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Abstract—Aggregators are market participants that bridge the
gap between the bulk electricity market and the emerging active
end-user (smart home) by efficiently scheduling or allocating
resources to meet certain objectives in the electricity grid. The
computational burden and processing time of such allocation
problems increases with the number of resources. Using high
performance computing and parallel processing techniques, the
computational time for simulating the environment can be
managed. In this paper, we present and compare three parallel
processing techniques executed on a dedicated high performance
computer for simulating a multi-day aggregator-based resource
allocation problem in the Smart Grid.

I. INTRODUCTION

Applications of demand response (DR) are starting to play

vital roles in the operation of smart electric distribution

systems. The Federal Energy Regulatory Commission (FERC)

defines DR as the set of “changes in electricity usage by

end-use customers from their normal consumption patterns in

response to changes in the price of electricity, or incentive

payments designed to induce lower electricity use at times

of high wholesale market prices or when system reliability is

jeopardized” [1]. Accordingly, DR enables the participation

of end-users in the electricity market by providing some

opportunity of control of residential assets, behind the meter

of a smart home, in return for a financial profit (or savings in

expenditure) [2], [3].

As the number of smart homes participating in such DR

actions increases, the need for a market entity to bridge

the gap between the electricity market and the end-users is

imperative. An aggregator serves the purpose of the third

party market entity and reduces the operation burden of the

utility and provides the customers with low cost consumption

opportunities. The objective of the aggregator is to sell DR

services to the operator and reduce the operation cost while
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providing benefits of savings to the end-users [4]. To achieve

that objective, large and highly complex optimization problems

must be solved by the aggregator daily. Thus, any new

control technique proposed for aggregation should be tested

by extensive simulations for long periods of time (i.e., days,

weeks, etc.) before implementation.

In that regard, the performance of optimization techniques

and the computation burden of the optimization algorithms

require detailed study. Different optimization techniques for

DR, including linear programming [5], mixed integer pro-

gramming [6], particle swarm optimization [7], and genetic

algorithms [3], [8] have been studied [9]. Although heuristic

methods are applied to these complex problems to find near

optimal solutions in polynomial time, computation times may

increase rapidly as the size of the problem grows. Therefore,

using parallel processing with multi-core computer in a high

performance computing (HPC) environment is essential for

reducing simulation time [10].

Open Multi-Processing (OpenMP) and Message Passing

Interface (MPI) are the most commonly used programming

styles in various applications for parallel processing [11].

The basic difference between these two styles is that the

former uses a shared-memory architecture and the latter uses a

distributed-memory architecture. Although OpenMP and MPI

have different qualities, both are effective and efficient for

achieving reductions in computation/simulation time. Further,

a hybrid model incorporating OpenMP and MPI can be applied

if the optimization problem and the computer structure are

suitable to implement the features of these approaches. Pro-

grammers may achieve better results with the hybrid model.

In this paper, we present and compare three program-

ming approaches—namely, OpenMP, MPI, and hybrid—for

applying parallel processing methods to a resource allocation

problem (such as customer appliance scheduling) involving

aggregators for DR. It is not our intent to generalize the

advantages and misgivings of these methods; rather, we aim

to describe how these three approaches can be used in this

resource allocation problem to help programmers and to com-

pare their effectiveness vis-à-vis the reduction in simulation



time.

The rest of the paper is organized as follows: Section II

introduces the resource allocation problem; Section III details

the OpenMP, MPI, and hybrid methods and their application

to the resource allocation problem; Section IV presents the

results and Section V concludes the paper.

II. SGRA PROBLEM

A. Overview

In this paper, we use the aggregator-based residential DR

program, denoted smart grid resource allocation (SGRA), from

[12] as the test problem to implement our parallelization

methods. For completeness, the SGRA problem statement

is presented verbatim here: “given a set of customers and

information about their respective assets, subject to customer

constraints (i.e., availability of customer assets and customer

incentive requirements), how can the aggregator find an in-

centive pricing and schedule of assets to maximize aggregator

profit?” [12]. Note that we use the same DR program in [12]

for multiple days to demonstrate the implementation of the

above-mentioned parallelization techniques.

B. System Model

We consider an electricity network formed by I smart

homes and one residential aggregator that interacts with the

customers, the distribution utility, and the bulk electricity spot-

market. In smart homes, electric appliances are divided into

two groups: non-controllable (base) and controllable (assets).

Totally, 31 types of base load and 18 types of asset are used to

model the consumption profile of the smart homes. Appliance

ownership is determined once, and the operation parameters

are generated probabilistically for each day considered in the

study.

Here, a day-ahead centralized control methodology is ap-

plied, wherein the aggregator controls the assets in the smart

homes. The number of assets in each smart home is denoted

by Ai. End-users only decide the scheduling window of

the assets; the aggregator determines the optimum start time

of each asset. To convince customers to participate in the

transactions with the aggregator, a customer incentive pricing

(CIP) is offered by the aggregator [12]. The CIP is competitive

compared to the utility’s price for residential customers. With

CIP, customers are expected to be more willing to allow

scheduling of their assets and purchase electric energy from

the aggregator rather than the utility. Thus, the aggregator

aims to maximize its own profit as well as reduce the daily

electricity cost incurred by the customer. As in [12], we use

the PJM spot market [13] and the ComEd residential real-time

pricing (RRTP) [14] for modeling the bulk electricity and the

utility prices, respectively.

C. Problem Formulation

Prior to each day, the aggregator receives information on the

utility and the spot market prices and the scheduling interval of

assets from smart homes. After that, the aggregator determines

the operation start time of assets with the CIP. The constraint

for the scheduling interval of assets is formulated by (1).

[

tsa,i, t
e
a,i

]

⊆
[

ts sch
a,i , te sch

a,i

]

(1)

where, tsa,i and tea,i are the operation start and end times of the

assets, respectively, and ts sch
a,i and te sch

a,i are the user-defined

acceptable operation start and end times of assets, respectively.

However, customers may not be willing to allow rescheduling

of their assets in return for modest savings; rather, they might

expect significant savings for their efforts in participating in

the DR program. To consider that, we use the same model

from [12] to determine a threshold profit for each asset. The

constraint for the threshold profit to allow rescheduling of an

asset is given by (2).

γa,i =

{

1, if cscha,i ≤ αa,i · c
0
a,i

0, otherwise
(2)

where, γa,i is the customer willingness for allowing reschedul-

ing of an asset (γa,i = 0 disallows and γa,i = 1 allows

rescheduling); αa,i is a threshold metric in percent; cscha,i

and c0a,i are the costs of consumption with and without

rescheduling, respectively. The costs for rescheduled and non-

rescheduled conditions are calculated by (3) and (4), respec-

tively.

cscha,i =

t=trescha,i +da,i−1
∑

t=tresch
a,i

λ(t) · pa,i · △t (3)

c0a,i =

t=tea,i
∑

t=ts
a,i

r(t) · pa,i · △t (4)

where, λ(t), r(t), and pa,i are the CIP, the utility price, and

the power rating of an appliance, respectively; trescha,i , da,i,

and △t are the determined asset start time, duration of asset

operation, and simulation time interval (in this case, it is 0.25

representing 15 minutes). According to (2), the aggregator can

only reschedule an asset if the cost reduction satisfies the

threshold condition. Otherwise, the aggregator is disallowed

from controlling the asset. Lastly, the optimization problem

for maximizing the profit of the aggregator is given by (5):

maximize

[

P =

I
∑

i=1

Ai
∑

a=1

γa,i · (Na,i + Sa,i −Ba,i)

]

subject to (1), (2)

(5)

where P is the profit of the aggregator; Sa,i is the income from

selling energy to a customer; Na,i is the income from selling

negative load (i.e., the deferred peak) to the spot market; and

Ba,i is the expense for buying energy from the spot market.

The detailed calculations of Sa,i, Na,i, and Ba,i are given in

[12].



Fig. 1. OpenMP flow model.

III. PARALLEL PROCESSING

A. Overview

Parallel processing is used for dividing a large problem

into smaller sub-problems to solve them simultaneously using

multi-core computer. In this problem, however, it is noted that

the result of a sub-problem must not affect the result of any

other sub-problem; thus, each sub-problem must be modeled

independently.

In this section, we introduce the basics of parallel program-

ming using the OpenMP and MPI programming approaches.

Further, we use the above-mentioned approaches in three par-

allelization schemes for solving a multi-day SGRA problem.

B. Parallelization with OpenMP Programming

OpenMP is an application programming interface that pro-

vides a parallel processing framework using multi-threading

(X threads → X cores) on a shared-memory architecture [15].

The set of threads/cores run simultaneously, i.e., in parallel,

to execute sub-tasks or solve sub-problems. It is important

to note that the specified task is divided among the threads

and each thread has access to the same information (e.g.,

variable, parameter, objects) in the shared-memory. OpenMP

supports multi-processing programming in C, C++ and Fortran

languages on most platforms [16]. The OpenMP flow model

is given in Fig. 1.

In the SGRA study, to solve the optimization problem

with the OpenMP parallelization, the smart appliances are

distributed among X number of threads to determine the profit

of the aggregator. Fig. 2 depicts an implementation of the

OpenMP programming for SGRA.

In the shared-memory, each thread (associated with a com-

puter core) accesses a certain number of assets and individu-

ally determines Na,i, Sa,i, and Ba,i from (5) for each asset.

After that, the aggregator profit, P , is determined for every

asset rescheduled and then each thread sums the determined

P values with every other thread to create one cumulative

result for the aggregator profit.

C. Parallelization with MPI Programming

MPI is a specification for message-passing library interface

that addresses parallel programming models on a distributed-

memory architecture [17]. MPI is a communication protocol

that supports both point-to-point and collective communication

routines and was developed for cooperative parallel computing

among computer cores running on distributed memory. With

MPI, multiple tasks run simultaneously on separate cores

defined by the user and each core has its own private memory.

MPI programming does not use a shared-memory architecture;

thus, cores are not able to access the same information stored

in the memory. Therefore, cores need to use a messaging

protocol, standardized by the MPI, if information from other

cores are needed. Language bindings of MPI are defined

for C, C++ and Fortran. Fig. 3 depicts the MPI application

model. The basic difference between OpenMP and MPI is

the written code is run for defined number of MPI task

times simultaneously while OpenMP is solving optimization

problem in parallel according to user-defined method (in this

case, assets parallelization) inside the task.

To implement the parallel processing of SGRA using MPI,

the total number of days (in the multi-day SGRA problem)

is distributed among cores. The goal of this effort is to

determine the aggregator profit for each day using a single

core. For each day, the optimization problem (representing

the same application albeit with different daily input) is solved

simultaneously by cores in a distributed memory for each task.

Message passing is not needed in this implementation because

each day’s optimization is totally independent from the other

days; hence, no core has the need to wait for a message from

another. The implementation of the MPI parallelization for the

SGRA problem is given in Fig. 4.

D. Parallelization with Hybrid OpenMP/MPI Programming

Hybrid applications use both the OpenMP and the MPI

models together for parallelism. A hybrid model requires a

more sophisticated programming paradigm than either type

of the constituents so as to manage shared and distributed

memory allocations with multiple cores. We aim to use a

higher number of cores in the HPC system and reduce the

computation time. It is worthwhile to mention again that we

are not dealing with the technical challenges of using these

parallelization methods. In this paper, we are simply aiming

to provide information on basic programming models and

Fig. 2. OpenMP implementation of SGRA (X cores).



Fig. 3. MPI application utilization model.

compare their performances in terms of computation time. In

Fig. 5, the hybrid parallelization model for the SGRA study

is presented.

With the hybrid model, Y task is created for separating days

and X threads are used for each task to distribute the smart

appliances (assets) among threads to determine the aggregator

profit for each day. In this way, X×Y cores are used with hybrid

parallelization. For example, consider that five MPI tasks are

defined and each task is deployed on three OpenMP threads

to solve an optimization problem, thus totally 15 cores are

utilized at the same time.

IV. SIMULATION RESULTS

A. HPC Platform

For the SGRA application, we used the Summit Colorado

State University and the University of Colorado Boulder HPC

system [18], [19]. Summit is a heterogeneous supercomputing

cluster with 380 Haswell CPU nodes with 9,120 cores, ten

GPU nodes, five hi-mem nodes, two storage gateway nodes,

two Omnipath Architecture (OPA) interconnect fabric man-

agement nodes, with 100 GB/sec OmniPath interconnect, one

Petabyte DDN SFA14K scratch storage, and a 40Gb uplink to

the Science Ethernet Network. The Summit HPC uses a batch

queuing system for execution. Finally, the SGRA problem was

programmed in C++ and compiled with the gnu-c++-compiler

on Summit.

B. System Setup

The above-mentioned parallel processing techniques for the

SGRA problem are performed on a test system with 5,555

Fig. 4. MPI implementation of SGRA (Y cores).

customers, 56,605 controllable assets, and 151,773 base loads

[12]. The daily electric energy consumption of controllable

appliances, i.e., assets, is obtained from the probabilistic model

given in [12] and base loads consumption is determined

from the data in [20]. To obtain a fair comparison of the

performance of the parallel processing techniques, we used

the same set of electricity profiles for seven days (the length

of multi-days SGRA) in each parallel processing technique.

The simulations are carried out for seven days at a resolution

(simulation time step) of 15 minutes. For the spot market and

utility electricity prices, real data corresponding to July 1-7,

2011 are used from PJM and ComEd, respectively [13], [14].

The price of electricity for the desired number of days are auto-

matically retrieved from the PJM and ComEd websites using

a Python script. The hourly price data are available on the

respective websites in HTML or Zip file format. The Python

script is executed to fetch the price data for each day and

convert them to CSV format to match the simulation time step

(resolution). For example, the hourly price data is reconstituted

to a 15-minute time resolution for the simulation process by

holding the hourly price value as constant. Thus, a database

comprised of the predetermined energy consumption profile of

the appliances and the electricity price information is created

for the entire simulation run time duration corresponding to

multiple days. Finally, the SGRA control algorithm utilizes

this database as input for executing each of the three parallel

processing methods.

To solve the SGRA problem, which is heuristic in nature,

Genitor—a modular genetic algorithm (GA) package [21]—is

used as an optimization solver. Genitor creates two children

from the initially generated population (100 members) at each

iteration by applying crossover and mutation operations. We

assume that the optimization is completed when the result of

the best fitness function does not change for 10,000 consec-

utive iterations or if the total number of iterations reaches

500,000.

C. Performance Evaluation

In this section, the performances of the above-mentioned

three parallelization methods are compared for different num-

bers of OpenMP threads and MPI tasks. The results are

given in term of the total computation time (in hours) and

per-iteration-time of GA (in seconds). Because the GA is

a heuristic optimization method, it generates different near-

optimal results for each run due to generating new individuals

probabilistically. Therefore, for establishing a fair comparison

of the performance of the parallelization techniques, the com-

putation time between two successive iterations of the GA is

chosen.

In Fig. 6, the total and per-GA-iteration computation times

are given for a number of OpenMP threads. The computation

time is recorded over the range of (6, 15) hours; where

the maximum time occurs when one thread (i.e., the base

case with one core) is used and the minimum time of 6.5

hours occurs when seven threads are used; thus, a 60.24%

reduction in computation time is achieved. Note that there is



Fig. 5. OpenMP plus MPI implementation of SGRA (X × Y cores).

an exponential relation between the computation time and the

number of OpenMP threads. Therefore, the biggest reduction

in computation time between two OpenMP cases–43.12%–is

achieved among thread numbers one and two. Beyond that,

when the thread number is increased from two to seven, only

17.12% additional reduction in computation is achieved as

compared to the base case.

However, as mentioned before, the reduction in computation

time can be misleading for accurate comparison because of

the difference in total number of iterations. When the com-

putation times of per-GA-iteration are compared, a 57.74%

reduction compared to one thread in computation time is

achieved with seven threads. It should be noted that more

than seven threads—up to a theoretical maximum number

equaling the assets—can be defined for the studied case. For

fair comparison with the MPI case, we limited the number of

threads for this study to seven.

In Fig. 7, the results of the MPI model for a varying number

of tasks are given. The minimum simulation time recorded

was 197 minutes when seven MPI tasks are utilized. Here, we

see a reduction of 79.57% in simulation time and 77.56% in

computation time of per-GA-iteration achieved. This indicates

a better performance when compared to the previous case of

OpenMP with seven threads. In other words, when the same

Fig. 6. Number of OpenMP threads versus (a) total simulation time and (b)
computation time for per-GA-iteration.

number of cores are considered, MPI outperforms the OpenMP

in executing the SGRA problem due to the absence of any

serial parts. Note that we used a maximum of seven MPI tasks

to match the number of days in the multi-day example that

defined in our test case.

In Fig. 8, the results of the hybrid OpenMP/MPI model

are presented and compared for a varying number of OpenMP

threads and MPI tasks combinations. When combining the two

methods in a hybrid mode, more cores can be used (such as

seven threads × seven tasks) with greater efficiency based on

the problem formulation. In our case, the core numbers can be

increased when using the OpenMP only, which is less efficient

than MPI. On the other hand, the number of cores used by the

MPI to solve the SGRA problem is defined by the number

of days in the multi-days SGRA. For instance, even though

there are 9,120 general purpose Haswell CPU cores available

in the Summit HPC, the multi-day SGRA problem (for seven

days) uses a smaller subset of those cores (i.e., a maximum

of 49 cores). In Fig. 8, the same SGRA problem from the

above examples is solved in 100 minutes—corresponding to a

89.46% reduction using 49 cores. By using 42 extra cores,

approximately 10% additional simulation time reduction is

achieved as compared to the seven MPI tasks-one OpenMP

thread case (see Fig. 7(a)).

Fig. 7. Number of MPI tasks versus (a) total simulation time and (b)
computation time of per-GA-iteration.



Fig. 8. Number of hybrid threads and tasks versus (a) total simulation time and (b) computation time of per-GA-iteration.

The results presented cannot be generalized; however, they

provide an insight into the use of the three parallelization

methods for the SGRA problem. As we embark on the task

of parallelizing the SGRA problem for larger test systems

for longer time horizons, this effort should serve as an early

indicator for the choice of the technique.

V. CONCLUSION

In this paper, three parallel processing methods—OpenMP,

MPI, and hybrid OpenMP/MPI—are presented to reduce the

simulation time of an optimization problem in the Smart

Grid realm. Parallelizations are implemented on the SGRA

test case for multiple days on the Summit HPC system.

The performance of the methods are quantified in terms

of reductions in the simulation time and computation time

of per-GA-iteration, and the results are compared against

the number of cores utilized. We conclude from the results

that all parallelization methods can significantly affect the

computation time for solving the SGRA problem. We also

note that the computation time appears to fall exponentially

with the number of cores utilized. Among the parallelization

methods, the hybrid OpenMP/MPI model showed the best

performance when a higher number of cores are available and

the MPI model was the second best. However, it should be

noted that performance of the methods are highly dependent

on the programming of the optimization problem.
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