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Abstract:
This paper presents the H∞ control of a pressure swing adsorption process. This separation
process is characterized by periodic operations. The objective of the control is to assign the
trajectory of the output system purity and to reject the perturbation on the inlet composition.
The control design is synthetized from some Hammerstein model that approximates the cyclic
process. The control scheme is designed using H∞ optimization method. J-spectral factorization
is applied to derive the controller. The controller is then validated both on the Hammerstein
and complete models. Simulation results are given. Comparison with PI controller is provided.

Keywords: Pressure swing adsorption, Hammerstein model, H∞ control, J-spectral
factorization, Time-delay systems, Smith predictor

1. INTRODUCTION

Pressure Swing Adsorption (P.S.A) processes are used for
separation operations. They are based on the adsorption
phenomenon, that is to say, the property that have mix-
ture. The P.S.A process consists of several fixed-bed adsor-
bers and is operated cyclically. Typically it is made up with
two columns working in parallel, one being devoted to high
pressure adsorption, the other to low pressure desorption.
Each cycle of the basic P.S.A process contains four steps:
pressurization, high-pressure adsorption, depressurization
and low pressure desorption. The mathematical model of
the P.S.A process is made of a set of partial differential
equations (PDEs) associated with the packed reactor with
periodic boundary conditions that link each step.

P.S.A process control has been studied in Kowler and
Kadlec (1972); Matz and Knaebel (1987) and more re-
cently in Grossmann et al. (2010); Bitzer (2004, 2005). In
the latter, the authors proposed a model-based tracking
control scheme. The cycle time was used as the control
variable so it did not allow theoretical discrete time sys-
tems analysis.

In this paper, we use the Hammerstein model for control
law synthesis. This model encompasses the cyclic nature
of the P.S.A process. Moreover, the distributed behavior
is taken into account as pure time-delay in the mean
model. The objective of the control design is to track some
optimal purity profile acting on the ratio characterizing the
separation (adsorption time/desorption time) and to reject
perturbations of inlet composition. This is the reason why
? This work was financially supported by French Research Agency
(ANR) in the context of the the Young Researcher Program RE-
CIPROC (ref code ANR-06-JCJC-0011)

static linearization and robust H∞ control design have
been applied.

The paper is organized as follows: in the section 2 and 3
are presented the complete P.S.A model and the simplified
one respectively. The Hammerstein model-based control
design is given in section 4. The feedforward control
scheme is proposed by an inverse of nonlinear static gain
of the Hammerstein model and the feedback control design
is proposed by H∞ optimization method in order to
guarantee the tracking performance and the rejection of
the disturbance in spite of time delay. Simulation results
and discussion are given in the last section.

2. MATHEMATICAL MODEL OF P.S.A PROCESS

The main element of the process is the adsorption column.
In order to develop a mathematical model of the P.S.A
process, the following assumptions are introduced:

(1) The pressure variations during the pressurization
and depressurization steps are taken into account by
considering that the pressure varies linearly with time
(see Damien Leinekugel-Le-Cocq (2004) for details)

(2) The process is operating at isothermal conditions.
(3) Gas mixture is assumed to be ideal.
(4) The pressure drop through the bed is negligible.
(5) We assume axially dispersed plug flow model.
(6) Linear driving force is used for mass transfer
(7) The bed pressure is constant during the adsorption

and desorption steps.
(8) The adsorption equilibrium is linear (q∗i = Kici where

qi and ci are the concentrations in the pellet and in
the fluid phase respectively).
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Let us consider the flow of a gaseous mixture of n com-
ponents in a fixed-bed filled with adsorbent particles.
Subject to the above assumptions, the balances for the
ith component are as follow:

(1) Component mass balance in fluid phase
∂ci
∂t

= Dai

∂2ci
∂z2

− ∂vci
∂z
− 1− ε

ε

∂qi
∂t

(1)

(2) Component mass balance in solid phase
∂qi
∂t

= ki(q∗i − qi) (2)

where z is the spatial coordinate, ci is the concentration
in the gas phase , Dai is the axial dispersion coefficient, v
is the velocity of gas flow, ε is the bed porosity, qi is the
concentration in the solid phase, q∗i is the amount adsorbed
at equilibrium, ki is the effective mass transfer coefficient,
and Ki is the adsorption equilibrium constant.

The Danckwerts’ boundary conditions during the different
steps are given as follows:

(1) Pressurization

Dai

∂ci
∂z
|z=0 = −v0(ci|z=0− − ci|z=0) and

∂ci
∂z
|z=L = 0

(3)
(2) Adsorption

Dai

∂ci
∂z
|z=0 = −vH(ci|z=0− − ci|z=0)

v|z=0 = vH and
∂ci
∂z
|z=L = 0

(4)

(3) depressurization

v|z=L = 0,
∂ci
∂z
|z=0 = 0 and

∂ci
∂z
|z=L = 0 (5)

(4) Desorption

Dai

∂ci
∂z
|z=L = −vL(ci|z=L − ci|z=L+) (vL < 0)

v|z=L = vL and
∂ci
∂z
|z=0 = 0

(6)

where L is the length of adsorption column, v0 is the inlet
velocity and vL, vH signify respectively the flow velocity
in the phase at low pressure and high pressure.

3. SIMPLIFICATION OF THE P.S.A MODEL

The cyclic nature of P.S.A process makes difficult the
use of distributed parameter of the P.S.A model for the
control design. So, we introduce the Hammerstein model
to approximate the overall P.S.A model. For this purpose
we assume that the gas velocity of the external gas source
is constant, as well as the cycle time Tcyc. The advantage
of this choice is that the linear part of Hammerstein model
is time invariant.

The output variable is the purity of component Pr, defined
in Bitzer (2004, 2005) as the ratio of the time averaged
molar flow rate of the component over the total time
averaged molar flow rate. The input variable is chosen as
the ratio between the duration of adsorption and that of
desorption: α := Tads

Tdes
. This choice of manipulated variable

is quite new. The resulting Hammerstein model is depicted
in Fig. 1. It should be noted that the purity of product Pr
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Fig. 2. Behavior of the P.S.A and Hammerstein models.

can only be obtained at the end of each cycle, so the linear
dynamics includes the time delay Tcyc.

Discret
linear model

Hammerstein Model

α rPuNonlinear 
static gain

Fig. 1. Representation of the Hammerstein model

3.1 Model identification

The identification of the Hammerstein model consists of
the identification of the nonlinear static gain (obtained
by the curve fitting method) and the identification of
the discrete linear model (obtained using the Matlab
identification toolbox). With the choice of input and
output variables as given above, the identified model is
given by (7).

u =
r∑
i=0

ciα
i (r = 11) nonlinear static gain (7)

H =
Pr
u

=
0.3833z−1 + 0.3833z−2

1− 0.1011z−1 − 0.1325z−2︸ ︷︷ ︸
Gr

q−1 discrete model

(8)

where Gr is the rational part of the discrete linear model.

The coefficients of the polynomial approximation, stocked
in a look up table (LUT) in order to be used for the
feedforward control design, are given in Tab. 1.

c0 0.005217867316353 c6 27.919194533941987

c1 -0.099623708560465 c7 -21.333747560439217

c2 0.829430245914190 c8 9.487190132322487

c3 -3.941066945370876 c9 -2.530959095704418

c4 11.732987224101695 c10 0.407464813693482

c5 -22.580552078146759 c11 0.942236055943234

Table 1. Coefficients of the polynomial

Fig. 2(a) and Fig. 2(b) represent respectively the nonlinear
static characteristics and the linear dynamic behavior
of the identified models. The precision of the nonlinear
static characteristic of the identified model guarantees the
tracking performance.
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3.2 Identification of the disturbance

We consider that the disturbance signal d comes from the
change of concentration of one component to be adsorbed
in the feed of gas mixture. The corresponding output is the
variation of purity of this component at the output, noted
by ∆P . The transfer function Gd between d and ∆P is
obtained with the same identification method as above.
We obtain :

Gd =
0.296 + 0.296z−1

1 + 0.4308z−1 − 0.3534z−2
(9)

4. HAMMERSTEIN MODEL-BASED H∞ TRACKING
CONTROL

The objective of the control design is to assign the tra-
jectory of the purity Pd and to reject the perturbation on
the input composition acting on α as control variable. The
control scheme proposed in this paper consists of feedfor-
ward tracking control and feedback control for regulation
as shown in Fig. 3(a). The feedforward control uses the in-
verse of the nonlinear static gain, denoted NL−1, in order
to obtain the control value α. It should be noted that the
inverse function of the nonlinear static gain may not for-
mally exist and therefore the implementation using a look-
up table (numerical inversion) is only an approximation.
Due to the disturbance signal d and model uncertainty, the
feedback controller K is necessary to adjust the real input
α according to the error e. The block NL−1 is added after
the feedback controller in order to wipe off the nonlinear
effect, and the fine tuning value ∆α around α is generated.
The final control value is given by αf = α+ ∆α.

By replacing the P.S.A model(PDEs) with the Hammer-
stein model in the control scheme given in Fig. 3(a),
we easily obtain the simplified control scheme given in
Fig. 3(b).

4.1 H∞ feedback controller desgin with time delay

The next task is to design H∞ feedback controller. From
Fig. 3(b), the control design scheme is derived through the
weighting functions We and Wu as shown in Fig. 3(c).

The presence of the time delay in the Hammerstein model
increases the difficulty to treat the H∞ control problem.
In this paper, we adopt the method proposed in Zhong
(2006). The principle is to isolate the time delay from
the control loop and then to obtain a new linear system
without time delay usable for the H∞ controller design.
This conversion of the objective problem simplifies greatly
the handling of the control problem.

Firstly, the control design scheme (Fig. 3(c)) can be trans-
ferred to the standard representation of robust control,
with P the generalized plant, w the exogenous input, z
the controlled output, y the measured output and u the
output of controller, shown in (Fig. 4) with ẽ

ũ
e

 =

We −WeGd −WeGr
0 0 eτsWu

1 −Gd −Gr


︸ ︷︷ ︸

P

 Pd
d
u′

 (10)

PSA processNL-1

-

Pd

e∆α

α αf y

KNL-1 ∆u

d

Gd

(a) Closed loop control scheme

Gr
τse−

-

Pd

d

e

u y

K∆u

Gd

(b) Simplified scheme

Pd Gr
τse−K

-
ũ

ẽ
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We

e u yu´

d

Gd

(c) H∞ control design scheme

Fig. 3. Closed loop control schemes
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Fig. 4. Standard representation of H∞ control scheme

According to the linear fractional transformation(LFT),
the closed-loop transfer function between w and z is given
by (11):

Tzw = P11 + e−τsP12K(I − e−τsP22K)−1P21 (11)

Tzw can be represented graphically by (Fig. 5)
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P11

w zy u´

P22

P21 P12K τse−

Fig. 5. Graphical representation of Tzw

From the existence of P11, there exists an instantaneous
response from w to z. During [0 τ ], this response is not
controllable. To deal with this problem, the idea is to
isolate the uncontrollable element from P11.

Let us define

Z1(s) = P11 − P̃11(s)e−τs (12)

where P̃11(s) is a rational transfer function.

The transfer function Tzw can be written

Tzw(s) = Z1(s) + Tz′w(s) (13)

with Tz′w = e−τs{P̃11 + P12K(I − e−τsP22K)−1P21}
The transfer function Tz′w is represented in Fig. 6.

P11

w zy u´

P22

P21 P12K τse−

P11

w z
y u

P21 P12

Z1

τse−K

P22

u´
τse−

z´´ z´

~

Fig. 6. Graphical representation of Tz′w

According to the following inequality, see Mirkin (2000)

‖Z1(s)‖∞ < ‖Tzw(s)‖∞ 6 ‖Z1(s)‖∞ + ‖Tz′w(s)‖∞ (14)

we obtain a new H∞ optimization problem as follows:

‖Tz′w(s)‖∞ < γ′ (15)

Naturally, we consider the controller K as the Smith
predictor format, e.g:

K(s) =K0(s)(I − Z2(s)K0(s))−1 with (16)

Z2(s) = P̃22 − e−τsP22 (17)

Then, we obtain the following relations (Fig. 7)

Tz′w(s) = e−τsTz′′w(s) with (18)

Tz′′w = P̃11 + P12K(I − e−τsP22K)−1P21 (19)

P11

w z
y u´u

Z2

P21 P12

Z1

τse−K0
y´

P22

u´
τse−

z´´ z´

~

~

Fig. 7. Graphical representation of Tz′′w

By replacing the K in eq. (19) with eq. (16), we obtain

Tz′′w = P̃11 + P12K0(I − P̃22K0)−1P21 (20)

with (
z′′

y′

)
= P̃ (s)

(
w
u

)
(21)

where u = K0 y
′ , z′ = e−τsz′′, and

P̃ (s) =
(
P̃11(s) P12(s)
P21(s) P̃22(s)

)
(22)

Till now, we obtain a new system, with a rational transfer
matrix P̃ (s) without time delay. The original H∞ control
problem ‖Tzw(s)‖∞ < γ is modified into ‖Tz′′w(s)‖∞ < γ′.

We can note that the two functions (Z1,Z2) play an
important role during this manipulation. The choice of
these functions depends on the stability of P11 and P22.
If they are stable, one can choose:

Z1(s) = P11(s)− P11(s)e−τs (23)
Z2(s) = P22(s)− P22(s)e−τs (24)

Otherwise, one has to choose:

Z1(s) =
(
A11 B11

C11 D11

)
− e−τs

(
A11 e

A11τB11

C11 0

)
(25)

Z2(s) =
(

A22 B22

C22e
−A22τ 0

)
− e−τs

(
A22 B22

C22 D22

)
(26)

where
( ∗|∗
∗|∗
)

represents the state realization of the system.

4.2 Choice of weighting functions

The usual choice of the weighting functions We and Wu

is presented in Zhou and Doyle (1997). We is selected
to be a low-pass filter to reflect the desired performance
characteristics :

We =
s/Ms + ωb
s+ ωbeε

(27)

where Ms is the peak gain of the sensitivity function, ωb is
the bandwidth frequency and eε is the steady-state error.
In our case, we choose eε = 0.001 , Ms = 1.5 et ωb = 0.15.
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The control weighting function Wu is chosen to be a high-
pass filter to penalize the control signal. In our case, we
choose:

Wu =
s+ ωbu/Mu

εus+ ωbu
(28)

where Mu is the peak gain of the control sensitivity
function, ωbu is the controller bandwidth and εu is a small
and positive number. In our case, we choose εu = 0.001 ,
Mu = 1.5 et ωbu = 0.5.

4.3 H∞ control problem via J-spectral factorization

We have demonstrated that the new H∞ problem :
‖Tz′′w(s)‖∞ < γ′ needs to be solved. The solution of
this problem leads to the central controller K0. In this
paper, the J-spectral factorization is applied for resolution
of the H∞ control problem. Although there are several
methods regarding the solution of the H∞ control problem
via the J-spectral factorization, the method proposed by
Meinsma and Zwart (2000) will be used where only one J-
spectral factorization is needed with the help of the chain
scattering representation, see Kimura (1997). Precisely,
the new H∞ control problem will be described firstly using
chain scattering representation, as shown in (Fig. 8).

Fig. 8. Chain scattering representation of the H∞ control
problem

(
z′′

y′

)
= P

(
w

u

)
⇔

(
z′′

w

)
= G

(
u

y′

)
(29)

and the transfer function Tz′′w becomes

Tz′′w = (G11K0 +G12)(G21K0 +G22)−1 (30)

For the purpose of handling of the new system described
by the chain scattering representation, we introduce two
important theorems due to Meinsma and Zwart (2000):

Theorem 1. Suppose that a matrixM ∈ H(nz+nw)×(nu+ny)
∞

satisfies M∼J(γ)M = Ĵ almost everywhere on the

imaginary axis with J(γ) :=
(
Inz 0
0 −γ2Inw

)
, Ĵ :=(

Inu
0

0 −Iny

)
and M∼(s) = [M(−s̄)]∗, * standing for

conjugate transpose. Consider the following equation:(
H1

H2

)
= M

(
U1

U2

)
(31)

with H1 ∈ H
nz×ny
∞ ,H2 ∈ H

nw×ny
∞ , U1 ∈ H

nu×ny
∞ , U2 ∈

H
ny×ny
∞ and M =

(
M11 M12

M21 M22

)
. Then, the two following

conditions are equivalent:

(1) H2 is bistable and ‖H1H
−1
2 ‖H∞ < γ;

(2) M22 and U2 are bistable and ‖U1U
−1
2 ‖H∞ < 1.

where H∞ denotes the standard Hardy spaces defined on
the open right-half plane and the elements of H∞ are
called stable. H2 being bistable means H2, H

−1
2 ∈ H∞.

I represents identity matrix and p, q,m, n are dimensions
of corresponding matrices. γ is some positive number.

Theorem 2. Suppose that the matrixG ∈ H(nz+nw)×(nu+ny)
∞

is proper and the columns are independent on the imagi-
nary axis including infinity. For γ > 0 given, there exists
a stabilizing controller K ∈ F∞ 1 such that ‖Tzw‖H∞ < γ
if and only if the following conditions are satisfied:

(1) The signature matrix

Jnz,nw
(γ) =

(
Inz 0
0 −γ2Inw

)
, Jnu,ny

=
(
Inu

0
0 −Iny

)
(32)

G∼Jnz,nw
(γ)G and Jnu,ny

have the same number
of positive and negative eigenvalues on the imaginary
axis.

(2) There exists a bistable matrix W such that
G∼Jnz,nw (γ)G = W∼Jnu,nyW

and the low right block Q22 of the matrix Q := GW−1

is bistable.

All stabilizing controller K which satisfies ‖Tzw‖H∞ < γ
are parameterized by

K =K1K
−1
2 with (33)(

K1

K2

)
=W−1

(
U
I

)
U ∈ Hnu×ny

∞ , ‖U‖H∞ < 1 (34)

where nw, nz, nu, ny are the dimensions of w, z, u, y respec-
tively.

The choice of U is not unique. Generally, we choose U = 0
and obtain the so-called central controller.

Theorem 1 transforms the H∞ problem ‖Tz′′w(s)‖∞ <
γ′ in ‖U1U

−1
2 ‖H∞ < 1. Theorem 2 gives the controller

parametrization for the last problem.

4.4 Validation of the controller

Since the identified models are discrete ones, we use
firstly the bilinear transformation to get the continuous
models. With respect to the obtention of J-spectral factor
W in Theorem 2 and the construction of the stabilizing
controller K according to (33) and (34), we modified the
routine proposed by Meinsma and Zwart (2000) to satisfy
our requirements.

Since P11 and P22 are stable, we take Z1, Z2 as defined
in (23).

1 Meinsma and Zwart (2000). F n×m
∞ := {H−1G : G ∈ Hn×m

∞ , H ∈
Hn×n
∞ , detH 6= 0}
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In our case, the supremum of the norm is γ′ ≈ 1.5 and the
main controller K0 is derived from equation (35)

K0 =
78.3s3 + 279.9s2 + 157.6s+ 8.47

s4 + 373.5s3 + 558s2 + 0.0561s+ 2.995× 10−8

(35)

According to eq. (16), we obtain the controller K :

K =
78.3(s+ 2.892)(s+ 0.6231)(s+ 0.06004)
(s+ 1.5)(s+ 0.0001)(s+ 5.367× 10−7)

(36)

Next we suppose that a gas mixture (N2, O2) has to be
separated. The desired purity profile of O2 varies from
70% to 86% in 50 cycles. The desired purity curve is
generated by the aforementioned polynomial method. The
open loop simulation of the P.S.A model in presence of the
disturbance introduced at 20th cycle is shown in Fig. 9.
Simulations are performed from the PDEs model.
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Fig. 9. Open loop simulation

The control objective is to assign the trajectory of
the P.S.A output despite the disturbance. Fig. 10(a),
Fig. 10(b) represent the Hammerstein based closed loop
simulations with H∞ control and PI control (designed
through traditional method and heuristic adjustments),
respectively. The control scheme is shown in Fig. 3(c).
These results demonstrate that the tracking performances
and convergence rapidity of H∞ control with Hammerstein
model are better than those with PI control.
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Fig. 10. Closed loop simulation with Hammerstein model.

The H∞ controller works well with the Hammerstein
model. So, this controller is applied to the P.S.A model
(PDEs model) with the control scheme given by Fig. 3(a).
Fig. 11(a) shows that the closed loop purity profile reg-
ulated by the H∞ controller converges rapidly (about 5
cycles) towards the desired profile. On the contrary, the
P.S.A process regulated by the PI controller shows that
the tracking of the desired purity needs about 11 cycles,
as shown in Fig. 11(b).
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Fig. 11. Closed loop simulation with P.S.A model.

5. CONCLUSION

In this paper, the H∞ tracking control law synthesis for a
P.S.A process described by means of a Hammerstein model
was investigated. The identification of Hammerstein model
is carried out by way of simulation of P.S.A model. The
feedforward controller is obtained by inverting the non-
linear static gain and the feedback controller is designed
using H∞ optimization method. The results of simulation
show that the control method is feasible and leads to better
performances than the ones using traditional PI control. It
should be noted that our results lacked the experimental
validation and that we did not take into account the model
uncertainty for the sake of P.S.A process property. In
general, further research is required in order to validate the
simulation results and improve the current control design.
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