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Observer and Robust H∞ Control of a 2-DOF
Piezoelectric Actuator Equipped with

Self-Measurement
Omar Aljanaideh1, and Micky Rakotondrabe2, member, IEEE

Abstract— This paper introduces a dynamic observer in order
to estimate the displacement in a 2-DOF piezoelectric actuator
(piezoactuator) devoted to precise positioning and equipped with
static self-measurement circuit. Then, the estimated displacement
derived by the suggested observer is used as feedback for a
robust H∞ controller. The 2-DOF piezoactuator is characterized
by strong cross-couplings which are accounted for in the observer
and in the feedback controller. Experimental results demonstrate
the efficiency of the observer as well as the H∞ controller. The
approach is very interesting for piezoelectric systems where it is
difficult to implement sensors for feedback, such as in precise
positioning applications at the small scale where measurement
technology is still challenging.

Observer, H∞ Control, Self-Measurement

I. INTRODUCTION

Piezoelectric actuators play a key role in applications that
require precise positioning. These actuators are able to deliver
a quick and highly resolute output displacement that is con-
venient for microrobotics [1], micromanipulation [2], [3],
atomic force microscopy [4] and data-storage [5] applica-
tions. The implementation of these actuators in real system is
often limited to a narrow operating range due to the presence
of vibrations and nonlinear effects as well as due to internal or
external disturbances. This necessitates synthesizing feedback
control techniques in order to improve their performance in
real-time system [6]. However, the application of feedback
control techniques require expensive feedback sensors that can
deliver precise information about the output displacement in
nanometric level resolution. Such sensors are generally bulky
and thus reserve large space which is not available in some
microsystems environment [7]. In addition, integration of
multi-degree of freedom piezoactuators requires installation
of many feedback sensors that can measure the displacement
in each axis which is a challenging task. Feedforward control
have been developed in order to compensate for the lack of
convenient sensors in piezoelectric systems [8]–[12] but the
main limitation of such architecture is the lack of robustness.
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Self-measurement technique is considered as a reliable
solution where these challenges exist. This approach employs
the actuator itself as a sensor that can calculate the deflection
and/or the output force based on the reversibility property
of the actuator material. More precisely, for piezoactuators
case, an external electrical circuit is employed to amplify
the electrical charge appearing on the piezoelectric electrodes
during its deformation and due to piezoelectric effect. The
amplified electrical charge, which is an exploitable voltage, is
used among the other available signals (the driving voltage of
the actuator) as information to an observer in order to estimate
the displacement and/or the force.

Self-measurement principle was pioneered by J. Dosch et al
in [13], where the vibration of a piezoactuator was controlled
without using feedback sensor. Several attempts have been car-
ried out to employ the self-measurement technique for control
purposes [14], [15], [16]. Although these schemes have
been proposed and applied to adapt the self-measurement with
different flexible structures, they lack the long-term measure-
ments (i.e. static and low frequency signals measurements) as
well as the consideration of hysteresis and creep nonlinearities
[17]. Moreover, these methodologies consider only one degree
of freedom where the cantilevered actuator moves only in
one direction. However, several microsystems employ multi-
degree of freedom (DOF) structures such as piezoelectric tubes
and 2-DOF multimorph cantilevered actuators, which require
estimating output displacement in more than one axis.

In the previous works [18], a self-measurement technique
was developed to estimate the force at low frequency regime
and the output displacement of a piezoactuator at low and high
frequency regime. The observer was coupled with a robust
H∞ displacement feedback control to demonstrate the benefits
of this approach. In [19]–[21], another observer has been
proposed for the same actuator in order to estimate the force,
the displacement and the state, all in low and high frequency
regimes. These techniques were however used to estimate the
displacement of 1-DOF actuator that exhibits displacement in
one axis only.

Multi-DOF piezoactuators that show the output displace-
ment in different axes necessitate implementation of multi-
DOF observer that can estimate the displacement of the
actuator in different axes. In a recent study [22], a 2-DOF self-
measurement observer technique was suggested to estimate the
static (steady-state) output displacement of a 2-DOF piezoac-
tuator in two different axes. The suggested observer, however,
ignores the dynamic properties of the actuator as well as the
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dynamics of coupling effects between both axes. Ignoring
these properties contributes significant errors in estimating the
transient response of the actuator, and limits the application
of the observer to the static displacement of the actuator
which is not consistent with (dynamic) feedback control. In
this paper, we presents a 2-DOF self-measurement observer
that accounts for the dynamics of a 2-DOF actuator and the
coupling effects between the two axes. The advantage of the
proposed dynamic self-measurement is that it is usable for
feedback control. Hence, we develop a H∞ robust controller
for the actuator by using the resulting estimate signal. The
controller is synthesized to enhance the tracking performance
of the actuator and to insure handling the disturbance effects
that piezoactuators experience in miniaturized systems.

The rest of the paper is organized as follows. Section-
II is devoted to the presentation of the experimental setup
and to a remind of the static self-measurement. Then, in
section-III, we present the dynamic observer that permits to
the self-measurement to estimate the output displacement of
the actuator at low and high frequency regime. Experimental
validation is also presented in the same section. In section-
IV, a H∞ controller is synthesized and tested to the 2-DOF
piezoactuator by using the 2-DOF dynamic self-measurement
as feedback. Finally, conclusion and some perspectives are
presented in section-V.

II. EXPERIMENTAL SET-UP AND REMIND OF THE STATIC
DISPLACEMENT SELF-MEASUREMENT

The experimental platform including the 2-DOF piezoactu-
ator is described in this section with a brief remind of the
related static self-measurement.

A. The experimental setup

The proposed actuator, is a 2-DOF piezoactuator with a
rectangular cross-section. The actuators integrates 2 piezoelec-
tric layers and 5 electrodes. A full description of the actuator
design and working principle can be found in [22].

The experimental setup (Fig. 1) includes:
• The 2-DOF piezoactuator itself. Its active dimensions are:

22mm× 1mm× 0.91mm.
• Two optical displacement sensors which are used to

measure the deflection of the actuator in each axis y
and z. The sensors were installed within acceptable range
away from the target (actuator) to measure the bending at
its tip. The sensors measurements are employed in order
to characterize the actuator and to verify the effectiveness
of the proposed 2-DOF self-measurement. Hence the
sensors are not used for the feedback control, but to
verify the efficiency of the feedback which uses the
self-measurement. The sensors, LC2420 from Keyence
company, have resolution of 40nm and bandwidth of
2kHz.

• Four identical electrical circuits which was fabricated
with a configuration illustrated in Fig. 2. Each circuit
includes 2 capacitance, low-bias current Op-Amp and
resistance [22]. This circuit is used to amplify and to

transform the electrical charges appearing on the piezo-
electric electrodes into exploitable voltage.

• And a dSPACE ControlDesk (dS1103) data acquisition
board with a computer (PC). The whole acquisition
system is used to generate the driving voltage for the
piezoactuator, to acquire the signals from the electrical
circuit, and to implement the 2-DOF dynamic observer as
well as the further H∞ feedback controller. MATLAB-
Simulink software is employed for the implementation.
The sampling frequency is set to 5kHz which is much
sufficient for the experimental tests carried out.

B. Remind of static displacement self-measurement of 2-DOF
piezoactuator

Applying an input voltage U to a single degree of freedom
unimorph or multimorph piezoelectric cantilever actuator of a
geometry: length Lo, width wo and thickness ho contributes a
deflection δo as well as an electric charge Q that will appear on
the surface/electrodes of the actuator. This resulting electrical
charge can be amplified and transformed into exploitable
voltage Uo using an external electrical circuit. The relation
between the applied input voltage and the contributed charge
can be expressed as a function of the geometrical properties
of the actuator and the dielectric coefficient εS33 as Q =
4woLoε

S
33

ho
Uin. The deflection can be linearly related to the

charge Q as δo = Q/γ, where γ is the actuator charge-
displacement coefficient [23].
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Fig. 1: Schematic of the experimental platform.

For the 2-DOF piezoactuator which exhibits four potential
electrodes and one common ground, there are four electrical
charge Qi to be amplified and to be exploited. Thus, the
electrical circuit in is repeated four times [22]. Fig. 2-a
depicts the general diagram of the static self-measurement
[22]. The exploitable voltages Uoi (i ∈ {1, 2, 3, 4}) from the
electrical circuit as well as the driving voltages Uy and Uz
are considered as the available signals to the (static) observer
in order to provide static estimation ŷs and ẑs of the real
displacements y and z at their steady-state regime (ys and zs).
By static, we mean that the self-measurement provides precise
estimation when the signal are constants or low-frequency.
At high frequency or for transient part of a step-response,
the estimation is not precise. However, for feedback control
application, having static estimation is not sufficient.
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In the next section, we therefore introduce a dynamic
observer to the existing static self-measurement in order to
permit a dynamic self-measurement of the displacement of the
2-DOF piezoactuator. For a further reading regarding the static
observer, more details on its developments and parameters
identification are available at [22].

2-DOF actuator

electrical circuit

2-DOF static
observer

Uy, Uz
ys, zs

Qi

Uoi

ŷs, ẑs

2-DOF actuator

electrical circuit

2-DOF static
observer

Uy, Uz
y, z

Qi

Uoi

ŷs, ẑs

2-DOF dynamic
observer

ys, zs

(a)

(b)

Fig. 2: (a): the static self-measurement [22]. (b): the suggested
dynamic self-measurement.

III. EXTENSION TO A DYNAMIC SELF-MEASUREMENT

The previous static observer is extended into dynamic
observer in this section in order to provide an estimate
displacement of the 2-DOF actuator in various regimes: static,
low frequency and high frequency. As displayed in Fig. 2-b,
the general principle consists in using all available signals so
far as information for the dynamic observer such that the latter
reconstructs and provides the complete (static and dynamic)
information regarding the output displacement. The available
signals are the driving voltage Uy and Uz and the estimate
static displacement ŷs and ẑs

A. Synthesizing the 2-DOF displacement dynamic observer

Both the static and dynamic regimes of the output displace-
ment y(t) and z(t) of the actuator are well estimated if the
following conditions are satisfied:

{
ŷ(t) = y(t), ∀t ∈ R+,
ẑ(t) = z(t), ∀t ∈ R+.

(1)

Eq. 1 can be represented in the Laplace domain as:

{
ŷ(s) = y(s); ∀s ∈ C,
ẑ(s) = z(s); ∀s ∈ C. (2)

The formulation of the complete 2-DOF displacement ob-
server of the actuator requires a 2-DOF model of the piezoac-
tuator that can describe the output displacement properties of
the actuator along each axis. Considering a linear behavior

and considering that there is no external force applied to the
actuator, the measured output displacement y(s) and z(s) can
be related to the associated applied voltage Uy and Uz as:

{
y(s) = dyDy(s)Uy(s) + dyzDyz(s)Uz(s),
z(s) = dzyDzy(s)Uy(s) + dzDz(s)Uz(s),

(3)

where Dy(s) and Dz(s) are the normalized dynamics of
the actuator in the direct transfers and Dyz(s) and Dzy(s) are
the normalized dynamics of the actuator in the cross-couplings
transfers. We have Dk(s = 0) = 1, ∀k ∈ {y, z, yz, zy}. The
parameters dk are the static gains. It is worth to note that
the hysteresis and the creep nonlinearities were neglected in
this case which limits the self-measurement to low voltage
applications. Ongoing works extend this work in order to
account for these nonlinearities. It is also worth to note that
the above model accounts for the cross-couplings, which is
essential in multi-DOF actuators.

Let us denote ∆k(s), ∀k ∈ {y, z, yz, zy}, the content of the
dynamic observer such that:{

ŷ(s) = ∆y(s)ŷs(s) + ∆yz(s)ẑs(s),
ẑ(s) = ∆zy(s)ŷs(s) + ∆z(s)ẑs(s).

(4)

Remind that ŷs and ẑs represent the estimate static value of
y and of z respectively and which is provided by the existing
static self-measurement.

Remind also that the (real) static displacement is obtained
from the dynamic model in Eq. 3 by letting Dk(s = 0) = 1,
that is: {

ys(s) = dyUy(s) + dyzUz(s),
zs(s) = dzyUy(s) + dzUz(s).

(5)

Consequently, assuming a perfect static observer and self-
measurement from Fig. 2-b and from [22], i.e. ŷs = ys and
ẑs = zs, we could derive from Eq. 5 that:

{
ŷs(s) = dyUy(s) + dyzUz(s),
ẑs(s) = dzyUy(s) + dzUz(s).

(6)

Note that the conditions ŷs = ys and ẑs = zs require the
electrical circuit to have a bandwidth superior to that of the
piezoactuator.

Replacing ŷs and ẑs in Eq. 4 with Eq. 6, we obtain the
dynamic observer equation:

{
ŷ(s) = Θy(s)Uy(s) + Θyz(s)Uz(s),
ẑ(s) = Θzy(s)Uy(s) + Θz(s)Uz(s),

(7)

where


Θy(s) = dy∆y(s) + dzy∆yz(s),
Θyz(s) = dyz∆y(s) + dz∆yz(s),
Θzy(s) = dy∆zy(s) + dzy∆z(s),
Θz(s) = dyz∆zy(s) + dz∆z(s),

(8)

In order to satisfy the objective of dynamic self-
measurement in Eq. 2, we should have the observer equation
in Eq. 7 equal to the dynamic model in Eq. 3, i.e.:
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
Θy(s) = dyDy(s),

Θyz(s) = dyzDyz(s),
Θzy(s) = dzyDzy(s),

Θz(s) = dzDz(s),

(9)

From Eq. 8 and Eq. 9, the observer parameters are therefore
derived:


∆y(s) =

dzydz
(dydz−dyzdzy)

(
dy
dzy

Dy(s)− dyz

dz
Dyz(s)

)
,

∆yz(s) =
dydyz

(dyzdzy−dydz) (Dy(s)−Dyz(s)) ,

∆zy(s) =
dzydz

(dydz−dyzdzy)
(Dzy(s)−Dz(s)) ,

∆z(s) =
dydyz

(dzydyz−dydz)

(
dzy
dy
Dzy(s)− dz

dyz
Dz(s)

)
,

(10)

B. Experimental validation of the 2-DOF dynamic self-
measurement

The transfer functions dkDk(s), ∀k ∈ {y, z, yz, zy}, have
been identified using step responses of the 2-DOF actuator
under input of 5 V. The measured data was afterwards used
to identify the transfer function. The systems identification
toolbox in MATLAB [24]. The ARMAX technique (Auto
Regressive Moving Average with eXternal inputs) was applied
for that. We obtain,

{
dy = 5.6µm/V,

Dy(s) = 989.98(s2−440.25s+4.976×107)
(s+4894)(s2+48.22s+1.005×107) ,

(11)

{
dz = 5.01µm/V,

Dz(s) = 670(s2+2554s+5.092×107)
(s+4367)(s2+44.87s+7.82×106) ,

(12)

{
dyz = 0.08µm/V,

Dyz(s) = −87(s+3.2×104)(s+1.8×104)
(s+4894)(s2+48s+1×107) ,

(13)

and

{
dzy = 0.29µm/V,

Dzy(s) = −1591(s2+2002s+1.1×107)
(s+2227)(s2+60.8s+7.9×106) ,

(14)

The dynamic observer has been implemented additionally
to the existing static self-measurement by following Fig. 2-
b. Then, step responses tests have been carried out to verify
the efficiency of the whole dynamic self-measurement. Fig. 3
depicts the results when step voltages with amplitudes of Uy =
5V and Uz = 5V are applied successively. Fig. 3-a (resp.
Fig. 3-d) show that the estimate displacement ŷ (resp. ẑ) from
the observer well coincides with the real output displacement
y (resp. z) measured by the external optical sensor, both in its
transient regime (dynamic) and its steady-state regime (static).
Furthermore, Fig. 3-b (resp. Fig. 3-c) shows that the cross-
couplings observed at y (resp. z) and due to Uz (resp. Uy) is
also conveniently estimated by the dynamic observer and its
self-measurement. It is worth to note that the observer does
not contain real-time correction such as Luenberger observer.

Hence, the model used to construct the obsrever should be as
precise as possible.
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Fig. 3: Step responses of the 2-DOF actuator when applying
5V of amplitudes: comparison between the estimated output
displacement and the real displacement measured by the
optical sensors.

IV. APPLICATION OF THE DYNAMIC SELF-MEASUREMENT
TO A H∞ FEEDBACK CONTROL DESIGN

The output of the proposed self-measurement observer for
the 2-DOF piezoactuator is employed in this section as a
feedback of an H∞ controller. The controller is designed
to reject the cross-couplings and to have certain tracking
performances.

A. Remind of the model to be controlled

The system to be controlled includes: the 2-DOF piezoactu-
ator, the electrical circuit, the static observer and the dynamic
observer designed in this paper. This new system has inputs
Uy and Uz and outputs ŷ and ẑ. Fig. 4-a depicts the new
system and the feedback controllers Cy(s) and Cz(s) to be
synthesized. In the figure, yref and zref are the reference
inputs.

It is clear that, when the self-measurement and its dynamic
observer well estimates the real displacement, we can assume
that the model of the new system is similar to that of the
model in Eq. 3, that is:

{
ŷ(s) = dyDy(s)Uy(s) + dyzDyz(s)Uz(s),
ẑ(s) = dzyDzy(s)Uy(s) + dzDzUz(s),

(15)

i.e.

{
ŷ(s) = Gy(s)Uy + py(s),
ẑ(s) = Gz(s)Uz + pz(s),

(16)

where Gy(s) = dyDy(s) and Gz(s) = dzDz(s), and where
py(s) = dyzDyz(s)Uz(s) and pz(s) = dzyDzy(s)Uy(s) are
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internal disturbance due to the cross-couplings. From the
model in Eq. 16, the initial 2-DOF system with dynamic self-
measurement is equivalent to two single-input-single-output
(SISO) systems with disturbance. Fig. 4-b is therefore the
equivalent scheme of Fig. 4-a

+
-

+
-

+

+

(a)

(b)

2-DOF
piezoactuator

the new system

2-DOF
dynamic observer

and self-measurement

Qi

Fig. 4: (a): closed-loop block diagram. (b): equivalent scheme.

B. Specifications

In order to match with precise positioning requirements, we
choose the following specifications for the closed-loop.

Tracking performance - The specification here is to ensure
reference tracking performance. It is taken to be similar for
y and z axes. The specifications choice is based on the fact
that the direct transfers responses in Fig. 3-a and d) should
be improved in the closed loop: no vibration anymore and
reduced settling time. We therefore choose as follows.
• The static error should be less than 1%.
• The overshot percentage which is nearly 69% along y

axis and 68% along z axis (see Fig. 3-a and -d) should
be 0 for the closed-loop.

• The settling time along both axes should not exceed
15ms.

Input voltage limitation - The specification here, also called
command moderation, is to ensure that the voltage applied
to the actuator does not exceed certain values. In particular,
the following values have been chosen to not exceed the
displacement per voltage gain that we found during the char-
acterization (see the steady-state values of the step response
in Fig. 3-a and -d).
• For the y axis, the maximum ratio is imposed to be

Uymax

ymax
= 5V

29µm = 0.1786[ Vµm ].

• For the z axis, the maximum ratio Uzmax

zmax
= 5V

25µm =

0.1996[ Vµm ].
Each of this gain was used as command moderation speci-

fication for y and for z axis respectively.
Disturbance rejection - The disturbance is principally due

to the cross-couplings py and pz . We suggest here to account
for them in the controller synthesis. Fig. 3-b shows that the
affect of Uz on ŷ reaches py−max=2.48µm (maximal overshot)
and Fig. 3-c shows that the affect of Uy on ẑ reaches
pz−max=1.88µm (maximal overshot), in absolute values. Let
us take the worst case of 2.48µm for both axes. Thus, the
specification of disturbance rejection for both axes is:
• No overshot in the response ŷ (resp. ẑ) when a step

reference zref (resp. yref ) is applied to the closed-loop.
• A disturbance of 2.48µm should not affect the output

more than 0.3µm ( 0.3
2.48 = 12%): εy

py−max
= εz

pz−max
=

12% in steady-state regime (static error).
• Finally, the maximum settling time to reject the distur-

bance should not exceed 9ms.

C. Standard H∞ controller design

The desired specifications that were suggested in the previ-
ous section can be achieved by employing weighting functions.
The technique is explained here for y axis which is similar for
z axis.

The tracking performance specification is considered by
introducing a weighting function W1(s) to the error signal
εy . A weighting function W2(s) applied to the voltage Uy
accounts for the command moderation specification. Finally, a
weighting function W3 is put in the disturbance py in order to
consider its rejection by the controller to be calculated. Notice
that, since the numerical values of the specifications are the
same for y and z axes, the same weighting functions apply
for both of them, as displayed in the augmented closed-loop
diagram in Fig. 5-a. The augmented diagram is only used to
synthesize the controller. The weightings are removed when
implementing this latter. In the figure, ey1 and ey2 (resp. ez1
and ez2) are the weighted outputs and by (resp. bz) is the new
input related to the disturbance for the y axis (resp. z axis).

Fig. 5-b illustrates the standard scheme derived from the
augmented closed-loop for the y axis in Fig. 5-a. This standard
scheme relates the augmented system Py(s) with the controller
Cy(s) and is used for the standard H∞ problem.

Problem (Pbl.1) - the standard H∞ approach: The
objective is to seek the controller Cy(s) such that:
• The interconnection of Fig. 5-b is stable.
• The lower linear fractional transformation (LFT)
Fyl(Py(s), Cy(s)), which is defined as the transfer
function bewteen exogeneous signals (ey1, ey2)T and
(yref , by)T in presence of the interconnection with C(s),
is such that
||Fyl(Py(s), Cy(s))||∞ < γy .

In our case, this LFT function Fyl(Py(s), Cy(s)) can be
represented in matricial function as:



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2017

+
-

+
-

+

+

(b)

(a)

Fig. 5: (a): the augmented closed-loop scheme with weight-
ings. (b): the standard scheme for y axis.

(
ey1
ey1

)
= Fyl(Py(s), Cy(s))(

yref
by

). (17)

For a sensitivity function Sy(s) and a complementary sen-
sitivity function Hy(s) = SyCyGy such that:

Sy(s) =
εy(s)

yref (s)
=

1

1 + CyGy
, (18)

we have:

Fyl(Py(s), Cy(s)) =

(
W1Sy −W1SyW3

W2CySy −W2CySyW3

)
. (19)

From the standard H∞ problem above, we should calculate
the controller Cy(s) such that:

∣∣∣∣∣∣∣∣( W1Sy −W1SyW3,
W2CySy −W2CySyW3

)∣∣∣∣∣∣∣∣
∞
< γy, (20)

i.e.

||W1Sy||∞ < γy, || −W1SyW3||∞ < γy, (21)
||W2CySy||∞ < γy, || −W2CySyW3||∞ < γy,

which is also satisfied if we have:

|Sy| < γy|
1

W1
|, | − Sy| < γy

1

W1W3
, (22)

|CySy| < γy|
1

W2
|, | − CySy| < γy,

1

W2W3
.

In these latter conditions, i.e. Ineq. 22, 1
W1

is called (fre-
quency domain) gabarit for the tracking performance specifica-
tion since it is used to impose bound and shape for Sy(s) in its
frequency domain. On the other hand, 1

W2
is the gabarit for the

command moderation specification and 1
W1W3

is gabarit for the
disturbance rejection specification. The weighting functions
W1, W2 and W3 are derived by matching these gabarits
with the specifications described in section-IV-B. For that,
we suggest the following gabarits structures for the tracking
performance:

1

W1
=
kos+ 3εs

tr

s+ 3
tr

=
s+ 2

s+ 200
, (23)

where ko = 1 means that there is no overshot, and where
εs = 1% is the desired maximal statical error and tr = 15ms
is the desired maximal response time (see section-IV-B).

For the command moderation specification, a simple gain
can be used as bound:

1

W2
= 0.1786[

V

µm
], (24)

Finally, for the disturbance rejection, teh structure and the
derivation of the gabarit are similar to those of the tracking
performance ones. We have:

1

W1W3
=

s+ 40

s+ 333
. (25)

Notice that the coefficient γy , called performance level,
should be as small as possible. If γy ≤ 1, the specified
performances will be guaranteed by the controller. However
if γy > 1, it is not guaranteed that the performances will be
satisfied.

D. Calculation of the controllers

To solve the H∞ problem in Pbl.1 (stability and bound of
the gain) and, thus in our case, to find the controller Cy(s) such
that Ineq. 22 is satisfied, the Glover-Doyle algorithm [25] has
been applied. The resolution in this algorithm is based on the
Riccati equations and it uses the dichotomy technique to find
the optimal value of γy . The same principle used for Cy(s)
was also applied for Cz(s). We obtain:

{
γy−opt = 1.6,

Cy(s) = 3823(s+4894)(s+200)(s+23)(s2+48s+1e7)
(s+3.9e4)(s+2)(s2+158s+2.4e4)(s2+6029s+3.6e7)

(26)

and
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{
γz−opt = 1.8,

Cz(s) = 1593(s+4367)(s+200)(s+24)(s2+45s+7.8e6)
(s+1.3e4)(s+2)(s2+135s+3.4e4)(s2+5092s+2.1e7) ,

(27)

where eν = ×10ν , for example: 3.6e7 = 3.6× 107.
Notice that the optimal values of γ for each controller

exceed one: γy−opt = 1.6 and γz−opt = 1.8. Although
the specified performances may not be ensured, the deviance
should be very light because these γ values are still low.

E. Experimental results

The calculated controllers Cy(s) and Cz(s) were imple-
mented in MATLAB-Simulink environment and applied to the
setup by following Fig. 4.

First, step references of yref = 20µm and zref = 20µm
were applied simultaneously. The objective is to check if
the specifications are satisfied despite the cross-couplings that
should occur in the y axis (resp. z axis) due to zref (resp.
yref ). Fig. 6 depicts the results. It clearly shows that the
specified settling time (less than 15ms), the overshot (0%)
and the static error (less than 1%) are correctly satisfied for
both axes, with the presence of disturbance (which is the effect
of the other axis). Notice that the fact that the response along z
axis exhibits slightly higher settling time than that of y axis is
due to the specification imposed to be similar for both. Indeed,
during the command moderation specifications in section-IV-
B, we used the worst case which corresponded to the gain for
y axis. Hence, the response along z axis requires more effort,
which here is represented by a higher settling time.
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Fig. 6: Step responses of the closed-loop by applying yref =
20µm and zref = 20µm simultaneously.

The next experiment consists in performing the frequency
response of the closed-loop, for each axis independently. Fig. 7
depicts the results. They show that the bandwidth is of 96Hz
for the ŷ axis and of 80Hz for the ẑ axis which are important
in applications such as micromanipulation [2].
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Fig. 7: Frequency responses of the closed-loop.

The last tests consist in applying a circular spatial trajectory
reference to the closed-loop. To this aim, the individual
reference is given by: yref = 20µm sin(2πft) and zref =
20µm cos(2πft), where the frequency is chosen to be f =
10Hz. Fig. 8 depicts the result which demonstrates that the
closed-loop system well tracks the complex trajectory. As
a measure of performances, we use the spatial error given
by: ε =

(√
y2ref + z2ref −

√
ŷ2 + ẑ2

)
. We found that the

maximal absolute error is |ε| = 2.1µm, which in relative
value is |ε|

40µm ≈ 5%. This is a good result for applications
such as micromanipulation, in particular with such trajectory
frequency (10Hz). However when the frequency is increased,
the error starts to increase due to the phase-lag first (beyond
30Hz for both axes), and also due to the bandwidth of the
closed-loop system (beyond 96Hz) and 80Hz respectively).
The error could be limited by introducing the type of reference
signal (for eg. circular trajectory) and its operating frequency
in the specifications used to calculate the controller in order
to decrease this error.

For comparison, we also applied the self-measurement and
feedback control developed in [18]. The technique in this pre-
vious work was valid for only 1-DOF piezoactuators. The test
consists therefore in applying this 1-DOF self-measurement
and feedback control to each of the y and z axis of our
2-DOF piezoactuator. The experiemental results show that,
with the same condition than above (circular trajectory with
10Hz of frequency and 20µm of amplitude), the absolute
error is of 15% which is much larger than that from the
technique suggested in this paper. This is due to the fact that
the observer technique inside the self-measurement developed
in [18]does not consider cross-couplings. Hence, once the
reference input involves the two axes y and z simultaneously,
the error drastically increases.

V. CONCLUSION AND PERSPECTIVES

The work reported in this paper consisted in suggesting
an embedded measurement technique capable of measuring
both low and high frequency regimes of the displacement
in a 2-DOF piezoelectric actuator. For this aim, a dynamic
2-DOF observer was synthesized to estimate the dynamic
output displacement of the actuator which was equipped with
static self-measurement technique. Beyond the dynamics, the
observer was also able to track the cross-couplings between
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: reference trajectory
: output trajectory

40µm

40µm

Fig. 8: Circular trajectory tracking of the closed-loop.

the two axes of the actuator. Then, the output of the observer
was used as a feedback for a H∞ controller. The dynamic
measurement as well as the feedback control were verified
experimentally and gave maximal closed-loop tracking error
of 1% as well as settling time better than 15ms and bandwidth
in excess of 80Hz

The linear observer for self-measurement developed in this
paper is valid for small displacement of the 2-DOF piezoac-
tuator. Ongoing works consist in extending the observer into
nonlinear such that hysteresis and creep are accounted for and
thus estimation and feedback controll with large displacement
condition will be possible.
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