ. is the number of occurrences of
the best obtained topology from 10 swarms. As can be seen in these tables, the
two versions of BPSO did not provide the same kind of results:

– In the case of Chlorophyta, Pinus, and Bambusoideae, the second version of
the BPSO has outperformed the first one, as the minimum bootstrap b of
the best tree is finally larger for at least one swarm.

– In the Ericales case, the first version has produced the best result.

We can also remark that Malpighiales has better b in GA than the two versions
of BPSO. Pinus data set has got maximum bootstrap b larger than what has
been obtained using the genetic algorithm, while Picea and Trebouxiophyceae
have got the same values of b than with genetic algorithm. Further comparison
results between GA and both versions of BPSOs are provided in Figure 10.

According to this figure, we can conclude that the two approaches lead to
quite equivalent bootstrap values in most data sets, while on particular subgroups
obtained results are complementary. In particular, BPSO often produces better
bootstraps than GA (see Magnoliidae or on Bambusoideae), but with a larger



Table 4. Groups from BPSO version I.

Group Topo. NbTrees b |c| 100− p′ Occ. Swarms Particles
Pinus 3 508 98 79 32 462 1,2,3,4,5,6,7,8,9,10 10
Pinus 3 530 94 79 11 129 1,2,3,4,5,6,7,8,9,10 15
Picea 1 100 100 85 42 100 1,2,3,4,5,6,7,8,9,10 10
Picea 1 428 100 85 13 428 1,2,3,4,5,6,7,8,9,10 15

Magnoliidae 3 750 100 79 20 613 1,2,3,4,5,6,7,8,9,10 10
Magnoliidae 3 845 100 79 19 707 1,2,3,4,5,6,7,8,9,10 15
Ericales 30 344 53 84 26 185 1,2,3,4,5,6,7,8,9,10 10
Ericales 34 555 54 84 5 363 1,2,3,4,5,6,7,8,9,10 15

Bambusoideae 8 496 72 94 37 456 1,2,3,4,5,6,7,8,9,10 10
Bambusoideae 11 694 69 94 18 621 1,2,3,4,5,6,7,8,9,10 15
Eucalyptus 16 828 86 83 7 632 1,2,3,4,5,6,7,8,9,10 10
Eucalyptus 20 1073 86 80 4 845 1,2,3,4,5,6,7,8,9,10 15
Malpighiales 34 327 65 78 35 233 1,2,3,4,5,6,7,8,9,10 10
Malpighiales 38 483 69 78 40 326 1,2,3,4,5,6,7,8,9,10 15
Chlorophyta 25 191 70 24 11 109 1,2,3,4,5,6,7,8,9,10 10
Chlorophyta 29 94 68 24 11 1 1,2,3,4,5,6,7,8,9,10 15
Euglenozoa 3 450 100 26 7 292 1,2,3,4,5,6,7,8,9,10 10
Euglenozoa 3 520 100 26 4 491 1,2,3,4,5,6,7,8,9,10 15

Ehrhartoideae 2 23 100 81 0 23 1,2,3,4,5,6,7,8,9,10 10
Ehrhartoideae 3 455 100 81 0 451 1,2,3,4,5,6,7,8,9,10 15

Trebouxiophyceae 3 409 100 41 2 405 1,2,3,4,5,6,7,8,9,10 10
Trebouxiophyceae 3 415 100 41 8 354 1,2,3,4,5,6,7,8,9,10 15

Poeae 1 971 100 80 9 971 1,2,3,4,5,6,7,8,9,10 10
Poeae 1 1399 100 80 20 1399 1,2,3,4,5,6,7,8,9,10 15

Table 5. Groups from PSO version II.

Group Topo. NbTrees b |c| 100− p′ Occ. Swarms Particles
Pinus 3 615 98 79 14 275 1,2,3,4,5,6,7,8,9,10 10
Pinus 3 628 100 79 12 558 1,2,3,4,5,6,7,8,9,10 15
Picea 1 635 100 85 14 635 1,2,3,4,5,6,7,8,9,10 10
Picea 1 821 100 85 15 821 1,2,3,4,5,6,7,8,9,10 15

Magnoliidae 3 494 100 79 16 73 1,2,3,4,5,6,7,8,9,10 10
Magnoliidae 3 535 100 79 42 384 1,2,3,4,5,6,7,8,9,10 10
Bambusoideae 6 952 84 81 23 94 1,2,3,4,5,6,7,8,9,10 10
Bambusoideae 9 1450 82 81 18 113 1,2,3,4,5,6,7,8,9,10 15
Eucalyptus 17 972 88 80 18 618 1,2,3,4,5,6,7,8,9,10 10
Eucalyptus 23 1439 92 80 10 843 1,2,3,4,5,6,7,8,9,10 15
Chlorophyta 25 529 71 24 6 397 1,2,3,4,5,6,7,8,9,10 10
Chlorophyta 46 1500 82 24 11 397 1,2,3,4,5,6,7,8,9,10 10
Ericales 30 97 51 84 11 56 1,2,3,4,5,6,7,8,9,10 10
Ericales 34 1257 52 84 7 800 1,2,3,4,5,6,7,8,9,10 15

Malpighiales 35 725 72 79 25 445 1,2,3,4,5,6,7,8,9,10 10
Malpighiales 86 1464 84 79 45 359 1,2,3,4,5,6,7,8,9,10 15
Euglenozoa 3 197 100 26 1 165 1,2,3,4,5,6,7,8,9,10 10
Euglenozoa 3 450 100 26 10 393 1,2,3,4,5,6,7,8,9,10 15

Ehrhartoideae 1 24 100 81 10 24 1,2,3,4,5,6,7,8,9,10 10
Ehrhartoideae 1 20 100 81 9 20 1,2,3,4,5,6,7,8,9,10 15

Trebouxiophyceae 3 319 100 41 1 313 1,2,3,4,5,6,7,8,9,10 10
Trebouxiophyceae 3 818 100 41 2 81 1,2,3,4,5,6,7,8,9,10 15

Poeae 1 991 100 80 22 991 1,2,3,4,5,6,7,8,9,10 15
Poeae 1 1490 100 80 26 1490 1,2,3,4,5,6,7,8,9,10 15

BPSO ver.I BPSO ver.II
Group 10 15 10 15 GA
Ericales 53 54 51 52 67
Bambusoideae 72 69 84 82 80
Pinus 98 94 98 100 80
Chlorophyta 70 68 71 82 81
Eucalyptus 86 86 88 92 90
Malpighiales 65 69 72 84 96
Magnoliidae 100 100 100 100 98
Ehrhartoideae 100 100 100 100 100
Euglenozoa 100 100 100 100 100
Picea 94 100 100 100 100
Poeae 80 80 100 100 100
Trebouxiophyceae 100 100 100 100 100

Table 6. PSO vs GA.

number of removed genes. Finally, using 15 particles instead of 10 does not
improve so much the obtained results (see Figure 10 and Table 6).

5 Conclusion and future work

This article has presented three metaheuristics to produce a well supported
phylogenetic tree based on the largest possible subset of core genes. These
methods are, namely, genetic algorithm, binary particle swarm optimization, and
simulated annealing. They have been evaluated on various sets of chloroplast
species and deployed on a supercomputer facilities. Given the average between
the percentage of core genes and the lowest bootstrap as scoring function, we
have shown on simple examples that, given a set of species, various global optima
with contradictory topologies can be reached. These first experiments emphasize
that sometimes the phylogeny of chloroplasts cannot perfectly be resolved using
a tree: a phylogenetic network may be more close to the reality, branches within
this network being as strong as the associated tree topology is frequent.

Phylogenetic networks can be obtained by merging gene trees. In future work,
we will propose a way to obtain such networks with large subsets of random core



(a) BPSO with 15 particles vs. GA (b) BPSO with 10 particles vs. GA

Fig. 10. BPSO with 10 and 15 particles vs. GA.

genes, and will show that such ways reinforce the stability and the confidence
of the network. We intend to provide too criteria to decide if either a tree or
a network is preferable for a given set of DNA sequences. We will measure the
impact of this choice and of the coexistence of different well-supported topologies
on works like ancestral genome reconstruction. Finally, the various ways to set
up the metaheuristics proposed here will be systematically investigated, to find
the best manner to configure these ones when targeting the largest subset of core
genes leading to the most supported tree or network.

All computations have been performed on the Mésocentre de calculs super-
computer facilities of the University of Bourgogne Franche-Comté.
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