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Abstract: In reliability theory, a widely used process to model the phenomena of the cumulative
deterioration of a system over time is the standard gamma process. Based on several restrictions,
such as a constant variance-to-mean ratio, this process is not always a suitable choice to describe
the deterioration. A way to overcome these restrictions is to use an extended version of the gamma
process introduced by Cinlar (1980), which is characterized by shape and scale functions. In this
paper, the aim is to propose statistical methods to estimate the unknown parameters of parametric
forms of the shape and scale functions. We here develop two generalized methods of moments
(Hansen, 1982), based either on the moments or on the Laplace transform of an extended gamma
process. Asymptotic properties are provided and a Wald-type test is derived, which allows to test
standard gamma processes against extended ones with a specific parametric shape function. Also,
the performance of the proposed estimation methods is illustrated on simulated and real data.

Keywords: Process with non-stationary independent increments; Extended gamma process;
Laplace transform; Parametric estimation; Generalized method of moments.

1 Introduction

Safety and dependability is a crucial issue in many industries, which has led to the development of
a huge literature devoted to the so-called reliability theory. In the oldest literature, the lifetimes
of industrial systems or components were usually directly modeled through random variables, see,
e.g., Barlow and Proschan (1965) for a pioneer work on the subject. Based on the development
of on-line monitoring which allows the effective measurement of a system deterioration, numerous
papers nowadays model the degradation in itself, which is often considered to be accumulating
over time. This can be done through the use of non decreasing stochastic processes, among which
standard gamma processes are widely used (see van Noortwijk (2009) for an overview).
Setting A : R+ → R+ to be a measurable, increasing and right-continuous function with A(0) = 0 and
b0 > 0, let us recall that a standard (non homogeneous) gamma process Y = (Yt)t≥0 ∼ Γ0(A(.), b0),
with A(.) as shape function and b0 as (constant) scale parameter, is a stochastic process with
independent, non-negative and gamma distributed increments such that Y0 = 0 almost surely. The
probability density function of an increment Yt − Ys (with 0 < s < t) is given by

f(x) =
b
A(t)−A(s)
0

Γ(A(t)−A(s))
xA(t)−A(s)−1 exp(−b0x), ∀x ≥ 0 (1)

1



(e.g. see Abdel-Hameed (1975)).
The mean, variance and Laplace transform of Yt are given by

E[Yt] =
A(t)

b0
; V[Yt] =

A(t)

b20
; LYt(λ) = E

(
e−λYt

)
=

(
b0

b0 + λ

)A(t)

for all t ≥ 0 and λ ≥ 0, so that the variance-to-mean ratio is constant over time.
As a consequence, a Standard Gamma Process (SGP) is not a suitable choice when there

is some ”empirical evidence” against a constant variance-to-mean ratio (Guida et al. (2012)). A
way to overcome this restriction is to use an Extended Gamma Process (EGP), mostly introduced
simultaneously by Çinlar (1980) and Dykstra and Laud (1981). An EGP is a non decreasing
stochastic process with independent increments. It is characterized by a similar shape function as a
SGP plus a scale function, which is not assumed to be constant any more. To be more specific, let
A : R+ → R+ be a measurable, increasing and right-continuous function such that A(0) = 0 and let
b : R+ → R∗+ be a measurable positive function. The functions A(·) and b(·) are assumed to be such
that ∫

(0,t]

dA(s)

b(s)
<∞,

∫
(0,t]

dA(s)

b(s)2
<∞ (2)

for all t ≥ 0. The process X = (Xt)t∈R+ is then said to be an EGP with shape function A(·) and
scale function b(·) (written X ∼ Γ(A(.), b(.)) if it can be represented as the following stochastic
integral with respect to a SGP (Yt)t∈R+ ∼ Γ(A(·), 1):

Xt =

∫
(0,t]

dYs
b(s)

, ∀t ∈ R+ (3)

and X0 = 0. The probability density function (pdf) of an EGP increment is not available in full
form. However, both its Laplace transform and moments are explicitly known.

The statistical inference of a stochastic model is an important task for its practical use in an
industrial reliability context. As far as SGPs are concerned, this has been much studied in the
literature, both from a parametric and semi-parametric point of view, see, e.g., Çinlar et al. (1977)
and Ye et al. (2013). However, it seems that the statistical inference of EGPs has received much less
attention, see however Guida et al. (2012) for a specific parametric procedure and a discrete-time
version of an EGP.

In this paper, the aim is to propose estimation methods for parametric forms of the shape and
scale functions of an EGP. Based on the fact that the pdf of an increment is not known in full
form, standard maximum likelihood estimation is not possible. To overcome the non availability of
the pdf, other methods based on some Empirical Likelihood (EL) function have been developed
(Qin and Lawless (1994)) and used for processes with independent increments, see, e.g., Kunitomo
and Owada (2004), Sueishi and Nishiyama (2005), Chan et al. (2009). However, in the present
case of an EGP, EL method requires estimating too many parameters (due to the non-stationarity
of the EGP increments) and it consequently does not seem to be adapted either. Based on the
fact that both moments and Laplace transform are here known in full form, we suggest to use
the Generalized Method of Moments (GMM) introduced by Hansen (1982), which can be based
on moments, Laplace/Fourier transforms, or many other quantities. GMM based on the Fourier
transform has been the subject of many papers in the literature (see, e.g., Carrasco and Florens
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(2002), Feuerverger and McDunnough (1981), Sueishi and Nishiyama (2005)). In the present study,
we develop GMM for an EGP based on either the moments or on the Laplace transform. We provide
conditions under which the proposed estimators are proved to be consistent and asymptotically
normal, using previous results from Hall (2005), Hansen (1982) and Newey and McFadden (1994).

This paper is organized as follows. Section 2 briefly introduces the general approach of GMM.
Then, we elaborate about the two approaches of GMM for an EGP in Section 3 and provide
asymptotic properties. In Section 4, the focus is on a particular parametric form for the shape
and scale functions. Sufficient conditions are provided for the asymptotic properties to hold and a
Wald-type test is derived, which allows to check whether the EGP adjusted to some given data is
significantly different from a SGP. Numerical illustrations are presented in Section 5 along with an
application to real data, and we finally conclude in Section 6.

2 General specification of GMM

2.1 GMM approach

Let W be a random vector of dimension d and {Wn, n = 1, . . . , N} be a set of independent and
identically distributed (i.i.d.) random vectors sharing the same distribution with W . Let θ0 be the
true unknown parameter vector in a parameter space Θ ⊆ Rp that indexes the distribution of W .
Let also f : Rd ×Θ→ Rq (q ≥ p) be a function such that

f(w,θ) =
(
f (i)(w(i),θ)

)
1≤i≤d

=

f
(1)(w(1),θ)

...

f (d)(w(d),θ)

 , (4)

where w =
(
w(1), . . . , w(d)

)
, θ = (θ1, . . . , θp) and f (i)(w(i),θ), i = 1, . . . , d is a column vector with

dimension k.
The gradient matrix of f(w,θ) is given by

∂f(w,θ)

∂θ
=


∂f (1)(w(1),θ)

∂θ
...

∂f (d)(w(d),θ)
∂θ

 =


∂f (1)(w(1),θ)

∂θ1
. . . ∂f (1)(w(1),θ)

∂θp
...

...
∂f (d)(w(d),θ)

∂θ1
. . . ∂f (d)(w(d),θ)

∂θp


whenever it exists, for all w ∈ Rd,θ ∈ Θ, where ∂f (i)(w(i),θ)

∂θj
, i = 1, . . . , d, j = 1, . . . , p is a k-

dimensional column vector.
The function f is assumed to be such that the following equation

E[f(W ,θ)] = 0, θ ∈ Θ, (5)

is solved by θ0. Equation (5) is called population moment condition. It represents a set of q = kd
equations for the p-dimensional unknown θ. The population moment condition should provide
sufficient information to identify θ0 (identification condition). Since W is issued from θ0, we cannot
compute the expectation and we should rely on sample averages. The corresponding sample moment
condition is given by

ĝN (θ) = 0 (6)
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where ĝN (θ) is the sample moment

ĝN (θ) =
1

N

N∑
n=1

f(Wn,θ).

Next, the GMM estimator is defined as follows:

Definition 2.1. (Hall, 2005, Definition 1.2, p.14) Let (PN ) be a sequence of positive semi-definite
weighting matrices that converges in probability to a constant positive definite matrix P . Then, the
GMM estimator based on the population moment condition (5) is given by

θ̂N = arg min
θ∈Θ

QN (θ) (7)

where QN (θ) = ĝN (θ)TPN ĝN (θ).

In the following, the convergence in probability is denoted by ”Prob”, the almost sure
convergence by ”a.s.” and the convergence in distribution by ”D”.

2.2 Asymptotic properties

Under a few technical assumptions, GMM estimator is consistent and asymptotically normal (see
Hall (2005), Hansen (1982), Newey and McFadden (1994)). There are a variety of ways to prove
such asymptotic properties. We here follow the results of Newey and McFadden (1994).

Let ‖.‖∞ design the infinity norm. The following theorem is a direct consequence of (Newey
and McFadden, 1994, Theorem 2.6, p.2132).

Theorem 2.2. Assume that

(H1) {Wn, n = 1, . . . , N} are i.i.d.,

(H2) (PN ) converges in probability to a constant positive definite matrix P ,

(H3) E[f(W ,θ)] = 0 if and only if θ = θ0 (identification condition),

(H4) Θ is compact,

(H5) w 7→ f(w,θ) is Borel measurable for each θ ∈ Θ and θ 7→ f(w,θ) is continuous for each
w ∈ Rd,

(H6) E
[

sup
θ∈Θ
‖f(W ,θ)‖∞

]
<∞.

Then θ̂N
Prob−−−→ θ0.

Remark 2.3. Theorem 2.2 is a weak consistency result. To get the strong consistency, it is necessary
and sufficient to replace the convergence in probability by the almost sure convergence in assumption
(H2), see (Hansen, 1982, Theorem 2.1, p.1035).

The following theorem states an asymptotic normality result.
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Theorem 2.4. (Newey and McFadden, 1994, Theorem 3.2, p.2145) Suppose that
(H1), (H2), (H3), (H4), (H5), (H6) are satisfied and

(H7) θ0 is an interior point of Θ,

(H8) θ 7→ ∂f(w,θ)
∂θ is continuous on some neighborhood O ⊂ Θ of θ0 for each w ∈ Rd,

(H9)
√
N ĝN (θ0)

D−→ N (0,S) with S = E
[
f(W ,θ0)f(W ,θ0)T

]
,

(H10) θ 7→ E
[
∂f(W ,θ)

∂θ

]
is continuous at θ0 and

sup
θ∈O

∥∥∥∥∥ 1

N

N∑
n=1

[
∂f(Wn,θ)

∂θ

]
− E

[
∂f(W ,θ)

∂θ

]∥∥∥∥∥
∞

Prob−−−→ 0,

(H11) DT
0 PD0 is non-singular with

D0 = E

[
∂f(W ,θ)

∂θ

∣∣∣∣
θ=θ0

]
. (8)

Then √
N
(
θ̂N − θ0

)
D−→ N (0,HSHT ) (9)

with H = (DT
0 PD0)−1DT

0 P .

The optimal weighting matrix is given by the following theorem which is derived from the
result of Hall for stationary and ergodic random vectors (see (Hall, 2005, Theorem 3.4, p.88)).

Theorem 2.5. Suppose that the hypotheses for the asymptotic normality are satisfied and the matrix
S given in (H9) is non-singular. Then the smallest possible asymptotic variance is

V =
(
DT

0 S
−1D0

)−1
(10)

and this can be obtained by setting P = S−1.

2.3 Estimation

As the matrix S depends on the unknown parameter vector θ0, it is also unknown and it should be
estimated. An easy way to proceed is to adopt a two-step procedure (see Hansen (1982)) as follows:

1. Set PN = I, where I is the identity matrix, and compute

θ̂
(1)
N = arg min

θ∈Θ
QN (θ). (11)

2. Construct an estimator of S based on the initial GMM estimator θ̂
(1)
N

Ŝ
(1)
N =

1

N

N∑
n=1

f(Wn, θ̂
(1)
N )f(Wn, θ̂

(1)
N )T . (12)
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Theorem 2.5 implies that a good choice for PN is
(
Ŝ

(1)
N

)−1
, under the condition that Ŝ

(1)
N is

non-singular. Then, the two-step GMM estimator of θ0 is given by

θ̂
(2)
N = arg min

θ∈Θ
ĝN (θ)T

(
Ŝ

(1)
N

)−1
ĝN (θ). (13)

3 GMM for an EGP

Section 2 introduced the general framework of GMM. The focus in this section is on GMM for an
EGP.

3.1 Assumptions

The deterioration is modeled by an EGP X = (Xt)t∈R+ ∼ Γ(A(.), b(.)) (see (3)), which is assumed
to be observed on a compact set [0, T ]. The shape and scale functions depend on a parameter θ0 ∈ Θ
and we set A(.,θ0) and b(.,θ0) to highlight the dependence with respect to θ0. We also set a(t,θ0)
to be the derivative of A(t,θ0) with respect to t (which exists almost surely). Based on the fact that
the process is observed on [0, T ], it is enough to assume that (2) holds only on [0, T ], namely that∫

(0,t]

a(s,θ0)

b(s,θ0)
ds <∞,

∫
(0,t]

a(s,θ0)

b(s,θ0)2
ds <∞ (14)

for all t ∈ [0, T ].
The Laplace transform of an EGP increment is given by

LXt+h−Xt(λ,θ0) := E
(
e−λ(Xt+h−Xt)

)
= exp

(
−
∫

(t,t+h]
log

(
1 +

λ

b(s,θ0)

)
a(s,θ0)ds

)
, (15)

for all t ∈ [0, T ], λ ≥ 0 and h > 0 (see Çinlar (1980)).
The mean and variance are given by

E(Xt+h −Xt) =

∫
(t,t+h]

a(s,θ0)ds

b(s,θ0)
, V(Xt+h −Xt) =

∫
(t,t+h]

a(s,θ0)ds

b(s,θ0)2
(16)

(see Çinlar (1980)).
We assume that N independent processes Xn, n = 1, . . . , N are observed at the same inspection

times t0 = 0 < t1 < · · · < td = T , which are copies of the process X. For the process X, we set

W (i) = Xti −Xti−1 , i = 1, . . . , d (17)

to be the i-th increment and

W =
(
W (1), . . . ,W (d)

)T
. (18)

Defining Wn in the same way as W with X substituted by Xn, this leads to a sequence of i.i.d.
d-dimensional random vectors {Wn, n = 1, . . . , N}.

Now, we turn to discuss the choice of the population moment condition as well as the asymptotic
properties for each of the following approaches: GMM based on the moments and GMM based on
the Laplace transform.
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3.2 GMM based on the moments

3.2.1 Approach

As in the classical method of moments, the population moment condition for GMM based on the
moments is defined by matching the theoretical moments of an EGP with the appropriate empirical
ones. This matching is done for each increment. Define

fMM (w,θ) =

(
w(i) −m(i)(θ)(

w(i) −m(i)(θ)
)2 − v(i)(θ)

)
1≤i≤d

(19)

where

m(i)(θ) =

∫ ti

ti−1

a(s,θ)

b(s,θ)
ds, v(i)(θ) =

∫ ti

ti−1

a(s,θ)

b(s,θ)2
ds. (20)

Based on (16), fMM satisfies E[fMM (W ,θ0)] = 0. Based on assumptions given in (14), we
have E[fMM (W ,θ)] <∞ for all θ ∈ Θ. Also

ĝN (θ) =


1
N

N∑
n=1

[
W (i)
n −m(i)(θ)

]
1
N

N∑
n=1

[(
W (i)
n −m(i)(θ)

)2
− v(i)(θ)

]


1≤i≤d

=

(
m̂(i) −m(i)(θ)

v̂(i)(θ)− v(i)(θ)

)
1≤i≤d

with

m̂(i) =
1

N

N∑
n=1

W (i)
n ; v̂(i)(θ) =

1

N

N∑
n=1

(
W (i)
n −m(i)(θ)

)2
.

The gradient matrix is given by

∂fMM (w,θ)

∂θ
=

(
−∂m(i)(θ)

∂θ

−2∂m
(i)(θ)
∂θ

(
w(i) −m(i)(θ)

)
− ∂v(i)(θ)

∂θ

)
1≤i≤d

. (21)

3.2.2 Asymptotic properties

In this subsection, conditions under which consistency and asymptotic normality of GMM estimators
for an EGP based on the moments hold are presented in a general setting. These conditions will be
checked for a particular parametric form of the shape and scale functions in Section 4. The results
are derived from Theorems 2.2, 2.4, 2.5.

Before presenting the results, we list some assumptions we shall use to show the asymptotic
properties for GMM based on both moments and Laplace transform (in Section 3.3).

Assumptions.

(M1j) For j = 1, 2: There exists Ij : [0, T ]→ (0,+∞) such that∣∣∣∣ a(s,θ)

bj(s,θ)

∣∣∣∣ ≤ Ij(s), for all s ∈ [0, T ],θ ∈ Θ

with
∫ T

0 Ij(s)ds <∞.
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(M2j) For j = 1, 2: There exists Jj : [0, T ]→ (0,+∞) such that∥∥∥∥ ∂∂θ
(
a(s,θ)

bj(s,θ)

)∥∥∥∥
∞
≤ Jj(s), for all s ∈ [0, T ],θ ∈ Θ

with
∫ T

0 Jj(s)ds <∞.

(M3j) For j = 1, 2: θ 7→ ∂
∂θ

(
a(s,θ)
bj(s,θ)

)
are continuous for each s ∈ [0, T ].

(M4j) For j = 1, 2: mj+2([0, T ],θ) :=

∫ T

0

a(s,θ)

bj+2(s,θ)
ds <∞.

Let us consider W and fMM as defined in (18) and (19), respectively. Then, the following
lemma is easy to check and stated without proof.

Lemma 3.1. Suppose that

(a) Θ is compact,

(b) θ 7→ m(i)(θ) and θ 7→ v(i)(θ) are continuous for 1 ≤ i ≤ d.

Then (i) (H6) holds; (ii) if (H7) holds and θ 7→ ∂m(i)(θ)
∂θ and θ 7→ ∂v(i)(θ)

∂θ are continuous, then (H10)
holds.

Next, a consistency result for GMM based on the moments is formulated.

Corollary 3.2 (Consistency). Assumptions (H2), (H3), (H4), (M11) and (M12) imply

θ̂N
Prob−−−−→
N→∞

θ0.

Proof. By hypothesis and Lemma 3.1 (part (i)), we can easily verify that the conditions of Theorem
2.2 are satisfied.

The following corollary states the asymptotic normality of GMM estimator for an EGP based
on the moments.

Corollary 3.3 (Asymptotic Normality). Suppose that Θ is compact and θ0 is an interior point
of Θ. If (H2), (H3), (H11) and (Mij), i ∈ {1, 2, 3, 4}, j ∈ {1, 2} are satisfied, then

√
N(θ̂N − θ0) is

asymptotically normal with mean 0 and asymptotic variance V = HSHT where

H = (DT
0 PD0)−1DT

0 P ,

D0 = −


∂m(i)(θ)

∂θ

∣∣∣∣
θ=θ0

∂v(i)(θ)
∂θ

∣∣∣∣
θ=θ0


1≤i≤d

= −


∂m(i)(θ)
∂θ1

∣∣∣∣
θ=θ0

. . . ∂m(i)(θ)
∂θp

∣∣∣∣
θ=θ0

∂v(i)(θ)
∂θ1

∣∣∣∣
θ=θ0

. . . ∂v(i)(θ)
∂θp

∣∣∣∣
θ=θ0


1≤i≤d

(22)

(from (8) and (21)).
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Proof. The point here is to check the conditions for applying Theorem 2.4. Based on Assumptions
(Mij), i ∈ 2, 3, j ∈ 1, 2, Lemma 3.1, Lemma 2.4 from Newey and McFadden (1994) and using the
dominated convergence theorem, one can easily verify conditions (H8) and (H10). It remains to
show (H9).

We first point out that S is the covariance matrix of

W̊ =

(
W (1),

(
W (1) −m(1)(θ0)

)2
, . . . ,W (d),

(
W (d) −m(d)(θ0)

)2
)T

. (23)

Then, we compute S.

S = E
[
fMM (W ,θ0)fMM (W ,θ0)T

]
=


B(1) Z(1,2) . . . Z(1,d−1) Z(1,d)

Z(2,1) B(2) . . . Z(2,d−1) Z(2,d)

...
...

. . .
...

...

Z(d−1,1) Z(d−1,2) . . . B(d−1) Z(d−1,d)

Z(d,1) Z(d,2) . . . Z(d,d−1) B(d)


with

B(i) =


E
[(

W (i) −m(i)(θ0)
)2]

E
[(

W (i) −m(i)(θ0)
)((

W (i) −m(i)(θ0)
)2

− v(i)(θ0)

)]
E
[(

W (i) −m(i)(θ0)
)((

W (i) −m(i)(θ0)
)2

− v(i)(θ0)

)]
E

[((
W (i) −m(i)(θ0)

)2
− v(i)(θ0)

)2
]

 ,

(24)

Z(i,j) = E
[(

W (i) −m(i)(θ0)
)(

W (j) −m(j)(θ0)
)]

E
[(

W (i) −m(i)(θ0)
)((

W (j) −m(j)(θ0)
)2

− v(j)(θ0)

)]
E
[(

W (j) −m(j)(θ0)
)((

W (i) −m(i)(θ0)
)2

− v(i)(θ0)

)]
E
[((

W (i) −m(i)(θ0)
)2

− v(i)(θ0)

)((
W (j) −m(j)(θ0)

)2
− v(j)(θ0)

)]


for i 6= j.

Based on the fact that W (i) and W (j) are independent (i 6= j), it is readily seen that

Z(i,j) =

(
0 0
0 0

)
. Furthermore, we have

E
[(
W (i) −m(i)(θ0)

)2
]

= v(i)(θ0) <∞ (by Assumption (14)),

E
[(
W (i) −m(i)(θ0)

)((
W (i) −m(i)(θ0)

)2
− v(i)(θ0)

)]
= 2m3([ti, ti+1],θ0) <∞ (by (M41)),

E

[((
W (i) −m(i)(θ0)

)2
− v(i)(θ0)

)2
]

= 6m4([ti, ti+1],θ0) + 2v(i)(θ0)2 <∞ (by (14) and (M42)).

Consequently, B(i) is finite for all i and then S is finite too. Hence, by the central limit theorem
for i.i.d. random variables, we obtain

√
N ĝN (θ0)

D−→ N (0,S).

This ends the proof.
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Corollary 3.4 (Optimal weighting matrix). Suppose that Θ is compact and θ0 is an interior point
of Θ. If (H3), (Mij), i ∈ {1, 2, 3, 4}, j ∈ {1, 2} are satisfied and (H2), (H11) hold for P = S−1, the

minimal asymptotic variance of θ̂N is
(
DT

0 S
−1D0

)−1
where

S =


B(1) 02,2 . . . 02,2 02,2

02,2 B(2) . . . 02,2 02,2
...

...
. . .

...
...

02,2 02,2 . . . B(d−1) 02,2

02,2 02,2 . . . 02,2 B(d)


with

02,2 =

(
0 0
0 0

)
, B(i) =

(
v(i)(θ0) 2m3([ti, ti+1],θ0)

2m3([ti, ti+1],θ0) 6m4([ti, ti+1],θ0) + 2v(i)(θ0)2

)
.

Proof. We need to show that S (the covariance matrix of W̊ given in (23)) is a positive definite
matrix (see Theorem 2.5). Let us start by recalling that a covariance matrix is a positive semi-definite
matrix. Also, it is known to be positive definite if and only if there does not exist any almost sure
linear relation between the components of the random vector W̊ (see (Koch, 1999, Theorem (2.79),
p.101)).
Assume that there exist a vector h = (h1, ḧ1, . . . , hd, ḧd) and a constant c̄ such that

P
[
hW̊ = c̄

]
= 1. (25)

By setting

C (i)(w(i)) = hiw
(i) + ḧi

(
w(i) −m(i)(θ0)

)2
, (26)

Equation (25) can be rewritten as

P

[
d∑
i=1

C (i)(W (i)) = c̄

]
= 1. (27)

Equation (27) implies that
d∑
i=1

C (i)(W (i)) is almost surely constant and then

V

[
d∑
i=1

C (i)(W (i))

]
= 0. Since W (1), . . . ,W (d) are independent, it follows that

d∑
i=1

V[C (i)(W (i))] = 0

and then V[C (i)(W (i))] = 0 for all i = 1, . . . , d. This means that, for i = 1, . . . , d, the random
variable C (W (i)) is almost surely constant, namely that there exists c(i) such that

C (i)(W (i))− c(i) = 0 almost surely . (28)

Assume now that (hi, ḧi) 6= (0, 0). Then, for any c(i), the second degree polynomial C (w(i))−c(i)

(see (26)) has at most two zeros. Hence, (28) means that W (i) can take only two possible values,
which is false, because W (i) is a continuous random variable. Therefore, (hi, ḧi) = (0, 0) for all i
and consequently h = 0. The matrix S hence is positive definite.
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In the sequel, S is estimated by ŜN , where

ŜN =
1

N

N∑
n=1

fMM (Wn,θ)fMM (Wn,θ)T (29)

is the empirical version of S.

3.2.3 Optimal two-step GMM estimator for an EGP

Let us recall that our GMM estimator is obtained through the two-step procedure given in Subsection

2.3. The point now is to show that the optimal two-step GMM estimator θ̂
(2)
N given in (13) converges

almost surely to θ0. The result is provided below for GMM based on the moments.

Proposition 3.5. Consider W and fMM as defined in (18) and (19), respectively. Suppose that Θ
is compact and θ0 is an interior point of Θ. If (H3), (Mij), i ∈ {1, . . . , 4}, j ∈ {1, 2} hold, (H11) is
satisfied for P = S−1, then

θ̂
(2)
N

a.s.−−−−→
N→∞

θ0.

Proof. Considering PN = I, we know that θ̂
(1)
N (given by (11)) converges almost surely to θ0 (by

Remark 2.3 and Corollary 3.2). We first show that Ŝ
(1)
N

a.s.−−−−→
N→∞

S where

Ŝ
(1)
N =

1

N

N∑
n=1

fMM

(
Wn, θ̂

(1)
N

)
fMM

(
Wn, θ̂

(1)
N

)T
.

Set φ(w,θ) = fMM (w,θ)fMM (w,θ)T , θ ∈ Θ. By the triangular inequality, we get∣∣∣∣∣ 1

N

N∑
n=1

φ
(
Wn, θ̂

(1)
N

)
− E [φ(W ,θ0)]

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

N

N∑
n=1

φ
(
Wn, θ̂

(1)
N

)
− E

[
φ(W , θ̂

(1)
N )
]∣∣∣∣∣

+
∣∣E [φ(W , θ̂

(1)
N

]
− E [φ(W ,θ0)]

∣∣.
It can be recalled that w 7→ fMM (w,θ) is measurable for each θ ∈ Θ and θ 7→ fMM (w,θ) is

continuous for each w ∈ Rd. It follows that w 7→ φ(w,θ) is measurable for each θ and θ 7→ φ(w,θ)
is continuous for each w. Since Θ is compact, it can be easily verified that there exists a function
d(w) such that ‖φ(w,θ)‖∞ ≤ d(w) for all w ∈ Rd, θ ∈ Θ, where d(w) is of the form

d(w) =
d∑
i=1

(
w(i)4

+ C1w
(i)3

+ C2w
(i)2

+ C3w
(i)
)

+ C4,

where C1, C2, C3 and C4 are positive constants, and where

E [d(W )] <∞ (by hypothesis).

Then, by applying Theorem 2 of Jennerich (1969), we get

sup
θ∈Θ

∣∣∣∣∣ 1

N

N∑
n=1

φ (Wn,θ1)− E [φ(W ,θ1)]

∣∣∣∣∣ a.s.−−−−→
N→∞

0.
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Besides, we have

E
[
φ
(
W , θ̂

(1)
N

)]
−−−−→
N→∞

E [φ(W ,θ0)] ,

since θ̂
(1)
N

a.s.−−−−→
N→∞

θ0 and θ 7→ E [φ (W ,θ)] is continuous.

As a consequence, Ŝ
(1)
N

a.s.−−−−→
N→∞

S. Also, as S is non-singular, Ŝ
(1)
N is non-singular too for large

N , based on the continuity of the determinant function. It follows that
(
Ŝ

(1)
N

)−1 a.s.−−−−→
N→∞

S−1. Then

θ̂
(2)
N can be computed by

θ̂
(2)
N = arg min

θ∈Θ
ĝN (θ)T

(
Ŝ

(1)
N

)−1
ĝN (θ)

and it converges almost surely to θ0 by Remark 2.3. This completes the proof.

3.3 GMM based on the Laplace transform

The second approach of GMM for an EGP is here presented. Following similar steps to those in
Section 3.2, we first elaborate on the approach, then we provide the asymptotic properties and
present a result on the optimal two-step GMM estimator for an EGP based on the Laplace transform.

3.3.1 Approach

A similar procedure as for the previous method in Subsection 3.2.1 is followed. Instead of using
moments, we rely on the Laplace transform at distinct points λl, 1 ≤ l ≤ o (where o ∈ N∗) and we
match it with the empirical Laplace transform at the same points λl. Let

fLap(w,θ) =
(
exp(−λlw(i))− L(i)(λl,θ)

)
1≤i≤d
1≤l≤o

(30)

where

L(i)(λl,θ) = exp

(
−
∫ ti

ti−1

log

(
1 +

λl
b(s,θ)

)
a(s,θ)ds

)
.

Based on (15), if the arbitrary θ is replaced by the true value, we have E[fLap(W ,θ0)] = 0.
Also, E[fLap(W ,θ)] <∞ for all θ ∈ Θ and the sample moment is given by

ĝN (θ) =
(
L̂(i)(λl)− L(i)(λl,θ)

)
1≤i≤d
1≤l≤o

(31)

with L̂(i)(λl) =
1

N

N∑
n=1

exp(−λlW (i)
n ), i = 1, . . . , d, l = 1, . . . , o.

The gradient matrix is given by

∂fLap(w,θ)

∂θ
= −

(
∂L(i)(λl,θ)

∂θ

)
1≤i≤d
1≤l≤o

(32)

(independent of w).
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3.3.2 Asymptotic properties

Here again, we provide technical assumptions to show asymptotic properties for GMM based on the
Laplace transform. Let us now consider W and fLap as defined in (18) and (30), respectively.

Corollary 3.6 (Consistency). Assumptions (H2), (H3), (H4) and (M11) imply

θ̂N
Prob−−−−→
N→∞

θ0.

Proof. One can immediately show that the conditions of Theorem 2.2 are satisfied (by hypothesis
and (M11)).

Corollary 3.7 (Asymptotic Normality). If assumptions (H2), (H3), (H4), (H7), (H11), (M11),
(M21), (M31) hold then √

N(θ̂N − θ0)
D−→ N (0,V )

with V = HSHT ,H = (DT
0 PD0)−1DT

0 P and

D0 = −
(
∂L(i)(λl,θ)

∂θ

∣∣∣∣
θ=θ0

)
1≤i≤d
1≤l≤o

. (33)

Proof. We proceed by verifying the conditions of Theorem 2.4. Based on the assumptions and
Lemma 2.4 from Newey and McFadden (1994), we can easily justify (H8) and (H10). As for
Assumption (H9), it suffices to prove that S = E

[
fLap(W ,θ0)fLap(W ,θ0)T

]
is finite (see the proof

of Corollary 3.3).

We have

S = E
[
fLap(W ,θ0)fLap(W ,θ0)T

]
=


B(1) Z(1,2) . . . Z(1,d−1) Z(1,d)

Z(2,1) B(2)) . . . Z(2,d−1) Z(2,d)

...
...

. . .
...

...
Z(d−1,1) Z(d−1,2) . . . B(d−1) Z(d−1,d)

Z(d,1) Z(d,2) . . . Z(d,d−1) B(d)


with

B(i) =


E
[
u(λ1,W

(i))2
]

E
[
u(λ1,W

(i))u(λ2,W
(i))
]

. . . E
[
u(λ1,W

(i))u(λo,W
(i))
]

E
[
u(λ1,W

(i))u(λ2,W
(i))
]

E
[
u(λ2,W

(i))2
]

. . . E
[
u(λ2,W

(i))u(λo,W
(i))
]

...
...

. . .
...

E
[
u(λ1,W

(i))u(λo,W
(i))
]

E
[
u(λ2,W

(i))u(λo,W
(i))
]

. . . E
[
u(λo,W

(i))2
]

 ,

(34)

Z(i,j) =


E
[
u(λ1,W

(i))u(λ1,W
(j))
]

E
[
u(λ1,W

(i))u(λ2,W
(j))
]

. . . E
[
u(λ1,W

(i))u(λo,W
(j))
]

E
[
u(λ2,W

(i))u(λ1,W
(j))
]

E
[
u(λ2,W

(i))u(λ2,W
(j))
]

. . . E
[
u(λ2,W

(i))u(λo,W
(j))
]

...
...

. . .
...

E
[
u(λo,W

(i))u(λ1,W
(j))
]

E
[
u(λo,W

(i))u(λ2,W
(j))
]

. . . E
[
u(λo,W

(i))u(λo,W
(j))
]
,

u(λl,W
(i)) = exp(−λlW (i))− L(i)(λl,θ0), l = 1, . . . , o..

In addition, it can be readily seen that B(i) < ∞ for all i and Z(i,j) =

0 . . . 0
...

. . .
...

0 . . . 0

.

Consequently, we get S <∞.
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Corollary 3.8 (Optimal weighting matrix). Under assumptions (H3), (H4), (H7), (M11), (M21),
(M31) and if (H2), (H11) are satisfied for P = S−1, then the minimal asymptotic variance of θ̂N is(
DT

0 S
−1D0

)−1
with

S =


B(1) 0o,o . . . 0o,o 0o,o
0o,o B(2) . . . 0o,o 0o,o

...
...

. . .
...

...

0o,o 0o,o . . . B(d−1) 0o,o
0o,o 0o,o . . . 0o,o B(d)


where 0o,o is a null matrix and B(i) is given by (34).

Proof. The proof is presented for o = 2. Let

W̊ =
(
exp(−λ1W

(1)), exp(−λ2W
(1)), . . . , exp(−λ1W

(d)), exp(−λ2W
(d))
)T

. (35)

Assume that there exist a vector h = (h1, ḧ1, . . . , hd, ḧd) and a constant c̄ such that

P

[
d∑
i=1

C (i)(W (i)) = c̄

]
= 1 (36)

with
C (i)(w(i)) = hiexp(−λ1w

(i)) + ḧiexp(−λ2w
(i)).

This implies that C (i)(w(i)) is almost surely constant as in the proof of Corollary 3.4. In the
same way as in the latter proof, it is enough to prove that C (i)(w(i)) admits a finite number of zeros
if (hi, ḧi) 6= (0, 0) to conclude. Assume that (hi, ḧi) 6= (0, 0). We have

C (i)′(w(i)) = exp(−λ1w
(i))
(
−hiλ1 − ḧiλ2exp((λ1 − λ2)w(i))

)
.

and C (i)′ changes sign at most once (because λ1 6= λ2). Hence C (i) admits at most two zeros which
establishes the desired result.

Just as for GMM based on the moments, S will be estimated by ŜN , with

ŜN =
1

N

N∑
n=1

fLap(Wn,θ)fLap(Wn,θ)T . (37)

Remark 3.9. Notice that less assumptions are required to show the asymptotic properties of GMM
based on the Laplace transform than for GMM based on the moments.

3.3.3 Optimal two-step GMM estimator for an EGP

Finally, we provide the result on the optimal two-step GMM estimator based on the Laplace
transform.
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Proposition 3.10. Consider W and fLap as defined in (18) and (30), respectively. Suppose that
Θ is compact and θ0 is an interior point of Θ. If (H3), (M11), (M21), (M31) hold and if (H11) is
satisfied for P = S−1, then

θ̂
(2)
N

a.s.−−−−→
N→∞

θ0.

The proof of this proposition is similar to the proof of Proposition 3.5.

4 Study of a specific parametric form for the scale and shape
functions

We have discussed how to show the asymptotic properties of GMM estimators for an EGP in a
general setting. In this section, a parametric form for the shape and scale functions of an EGP is
investigated:

A(t,θ) =
a

α+ 1
tα+1, a(t,θ) = atα, b(t,θ) = b(t+ c)β.

Throughout we let θ = (a, α, b, β, c), R+ = [0,+∞) and R∗+ = (0,+∞).
The parameter space is defined as follows:

Θ = P1 ∪ P2

where
P1 = R∗+ × (−1,+∞)× R∗+ × R× R∗+, (38)

P2 = {(a, α, b, β, c) ∈ R∗+ × (−1,+∞)× R∗+ × R× {0} such that α > 2β − 1}. (39)

Remark 4.1. Note that if β = 0, c can be any value and in this case the EGP is reduced to a SGP.
By convention, we take c = 0 when β = 0. The parameter vector is hence denoted by θ = (a, b, α, β, c)
for all cases.

4.1 GMM based on the moments

Before showing that the model introduced in Subsection 3.2.1 is identified for this parametric form,
it should be noted that

E [fMM (W ,θ)] = 0⇔
{
m(i)(θ0) = m(i)(θ)

v(i)(θ0) = v(i)(θ)

for i ∈ {1, . . . , d}, where W and fMM are given in (18) and (19), respectively.

We begin with a technical lemma, that we shall use repeatedly in the sequel. It is easy to prove
and consequently stated without proof.

Lemma 4.2. Let θ1 = (a1, α1, b1, β1, c1) and θ2 = (a2, α2, b2, β2, c2) be two parameter vectors in Θ.
If

r (s) = b2 (c2 + s)β2 − b1 (c1 + s)β1 , (40)

then r has at most two strict sign changes on R+ and at most two zeros unless
(b1, c1, β1) = (b2, c2, β2).
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Theorem 4.3. Let θ1 = (a1, α1, b1, β1, c1) and θ2 = (a2, α2, b2, β2, c2) be two parameter vectors in
Θ. Assume that

m(i)(θ1) = m(i)(θ2) (41)

v(i)(θ1) = v(i)(θ2) (42)

for i ∈ {1, . . . , d} and d ≥ 5.
Then θ1 = θ2.
This shows that assumption (H3) is satisfied, namely that the model is identifiable.

Proof. Equations (41, 42) yields

a1

bj1

∫ ti

ti−1

sα1

(s+ c1)jβ1
ds =

a2

bj2

∫ ti

ti−1

sα2

(s+ c2)jβ2
ds, (43)

for j = 1, 2, 1 ≤ i ≤ d and d ≥ 5.
From (43), it is clear that if (α1, β1, c1) = (α2, β2, c2), then a1

bj1
= a2

bj2
for j = 1, 2 and consequently

a1 = a2 and b1 = b2. Hence, it is sufficient to prove that (α1, β1, c1) = (α2, β2, c2).

Set

Gj (t) =

∫ t

0
gj(s)ds

with

gj (s) = K̃j
sα1

(s+ c1)jβ1
− sα2

(s+ c2)jβ2
, (44)

K̃j =
a1b

j
2

a2b
j
1

, K̃j 6= 0

for j = 1, 2.
By hypothesis, we have

Gj (0) = Gj (t1) = . . . = Gj (td) (45)

with d ≥ 5 and j = 1, 2. This implies that gj = G′j admits at least 5 zeros (by Rolle’s theorem).

Now, assume that α1 6= α2. Then, we have

g1 (s) = 0⇔ ḡ (s) = 0

where
ḡ (s) = K̃ν

1 s− (s+ c1)µ1 (s+ c2)µ2 , (46)

with ν = 1
α1−α2

, µ1 = β1
α1−α2

, µ2 = − β2
α1−α2

.

In addition,

ḡ′′ (s) = (s+ c1)µ1−2 (s+ c2)µ2−2 ¯̄g(s)
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with

¯̄g(s) = (µ1 + µ2)(1− µ1 − µ2)s2 + 2
[
−(µ2

1 − µ1)c2 − µ1µ2(c1 + c2)− (µ2
2 − µ2)c1

]
s

− (µ1c2 + µ2c1)2 + µ1c
2
2 + µ2c

2
1. (47)

Assume that the polynomial ¯̄g(s) is not identically equal to zero. Then, it has at most 2 zeros.
This implies that ḡ′ admits at most three zeros on [0, T ] and then ḡ (or g1) admits at most 4 zeros.
This is not possible, since g1 admits at least 5 zeros on [0, T ] (by hypothesis). Hence, ¯̄g(s) = 0 for
all s ≥ 0, which means that:

(µ1 + µ2)(1− µ1 − µ2) = 0 (L1)
2
[
−(µ2

1 − µ1)c2 − µ1µ2(c1 + c2)− (µ2
2 − µ2)c1

]
= 0 (L2)

−(µ1c2 + µ2c1)2 + µ1c
2
2 + µ2c

2
1 = 0 (L3)

Based on (L1), several cases are to be considered:

• Case 1: µ1 = 1− µ2 (or equivalently: α1 − α2 = β1 − β2).
Line (L3) can be rewritten as µ1(1 − µ1)(c1 − c2)2 = 0. Based on the latter equation, we
distinguish the following cases:

– If µ1 = 0, it follows that β1 = 0 (and, consequently, c1 = 0 by Remark 4.1) and µ2 = 1.
Then, we get ḡ(s) = (K̃ν

1 − 1)s− c2 (see (46)).

∗ If c2 6= 0, then ḡ (or g1) admits at most one zero. This case is not possible because
g1 admits at least 5 zeros.

∗ If c2 = 0, then g2(s) = K̃2s
α1 − sα2−2β2 (by using Equation (44) for

j = 2). Since µ2 = 1, it follows that α1 = α2 − β2 and hence
g2(s) = K̃2s

α1 − sα1−β2 = 0 ⇔ K̃2s
−β2 = 1. This implies that g2 admits at

most one zero (as β2 6= 0, because µ2 = 1) which contradicts the hypothesis (g2

admits at least 5 zeros).

Hence the case µ1 = 0 is impossible. The case µ1 = 1 (namely µ2 = 0) is similar and not
possible either.

– If c1 = c2, then we obtain ḡ(s) = (K̃ν
1 − 1)s− c1.

∗ If c1 6= 0, then g1 admits at most one zero which is not possible.

∗ If c1 = 0 = c2, then g2(s) = K̃2s
α1−2β1 − sα2−2β2 = 0 ⇔ K̃2s

β2−β1 = 1 (since
α1 − α2 = β1 − β2). As α1 − α2 = β1 − β2 6= 0 and K̃2 6= 0, g2 admits at most one
zero. This case is not possible either.

The case µ1 = 1− µ2 hence is impossible.

• Case 2: µ1 = −µ2 (or equivalently: β1 = β2).
In this case line (L2) can be rewritten as

µ2(c1 − c2) = 0. (48)

– If µ2 = 0, it follows that β2 = β1 = 0. Consequently, we have c1 = c2 = 0 (see Remark
4.1).

– If µ2 6= 0, then we get c1 = c2 by (48).
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As a conclusion, under the assumption α1 6= α2, we have µ1 = −µ2, namely β1 = β2, in which case,
we have also proved that c1 = c2. Hence, (β1, c1) = (β2, c2). Substituting β1 and c1 by β1 and c2,
respectively, into (44) yields g1(s) = K̃1s

α1−α2 . Hence g1 admits at most one zero (as α1 − α2 6= 0),
which contradicts the hypothesis. As a consequence, assuming α1 6= α2 leads to a contradiction and
we have proved that α1 = α2.

It remains to show that (β1, c1) = (β2, c2). By substituting α2 by α1 into (44), we obtain

g1 (s) = sα1

(
K̃1

(s+ c1)β1
− 1

(s+ c2)β2

)
= 0⇔ K̃1

(s+ c1)β1
=

1

(s+ c2)β2
⇔ ü(s) = 0

with ü(s) = K̃1 (s+ c2)β2 − (s+ c1)β1 .

The function ü takes a similar form to (40) given in Lemma 4.2. Thus, the only possibility for
ü (or g1) to admit more than two zeros is that K̃1 = 1 and (β1, c1) = (β2, c2) (see Lemma 4.2). As
a conclusion, (α1, β1, c1) = (α2, β2, c2) and this completes the proof.

Now that the identification condition is checked, we can easily derive the consistency of the
GMM estimator.

Corollary 4.4. Let us consider fMM as defined in (19) with d ≥ 5 and a compact set Θ such that
θ0 ∈ Θ ⊂ Θ. Then assumption (H2) implies

θ̂N
Prob−−−→ θ0.

Proof. We apply Corollary 3.2. The conclusion then follows by hypothesis and Theorem 4.3.

Now we define

ΘN =
(
R∗+ × (−1,+∞)× R∗+ × R× R∗+

)
∪ {(a, α, b, β, c) ∈ R∗+ × (−1,+∞)× R∗+ × R× {0} such that α > 4β − 1}.

Corollary 4.5. Consider fMM as defined in (19) with d ≥ 5. Also, consider a compact parameter

space Θ
N ⊂ ΘN . If θ0 is an interior point of Θ

N
and (H2) is satisfied for P = S−1, then

√
N
(
θ̂N − θ0

)
D−→ N (0, (DT

0 S
−1D0)−1).

Proof. The proof proceeds by verifying the conditions of Corollary 3.3. It suffices to check
(Mkj), k = 2, 3, 4, j = 1, 2, and (H11). Here, we have

∂

∂θ

(
a(s,θ)

bj(s,θ)

)
=

(
1

bj
sα

(s+ c)jβ
,
a ln(s)

bj
sα

(s+ c)jβ
,− a

bj
sα

(s+ c)jβ
,− a

bj
ln(s+ c)

sα

(s+ c)jβ
,−aβ

bj
sα

(s+ c)jβ

)
for j = 1, 2.

It is clear that ∂
∂θ

(
a(s,θ)
bj(s,θ)

)
given above satisfies (M21), (M22), (M31) and (M32). Also, since

α > 4β − 1 (by hypothesis), it follows that∫ T

0

a(s,θ)

bk(s,θ)
ds =

∫ T

0

asα

bk(s+ c)k
ds, k = 3, 4. (49)
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and so conditions (M41) and (M42) are satisfied. It remains to show (H11).
By Theorem (1.171) in Koch (1999), it suffices to show that rank(D0) = p = 5. We proceed to

show that the column vectors vi, i = 1, . . . , 5, of D0 are linearly independent where

D0 =

−

∫ titi−1

sα0

b0(s+c0)β0
ds

∫ ti
ti−1

a0sα0 ln(s)

b0(s+c0)β0
ds −

∫ ti
ti−1

a0sα0

b20(s+c0)β0
ds −

∫ ti
ti−1

a0sα0 ln(s+c0)

b0(s+c0)β0
ds −

∫ ti
ti−1

a0β0sα0

b0(s+c0)β0+1ds∫ ti
ti−1

sα0

b20(s+c0)2β0
ds

∫ ti
ti−1

a0sα0 ln(s)

b20(s+c0)2β0
−
∫ ti
ti−1

2a0sα0

b30(s+c0)2β0
−
∫ ti
ti−1

2a0sα0 ln(s+c0)

b20(s+c0)2β0
−
∫ ti
ti−1

2a0β0sα0

b20(s+c0)2β0+1ds


1≤i≤d

(from (22)).
Suppose that p1, p2, p3, p4, p5 are real numbers such that

p1v1 + p2v2 + p3v3 + p4v4 + p5v5 = 0. (50)

Set

H(t) =

∫ t

0
h(s)ds, H̄(t) =

∫ t

0
h̄(s)ds

with

h(s) =
sα0

b0(s+ c0)β0

[
p1 + p2a0 ln(s)− p3

a0

b0
− p4a0 ln(s+ c0)− p5

a0β0

s+ c0

]
(51)

h̄(s) =
sα0

b20(s+ c0)2β0

[
p1 + p2a0 ln(s)− 2p3

a0

b0
− 2p4a0 ln(s+ c0)− 2p5

a0β0

s+ c0

]
. (52)

Equation (50) means that H(0) = H(t1) = . . . = H(td) and H̄(0) = H̄(t1) = . . . = H̄(td) for d ≥ 5.
Thus, by Rolle’s theorem, h = H ′ and h̄ = H̄ ′ admit at least 5 zeros on [0, T ]. We have

h(s) = 0⇔ v̊(s) = 0

where v̊(s) = p1 + p2a0 ln(s)− p3
a0
b0
− p4a0 ln(s+ c0)− p5

a0β0
s+c0

.
Then, we differentiate v̊

v̊′(s) =
a0

s(s+ c0)2

[
(p2 − p4)s2 + (2p2c0 − p4c0 + p5β0)s+ p2c

2
0

]
.

If p(s) = (p2 − p4)s2 + (2p2c0 − p4c0 + p5β0)s+ p2c
2
0 is a non identically zero polynomial, then

v̊′ admits at most two zeros and hence h admits at most 3 zeros which contradicts the hypothesis
(h admits at least 4 zeros). Thus, p(s) = 0 for all s ≥ 0, which means that

p2 − p4 = 0
2p2c0 − p4c0 + p5β0 = 0

p2 = 0

Consequently, we get p2 = p4 = p5 = 0. It remains to show that p1 = p3 = 0. By substituting
p2, p4 and p5 by their values into (51,52), we get

h(s) = 0⇔ p1 = p3
a0

b0
; h̄(s) = 0⇔ p1 = 2p3

a0

b0
.
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As h and h̄ have at least 5 zeros, this implies that p1 = p3 = 0 and achieves the proof of condition
(H11).

Finally, by Corollary 3.4, we get

√
N
(
θ̂N − θ0

)
D−→ N (0, (DT

0 S
−1D0)−1).

4.2 GMM based on the Laplace transform

We first check the identification condition using this approach. With that aim, we shall use the
following technical Lemma, which it is easy to prove and hence stated without proof.

Lemma 4.6. Let (a1, α1) and (a2, α2) be two parameter vectors in R∗ × R. If

h (s) = a1 s
α1 − a2 s

α2 , (53)

then h has at most one strict sign change on R+ and at most one zero unless (a1, α1) = (a2, α2).

Here, we can remark that

E [fLap(W ,θ)] = 0⇔ L(i)(λl,θ0) = L(i)(λl,θ)

for l ∈ {1, . . . , o} and i ∈ {1, . . . , d}, where W and fLap are given in (18) and (30), respectively.

We next provide the identifiability result.

Theorem 4.7. Let θ1 = (a1, α1, b1, β1, c1) and θ2 = (a2, α2, b2, β2, c2) be two parameter vectors in
Θ. Assume that

L(i)(λl,θ1) = L(i)(λl,θ2) (54)

for l ∈ {1, . . . , o}, o ≥ 3 and i ∈ {1, . . . , d}, d ≥ 4.
Then θ1 = θ2.
This means that the model is identifiable (Assumption (H3)).

Proof. Set

Gi (λ) = Ḡti(λ)− Ḡti−1(λ) =

∫ ti

ti−1

us(λ)ds

where

Ḡt (λ) =

∫ t

0
us(λ)ds,

us(λ) = a1 s
α1 g1,s (λ)− a2 s

α2 g2,s (λ) , (55)

gj,s (λ) = ln

(
1 +

λ

bj (cj + s)βj

)
, j = 1, 2.
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Equation (54) implies that Gi (λl) = 0 for l ∈ {1, . . . , o}, o ≥ 3 and i ∈ {1, . . . , d}, d ≥ 4.
The derivatives of gj,s (λ) with respect to λ are given by

g′j,s (λ) =
1

λ+ bj (cj + s)βj
, g′′j,s (λ) = − 1(

λ+ bj (cj + s)βj
)2 .

In addition, we have
∣∣∣sαjg′j,s (λ)

∣∣∣ ≤ sαj

bj(cj+s)
βj

and
∣∣∣sαjg′′j,s (λ)

∣∣∣ ≤ sαj

b2j (cj+s)
2βj

with
∫ T

0
sαj

bj(cj+s)
βj
ds <∞

and
∫ T

0
sαj

b2j (cj+s)
2βj
ds <∞ (from (14)). Then, based on the differentiation under the integral sign

theorem, the derivatives of Gi (λ) with respect to λ are given by

G′i (λ) =

∫ ti

ti−1

(
a1 s

α1 g′1,s (λ)− a2 s
α2 g′2,s (λ)

)
ds, (56)

G′′i (λ) =

∫ ti

ti−1

(
a1 s

α1 g′′1,s (λ)− a2 s
α2 g′′2,s (λ)

)
ds. (57)

One can point out that
g1,s (λ) < g2,s (λ) if and only if r (s) < 0 (58)

g′′1,s (λ) < g′′2,s (λ) if and only if r (s) > 0 (59)

where r(s) is given by (40) in Lemma 4.2.
The point is to show that (a1, α1) = (a2, α2) and (b1, β1, c1) = (b2, β2, c2). With that aim, we show
that (a1, α1) 6= (a2, α2) or (b1, β1, c1) 6= (b2, β2, c2) is not possible. The proof is split into three
different cases.

• Suppose first that (a1, α1) 6= (a2, α2) and (b1, β1, c1) = (b2, β2, c2). Then

us(λ) = (a1s
α1 − a2s

α2) g1,s (λ) = h(s)g1,s(λ).

By Lemma 4.6, the function h changes sign at most one time on R+. This implies that there
exist at least three intervals among the [ti−1, ti] on which h (and consequently s 7→ us(λ))
keeps a constant sign (see Figure 1). We now work on one of these intervals, say [ti0−1, ti0 ].

Let l ∈ {1, . . . , o} be fixed. Since Gi0(λl) =

∫ ti0

ti0−1
us(λl)ds = 0 (by hypothesis), it follows that

us(λl) = h(s)g1,s(λl) = 0, for all s ∈ [ti0−1, ti0 ], for each λl. (60)

As g1,s (λl) > 0, we derive that h(s) = 0 for all s ∈ [ti0−1, ti0 ] and hence (a1, α1) = (a2, α2) (by
Lemma 4.6) which is not possible.

• Assume now that (a1, α1) = (a2, α2) and (b1, β1, c1) 6= (b2, β2, c2). Then

us(λ) = a1s
α1 (g1,s (λ)− g2,s (λ))

with sign provided by r(s), see (58).
By Lemma 4.2, the function r changes sign at most two times on R+. This implies that there
exist at least two intervals (say [ti0−1, ti0 ] and [ti1−1, ti1 ]) on which r keeps a constant sign
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× × ×

×

× ×

t0 t1 t2 t3 t4

h(s) > 0 h(s) < 0

r(s) < 0 r(s) > 0 r(s) < 0

Figure 1: Schematic illustration of the sign change for h and r

(see Figure 1). It follows that s 7→ us(λ) keeps a constant sign on [ti0−1, ti0 ] (independently of
λ, see (58)) and based on Gi0(λl) = 0, we get

us(λl) = 0, for all s ∈ [ti0−1, ti0 ], for each λl. (61)

Hence g1,s (λl) = g2,s (λl) for all s ∈ (ti0−1, ti0 ], so that r(s) = 0 for all s ∈ (ti0−1, ti0 ] and
(b1, β1, c1) = (b2, β2, c2) (see Lemma 4.2). This case is not possible either.

• Finally we suppose that (a1, α1) 6= (a2, α2) and (b1, β1, c1) 6= (b2, β2, c2). The
function h (s) = a1 sα1 − a2 sα2 changes sign at most one time on R+ and
r(s) = b2 (c2 + s)β2 − b1 (c1 + s)β1 changes sign at most two times on R+ (by Lemmas 4.2 and
4.6). Then, there exist at least two intervals [ti−1, ti] on which r keeps a constant sign and at
least three intervals on which h keeps a constant sign. Hence there is at least one common
interval [ti0−1, ti0 ] on which the functions r and h do not change sign (see Figure 1). We now
work on this fixed interval [ti0−1, ti0 ] on which both r and h keep a constant sign and we
distinguish two cases accordingly whether the sign is the same or not.

– Case 1: Assume that r (s) and h (s) have the same sign on [ti0−1, ti0 ]. It follows, by
(58), that g1,s (λ)− g2,s (λ) and h (s) have the same sign. Then, for each λ, the function
s 7→ us (λ) (given by (55)) keeps a constant sign on [ti0−1, ti0 ]. Let l ∈ {1, . . . , o} be fixed.

Since Gi0 (λl) =

∫ ti0

ti0−1
us(λl)ds = 0, we derive that

us(λl) = 0 for all s ∈ [ti0−1, ti0 ] , for each l. (62)

Let s ∈ [ti0−1, ti0 ] be fixed. We have

u′s (λ) =
(a1 s

α1 − a2 s
α2)λ+ a1 s

α1b2 (c2 + s)β2 − a2 s
α2b1 (c1 + s)β1(

λ+ b1 (c1 + s)β1
)(

λ+ b2 (c2 + s)β2
) .

If a1s
α1 − a2s

α2 6= 0,

u′s (λ) = 0⇔ λ =
a1 s

α1b2 (c2 + s)β2 − a2 s
α2b1 (c1 + s)β1

a1sα1 − a2sα2
.

This implies that u′s (λ) admits at most one zero. It follows that us (λ) admits at most
two zeros, which is false based on (62). Hence,

a1s
α1 = a2s

α2 (63)
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for all s ∈ [ti0−1, ti0 ]. Based on (62) again, we also get g1,s (λl) = g2,s (λl), because
us (λl) = 0 and a1 s

α1 = a2 s
α2 . This yields

b1 (c1 + s)β1 = b2 (c2 + s)β2 (64)

for all s ∈ [ti0−1, ti0 ]. Finally, by Lemmas 4.2 and 4.6, Equation (63) admits at most
one zero unless we have (a1, α1) = (a2, α2) and Equation (64) admits at most two
zeros unless (b1, c1, β1) = (b2, c2, β2). We consequently have (a1, α1) = (a2, α2) and
(b1, β1, c1) = (b2, β2, c2), namely θ1 = θ2.

– Case 2: Assume that r (s) and h (s) have different signs on [ti0−1, ti0 ], say - and +,
respectively. It follows that g′′1,s (λ)− g′′2,s (λ) > 0 for each λ (see (59)). Hence G′′i0 (λ) ≥ 0
(see (57)) and Gi0 is convex. If there does not exist any open interval I ⊂ R+ such
that Gi0(λ) = 0 for all λ ∈ I, then Gi0 admits at most two zeros, which contradicts the
hypothesis. Accordingly, there exists an open interval I ⊂ R+ such that Gi0 (λ) = 0 for
all λ ∈ I. This yields

G′′i0 (λ) =

∫ ti0

ti0−1
vs (λ) = 0, for all λ ∈ I, (65)

where

vs (λ) =
a1 s

α1(
λ+ b1 (c1 + s)β1

)2 −
a2 s

α2(
λ+ b2 (c2 + s)β2

)2 .

Since h (s) > 0 and r (s) < 0 (or g′′1,s (λ)− g′′2,s (λ) > 0), then s 7→ vs (λ) keeps a constant
sign on [ti0−1, ti0 ] and hence vs(λ) = 0 for all s ∈ [ti0−1, ti0 ] and λ ∈ I (by (65)).
For each s ∈ [ti0−1, ti0 ], a necessary condition for λ 7→ vs (λ) to admit more than two
zeros is that a1 s

α1 = a2 s
α2 . We consequently have a1 s

α1 = a2 s
α2 for all s ∈ [ti0−1, ti0 ]

and then we get b1 (c1 + s)β1 = b2 (c2 + s)β2 for all s ∈ [ti0−1, ti0 ] (since vs(λ) = 0), which
allows to conclude using the same arguments as in the previous case.

Corollary 4.8. Let us consider fLap as defined in (30) with d ≥ 4, o ≥ 3 and θ0 ∈ Θ ⊂ Θ where

Θ is a compact set. If (H2) holds, then θ̂N
Prob−−−→ θ0.

Proof. We apply Corollary 3.6. The conclusion then follows by hypothesis and Theorem 4.7.

Corollary 4.9. Consider fLap as defined in (30), with d ≥ 4, o ≥ 3 and a compact parameter space
Θ ⊂ Θ. If θ0 is an interior point of Θ and (H2) is satisfied for P = S−1. Then

√
N
(
θ̂N − θ0

)
D−→ N (0, (DT

0 S
−1D0)−1).

Proof. The proof of this result follows by Corollary 3.7, Theorem 4.7 and the proof of Corollary 4.5.

Remark 4.10. As already told in Remark 3.9 for asymptotic properties in a general setting, the
identifiability requires less assumptions for the GMM based on the Laplace transform than on the
moments (e.g., observation of at least 4 increments per trajectory instead of 5).
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4.3 Test of a SGP

A standard gamma process is a particular case of an extended gamma process: the one for which the
scale function is constant. By considering the parametric form studied in this section for the scale
function (b(t, θ) = b(t+ c)β), an EGP reduces to a SGP if and only if the value of the parameter β
is equal to 0. Thanks to the asymptotic normality results obtained in the corollaries 4.5 and 4.9, it
is then possible to construct a statistical test for the nullity of the coefficient β:

H0 : β = 0 against H1 : β 6= 0.

More precisely, the corollaries 4.5 and 4.9 leads to:

√
N
(
β̂N − β0

)
D−→ N (0, V (4, 4)),

where V (4, 4) is the (4, 4) element of the matrix V defined in (10). When the hypothesis H0 is true,
it follows:

Nβ̂2
NV (4, 4)−1 D−→ χ2

1.

We then propose the following test: Let ξ ∈ (0, 1). The hypothesis H0 is rejected (i.e. X is not
a SGP) as soon as:

ĴN := Nβ̂2
N V̂N (4, 4)−1 > χ2

1,1−ξ, (66)

where χ2
1,1−ξ is the 1− ξ-quantile of a chi-squared distribution with 1 degree of freedom and V̂N

denotes the estimator of the asymptotic variance V and is defined by:

V̂N =

(
D̂T
N

(
ŜN

)−1
D̂N

)−1

(67)

with D̂N =
1

N

N∑
n=1

∂f

∂θ

(
Wn, θ̂N

)
and ŜN =

1

N

N∑
n=1

f
(
Wn, θ̂N

)
f
(
Wn, θ̂N

)T
.

The previous test is approximately (when N is large) of level ξ.

5 Numerical experiments

In this section, the performances of the proposed estimation approaches are investigated on simulated
data and also on real data. All numerical experimentations are made with Matlab R© and the
”fminsearch” function is used to estimate the unknown parameters. This function requires initial
parameters, which are obtained through a standard least square method (not provided here). Please
refer to Al Masry (2016) for further information on this method.

5.1 Numerical comparison between GMMMM and GMMLap

We first test GMM based on the moments (GMMMM ) and Laplace transform (GMMLap) on
simulated data. N independent approximate sample paths are generated on [0, T ] through the
Rejection method (see Al Masry et al. (2015)). As previously mentioned in Subsection 2.3, a
two-step procedure is used to estimate θ0. An initial estimator is first computed by taking P = I.

Then, using this estimator, we construct Ŝ
(1)
N and compute θ̂

(2)
N using (12) and (13), respectively. In
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order to study the behavior of the estimator, we independently simulate R sets of N independent

approximate sample paths. This provides R estimations θ̂
(2)
N,i for 1 ≤ i ≤ R.

Example 1:
We first consider the specific case where A(t,θ) = tα and b(t,θ) = tβ , and we take T = 10 and

R = 200. The mean and standard deviation of θ̂
(2)
N,i are summarized in Table 1 for different values

of (N, d), where we recall that d is the number of observations per trajectory. It can be observed in
this table that GMMLap provides good results, which are clearly better than the ones based on
GMMMM .

Table 1: Mean and standard deviation for A(t) = tα, b(t) = tβ , T = 10, R = 200. True values of the
parameters are α = 2, β = 0.75

(N, d) (20, 15) (30, 20) (50, 20) (75, 20) (100, 20)

Mean (std) Mean (std) Mean (std) Mean (std) Mean (std)
α̂ (GMMMM ) 1.9499 (0.1965) 1.9579 (0.1795) 1.9673 (0.1337) 1.9686 (0.0938) 1.9707 (0.0810)
α̂ (GMMLap) 2.0037 (0.1670) 2.0038 (0.1215) 2.0058 (0.0858) 2.0055 (0.0760) 2.0038 (0.0596)

β̂ (GMMMM ) 0.6861 (0.2489) 0.6978 (0.2263) 0.7103 (0.1691) 0.7113 (0.1188) 0.7137 (0.1014)

β̂ (GMMLap) 0.7521 (0.2200) 0.7534 (0.1611) 0.7572 (0.1135) 0.7566 (0.1006) 0.7546 (0.0782)

Another indicator of interest is the coverage probability, which can be numerically assessed
through

CP =
#{i : θ0 ∈ CRN,i}

R
, (68)

for 1 ≤ i ≤ R, where

CRN,i = {θ : N(θ̂
(2)
N,i − θ)V̂ −1

N (θ̂
(2)
N,i − θ)T ≤ χ2

p,1−ξ} (69)

is a confidence region obtained from the asymptotic normality of the GMM estimators (Corollaries
4.5 and 4.9) and which is approximatively (with N large) of level ξ. Here, the level ξ is fixed at 0.05.
The CPs for the cases from Table 1 are displayed in Table 2. It can be seen that the CPs are much
lower than the nominal value 95%, so that the asymptotic normality is far from being reached.

Table 2: Coverage probabilities for A(t) = t2, b(t) = t0.75, T = 10, R = 200.

(N, d) (20, 15) (30, 20) (50, 20) (75, 20) (100, 20)

CP CP CP
GMMMM 44% 46.5% 66.33% 75% 80.5%
GMMLap 43.5% 53% 78.57% 81.5% 83.5%

Keeping the same example as in Table 1, the number of increments is now fixed to d = 10
and the number of observations increased to N = 200. As can be seen in Table 3, both GMMMM
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and GMMLap provide good results. The CP s are now approximately equal to 95% for both
approaches (94% for GMMMM and 93.5% for GMMLap) so that as expected, enlarging the number
of observations allows to approach the asymptotic normality.

Table 3: Mean, standard deviation and quantiles for A(t) = tα, b(t) = tβ , d = 10, T = 10, N = 200,
R = 200

α̂ β̂
True value 2 0.75

Mean (std) Mean (std)
GMMMM 1.9903 (0.0527) 0.7376 (0.0665)
GMMLap 1.9985 (0.0461) 0.7475 (0.0597)

[Q.025, Q.975] [Q.025, Q.975]
GMMMM [1.8803, 2.0840] [0.5990, 0.8549]
GMMLap [1.9145, 2.0744] [0.6377, 0.8447]

Example 2: We next consider A(t,θ) = atα, b(t,θ) = btβ and compute the four estimates using
both GMM approaches. In Table 4, we display the estimates for different values of (N, d). Here
again, we can observe that GMMLap behaves well for a few number of trajectories, and it is more
performing than GMMMM . For example, the mean bias for GMMLap for the case (50, 25) is lower
than for the GMMMM .

Table 4: Mean and standard deviation for A(t) = atα, b(t) = btβ, T = 10, R = 200. True values of
the parameters are a = 1, α = 2, b=1, β = 0.5

(N, d) (50, 25) (100, 50)

Mean (std) Mean (std)
â (GMMMM ) 1.1892 (0.2303) 1.1099 (0.1806)
â (GMMLap) 1.0216 (0.1118) 1.0059 (0.0499)

α̂ (GMMMM ) 1.9571 (0.1128) 1.9748 (0.0972)
α̂ (GMMLap) 2.0094 (0.1118) 2.0046 (0.0458)

b̂ (GMMMM ) 1.1011 (0.1599) 1.0633 (0.1362)

b̂ (GMMLap) 1.0382 (0.1453) 1.0171 (0.0839)

β̂ (GMMMM ) 0.4753 (0.1165) 0.4842 (0.1018)

β̂ (GMMLap) 0.5034 (0.1271) 0.5017 (0.0597)

Then, we generate R = 500 sets of N = 500 approximate samples paths and present the results
in Table 5 (in order to test the asymptotic normality). From Table 5, it is clear that GMMLap shows
better performance against GMMMM . In addition, in Table 6, we see that the CP for GMMLap
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becomes closer to 95% by increasing N while for GMMMM it tends to be less than the nominal
value.

Table 5: Mean, standard deviation and quantiles for A(t) = atα, b(t) = btβ, d = 10, T = 10,
N = 500, R = 500

â α̂ b̂ β̂
True value 1 2 1 0.5

Mean (std) Mean (std) Mean (std) Mean (std)
GMMMM 1.0402 (0.0635) 1.9897 (0.0282) 1.0398 (0.0538) 0.4873 (0.0299)
GMMLap 1.0053 (0.0501) 2.0030 (0.0247) 1.0083 (0.0440) 0.5023 (0.0270)

[Q.025, Q.975] [Q.025, Q.975] [Q.025, Q.975] [Q.025, Q.975]
GMMMM [0.9138, 1.1725] [1.9369, 2.0478] [0.9387, 1.1457] [0.4286, 0.5487]
GMMLap [0.9159, 1.1081] [1.9534, 2.0513] [0.9301, 1.1025] [0.4490, 0.5582]

Table 6: Coverage probability of hyper-ellipsoid confidence regions for A(t) = atα, b(t) = btβ , d = 10,
T = 10, R = 500

CP (N=500) CP (N=800)

GMMMM 84.8% 87.6%
GMMLap 89.8% 93.4%

5.2 Test of a SGP

In this subsection, the ”Wald-type” test presented in Section 4.3 is applied on simulated data. To
this end, the following parametric form is considered: A(t) = t1.5 and b(t) = tβ . From N (= 100 or
500) generated trajectories with d = 20 increments, an estimate β̂ is computed by GMMLap (and
also by GMMMM ) and the test for the nullity of the parameter β is then applied with ξ = 0.05.
The previous procedure is repeated R = 200 times.

In Table 7 are reported the proportions of rejection of the H0 : β = 0 hypothesis after the R
repetitions. These proportions correspond to the observed type I error of the test for β = 0 and to
the observed power of the test for β 6= 0. We can see that for GMMLap and N = 500 the observed
level of the test is close to the theoretical value ξ, which is not the case for GMMMM . Moreover,
we remark that the power of the test for GMMMM and GMMLap is relatively high for β = 0.1
and β = 0.2, which indicates that the proposed test can be used in order to test the nullity of the
parameter β, that is to say in order to test if the EGP adjusted to a given set of data is significantly
different from a SGP.
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Table 7: Test of a SGP with A(t) = t1.5, b(t) = tβ, d = 20, T = 10, R = 200

β = 0 β = 0.1 β = 0.2

N = 100 GMMMM 0.355 0.63 0.97
GMMLap 0.355 0.64 0.985

N = 500 GMMMM 0.145 0.96 1
GMMLap 0.055 1 1

5.3 Application to real data

We finally consider the famous Hudak crack growth data from the literature (see Hudak et al. (1978)),
which are based on the observation of 21 metallic specimens subject to degradation. The data are
displayed in Figure 2. For estimation and testing purpose, we only consider the 20 trajectories for
which 10 increments are observed in the following. The point here is to test whether SGPs are
as well adapted as EGPs for matching the data. The shape function and the scale parameter of
a SGP are first estimated using the semi-parametric estimation procedure developed by Ye et al.
(2013). The parameters of an EGP are next estimated using GMM based on the Laplace transform
and the following parametric forms A(t) = atα, b(t) = btβ. In the present case, the least square
method previously proposed for the initialization of the optimization procedure does not provide
correct results. To overcome this problem, we have plotted the empirical mean and variance, and
chosen initial parameters which provide ”similar” curves. This gives us (a, α, b, β) = (14, 0.5, 4,−0.9)
as a (possible) candidate for the initialization. Starting from this point, we obtain the following
estimates:

(â, α̂, b̂, β̂) = (22.6787, 0.3283, 3.0958,−1.1192).

For comparison purpose, the mean, variance and variance-to-mean ratio are next plotted in
Figure 3 for the data as well as for the estimated EGP and SGP. As can be seen, EGP provides
closer results to the data than SGP. In particular, conversely to the data, the SGP mean starts
from 0. This can be due to the fact that the SGP mean and variance are necessary proportional
and that the variance starts from 0. As for the EGP, its mean starts from a similar non zero point
as for the data.

Finally, we apply the Wald-type test of Section 4.3 with A(t) = atα, b(t) = btβ. The null
assumption β = 0 (SGP) is here clearly rejected with ĴN ≈ 2.17× 104 > χ2

1,1−ξ ≈ 3.8415.
Either considering a non-parametric shape function for the SGP or a similar parametric shape

function as for the EGP, there hence are arguments for thinking that SGPs are less adapted than
EGPs to model the Hudak data.
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Figure 2: Hudak crack growth data

Figure 3: Mean, variance and variance-to-mean ratio for Hudak crack growth data, EGP and SGP

6 Conclusion

In this work, we have dealt with parametric estimation techniques to estimate the shape and scale
functions of an EGP. Two approaches dedicated for an EGP have been proposed: GMM based
on the moments and GMM based on the Laplace transform. Technical assumptions under which
GMM estimators for an EGP are consistent and asymptotically normal have been provided. As a
by-product, a Wald-type test has been proposed, which tests a SGP among EGPs with a specific
parametric shape function.

It should be noted that, as often, the identifiability was the hardest condition to verify, which
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has required the development of original techniques. These techniques can be used to check the
identifiability of other parametric forms (see e.g. Al Masry (2016)). As for the practical effectiveness,
it has been seen here and in other numerical experiments that GMM based on the Laplace transform
is generally more performing than GMM based on the moments.

Finally, the Laplace-based GMM procedure has been applied to a real data set from the
literature (the Hudak data). It has been seen that EGPs seem to be better adapted than SGPs to
model this data set. This clearly motivates the study of EGPs for modeling purpose.

In regard to inspections, the proposed methods are applicable when the observation times
are common to all trajectories. This is not always the case in an industrial context. One can
then think about an approximate maximum likelihood method, based on the approximated pdf
of an EGP proposed in Al Masry et al. (2015). This method requires a discretization of the scale
function of an EGP and a numerical computation of infinite integral. It has been tested on a few
simulated data sets. The results were correct but the computational times were rather long. Also,
the theoretical basis of such a method remains to be developed. Indeed, no convergence result is
provided in Al Masry et al. (2015) for the approximate pdf towards the exact pdf (only for the cdf).
Hence, there is a large gap to be filled, before being able to develop asymptotic properties of the
resulting estimator (convergence of the approximate pdf plus control of the error made through the
approximation).
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de l’Adour, 2016.

Z. Al Masry, S. Mercier, and G. Verdier. Approximate simulation techniques and distribution of an
extended gamma process. Methodol. Comput. Appl. Probab., available online, 2015.

R. E. Barlow and F. Proschan. Mathematical theory of reliability, volume 17 of Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1965.
With contributions by Larry C. Hunter, 1996.

M. Carrasco and J. Florens. Efficient GMM estimation using the empirical characteristic function.
Working Paper, Department of Economics. University of Rochester, 2002.

N. H. Chan, S. X. Chen, L. Peng, and C. L. Yu. Empirical likelihood methods based on characteristic
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