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ABSTRACT:

In reliability theory, a widely used process to model the phenomena of the cumulative

deterioration of a system over time is the standard Gamma process. Based on several restrictions, such as a
constant variance-to-mean ratio, this process is not always a suitable choice to describe the deterioration. A way
to overcome these restrictions is to use an extended version of the Gamma process introduced by Cinlar (1980).
In this paper, the aim is to propose statistical methods which enable us to estimate the unknown parameters of
an EGP from a parametric form of the shape and scale functions. We here develop a generalized method of
moments, which was introduced by Hansen (1982), based on the moments or the Laplace transform to estimate
the parameters. Asymptotic properties are provided and the performance of the proposed estimation methods is

illustrated on simulated data.

1 INTRODUCTION

Standard Gamma process is a widely used process
to model the cumulative deterioration of a system
over time (see van Noortwijk (2009) for an overview).
However, this process is not a suitable choice
when the variance-to-mean ratio of a system is
not constant over time. A way to overcome this
restriction is to use an extended Gamma process (see
Cinlar (1980)), defined as a stochastic integral with
respect to a standard Gamma process. It is a non
decreasing process with independent increments and
it 1s characterized by a shape function and a scale
function.

In this paper, the aim is to propose statistical methods
which enable us to estimate the unknown parameters
of an extended Gamma process (EGP) from a
parametric form of the shape and scale functions.
Parameter estimation is an important task for a
practical use of an EGP in an industrial reliability
context. Maximum likelihood estimation (MLE) is
the most classically applied estimation technique
which however requires the complete specification
of the probability density function (pdf). Based on
the fact that an explicit expression is not available
for the pdf of an EGP, standard maximum likelihood
estimation is here not possible. One could also
think of the empirical likelihood method of Qin
& Lawless (1994). However, this method does not
seem to be adapted to the present case of an EGP,
since it requires estimating too many parameters.
The moments and Laplace transform are available in
full form for an EGP. We here develop generalized

methods of moments (GMM) based on either one of
these quantities. Recall that GMM was introduced by
Hansen (1982). It does not require a full knowledge
of the pdf and it relies on a set of population moment
conditions upon which estimation is based. GMM
based on the empirical characteristic function has
been the subject of many papers in the literature
(Feuerverger & McDunnough 1981, Carrasco &
Florens 2002).

The remaining of the paper is organized as follows.
Section 2 briefly introduces the general approach of
GMM. Then, we elaborate about the two approaches
of GMM for an EGP in Section 3 and provide
asymptotic properties. In Section 4, the focus is on
a parametric form of the shape and scale functions.
llustrations are presented in Section 5 and we finally
conclude in Section 6.

2 GENERAL SPECIFICATION OF GMM

Let W be a random vector of dimension d and
{W,,n = 1,...,N} a set of independent and
identically distributed (i.i.d.) random vectors sharing
the same distribution with W. Let 6 = (0y,....6,)
be a parameter vector that indexes the distribution
of W and © C RP the parameter space. Let also
f :R%x © — RY (¢ > p) be a function such that

f(l) (w(l), 0)
flw,0) = : , (1)
f (w(d), 0)



where w = (wW,... w?) and fOW,0),
1 =1,...,dis a column vector with dimension k.
The gradient of f(w, @) can be given by
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if it exists, for all w € R%,0 € ©.

The first step of GMM begins by defining the
population moment condition and the sample moment
condition.

Definition 2.1. (Hall 2005, Definition 1.1, p.14) Let
6, be the true unknown parameter vector to be
estimated. Then the population moment condition
takes the form

E[f(W,8,)] = 0. (3)

The population moment condition should provide
sufficient information to identify the unknown
parameters. It represents a set of ¢ = kd equations
for p unknowns which are exactly solved by 6.
The corresponding sample moment condition for an
arbitrary 0 is given by

an(0)=0 “4)

N
where Gn(0) = % Y f(W,,,0).
n=1
Next, the GMM estimator is defined as follows:

Definition 2.2. (Hall 2005, Definition 1.2, p.14)
Let (Py) be a sequence of positive semi-definite
weighting matrices that converges in probability to a
constant positive definite matrix P. Then, the GMM
estimator based on the population moment condition
(3) is given by

Oy = argmingy (8)" Py gn(0). (5
6co
Under some technical assumptions, GMM

estimator is consistent and asymptotically normal
(Hansen 1982, Hall 2005, Newey & McFadden
1994).

3 GMM FOR AN EGP

Section 2 introduced the general framework of GMM.
The focus here is on GMM for a particular model,
which is the EGP.

3.1 Definition of an EGP

Throughout we let R, = [0, +-00) and R = (0, +00).
Let A:[0,7] x © — R, be a measurable, increasing
and right-continuous function with A(0,8) = 0 for all
0 c©O©andletd: (0,7 x © — R’ be a measurable
positive function such that, for t € (0,77,0 € ©:

a(s,@)ds
— 6
Jo Sy < ©

where a(t, @) is the derivative of A(t, @) with respect
to t on a given compact set [0, 7.

Following (Cinlar 1980, Dykstra & Laud 1981),
the process X = (X)) is said to be an EGP
with shape function A(¢,0) and scale function
b(t,0) (written X ~ T'(A(t,0),b(t,0))) if it can be
represented as a stochastic integral with respect to a
standard Gamma process (Y;),co 7 ~ I'(A(2,6),1):

dY.
X:/ —_ Vte(0,7T],0 €O (7)
' (0,] b(SaG) ( ]

and XO =0.
An EGP has independent increments and an

explicit formula is available for the Laplace transform
of an increment, with

'CXt-HL_Xt()\? 0)
= (X =X0) (®)

A
=exp| — log [ 1+ as,@ds),
(= [ (1 7 ) o0

€))

forallt € [0,7];0 € ©;\ > 0and h > 0.
The mean and variance of an EGP are given by

a(s,0)ds
E(X;) = —_ 10
( t) /(O,t] b(870) ( )
a(s,@)ds
V(X)) = —_— . 11
S W ()

Let us now consider to = 0 < t; < --- <ty ="1T.
We assume that we observe N trajectories
X,,n=1,...,N at the same t;’s, ¢+ = 1,...,d
which are issued from 6. For a generic trajectory X,
we set

WO =X, —X, i=1,....d (12)

to be the i-th increment. This leads to a sequence of
i.i.d. random vectors W,,,n =1,..., N.

Now we discuss the choice of the population
moment condition for each of the following
approaches: GMM based on the moments and GMM
based on the Laplace transform.



3.2 Approaches

3.2.1 GMM based on the moments

As in the classical method of moments, population
moment condition for GMM based on the moments
is defined by matching the theoretical moments of
an EGP with the appropriate empirical ones. This
matching is done for each increment. Note that, in
the case of GMM, there are more equations than
unknowns. Define

fw,0) = (f(i)<w(i)>9))1gi§d
B w® —m©(0)
- ((wu) - m(z’)(e))2 — v(i)(e)) 19;}3)
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Obviously, f satisfies E[f(W,60,)] = 0. We have
E[f(W,0)] < oo for all @ € O (from (6)) and then
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3.2.2 GMM based on the Laplace transform

A similar procedure as for the previous method is
followed. Instead of using moments, we rely on the
Laplace transform at distinct points \;,; 1 </ < o and
we match it with the empirical Laplace transform at
the same points \;. Let

(-f(i) (w(i)v 0)) 1<i<d

= (exp(=Nw®) — LO(N, 0))%%2(1 (15)

So

(Hy) E[f(W,0)] = 0

(Hy) There exists I :

(Hs) There exists I :

where

LD\, 0) = exp (_ /tt In (1 + b(2l0)> a(s,H)ds) |

If the arbitrary @ is replaced by the true value, we
have E[f(W,0,)] = 0. Also, E[f(W,0)] < oo for
all @ € © and the sample moment is given by

9 (8) = (LOO) = LU0, 0))1<ia (16)
with

. 1 & A

LON) = N ;exp(—)\lwy)).

3.3 Asymptotic properties

In this subsection, general asymptotic results for
GMM for an EGP are presented. For any parametric
form of the shape and scale functions, one need
to verify the assumptions given below to show
consistency and asymptotic normality of GMM for
an EGP estimator. The results are derived from
(Newey & McFadden 1994, Theorem 2.6, p.2132),
(Hansen 1982, Theorem 2.1, p.1035), (Newey &
McFadden 1994, Theorem 3.2, p.2145) and (Hall
2005, Theorem 3.4, p.88).

3.3.1 GMM based on the moments

A consistency result for GMM based on the moments
is now formulated:

Theorem 3.1 (Consistency). If

(Hy) (Py) converges in probability (respectively,

almost surely) to a constant positive definite
matrix P,

if and only if 0 = 6,
(identification condition),

(H3) © is compact,

0,7] — R, such that

Zgjz))’ < Ii(s) for all s € [0,T],0 € © with

fOT I(s)ds < oo,

0,7] — R, such that
a(s,0)

b(s,0)2 < IQ(S) for all s € [O,T],O € O with
fOT I5(s)ds < co.

Then éN converges in probability (respectively,
almost surely) to 0.



In the following, the convergence in probability is
denoted by "Prob”, the almost sure convergence by
”a.s.” and the convergence in distribution by "D”.

In addition to assumptions (H; — H;) given in
Theorem 3.1, more conditions are needed for the
asymptotic normality:

Theorem 3.2 (Asymptotic Normality). If (H; — Hs)
and the following conditions hold

(Hg) Oy is an interior point in ©,

(H;) D! PDy is non-singular with

_ 9m()(8o)
DO - _811((?)9(00) ’
06 1<i<d
(Hs) There exists Jy : [0,T7] — Ry such that
0 s,0
20 ( E 0;) < Ji(s)foralls €[0,7],0 € ©
(s)

with fo Ji(s)ds < oo,
(Hg) There exists Jy : [0,7] — Ry,  such
0 (a(s,0)
— <
that 80( o(s.0)2 )‘ < Jo(s)  for all
s € 10,17, OE@thhfo Jo(s)ds < o0,
T a(s,0)ds T a(s,0)ds
H St iase , St ani 1l
i) [ g <o [, Sy <2
0 co.

Then /N (Ox — 0y) is asymptotically normal with
mean 0 and asymptotic variance V.= HSH" where

H = (D!PD,)'D!P.

Theorem 3.2 indicates that the weighting matrix
affects the asymptotic properties of the estimator via
the covariance matrix. The optimal weighting matrix,
in the sense of minimizing the asymptotic covariance
matrix, is given by the following theorem.

Theorem 3.3 (Optimal weighting matrix). If
assumptions (H, — Hyy) hold, then the minimal

-1
and

with

asymptotic variance of Oy is (DIS™Dy)
this can be obtained by setting P = S™!
S=E [f(W,Oo)f(W,Oo)T]

3.3.2 GMM based on the Laplace transform
The following theorems state the asymptotic results
for GMM based on the Laplace transform.

Theorem 3.4 (Consistency). Assumptions (Hy — Hy)

imply
A Prob
Oy —

N—oo

0.

Theorem 3.5 (Asymptotic Normality). Assumptions
(Hl — H4) and <H6 — Hg) lmply

VN(Oy —60) 2 N(0,V)
with
V =HSH",
H = (D; PD,)"'Dg P;

— (929 (\,00)
Do = (_ a0 1<i<d”
1<I<o

Theorem 3.6 (Optimal weighting matrix). If
(Hy — Hy) and (Hg — Hg) hold, then the minimal
asymptotic variance of Oy is (Dg S'*lDo)f1
this can be obtained by setting P = S—!
S =E [f(W,00)£(W,6,)7).

and
with

Notice that less assumptions are required to show
the asymptotic properties of GMM based on the
Laplace transform than GMM based on the moments.

3.4 Estimation

In practice, the optimal weighting matrix S~! should
be estimated. As 6, is unknown, a consistent GMM
estimator is required in order to estimate S~*.

Let = NZf W,.,00)f(W,,,0,)"

empirical version of S. An easy way to proceed is to
adopt a two-step procedure (see Hansen (1982)):

be an

1. Set Py = I, where I is the identity matrix, and
compute

0 = argmingn ()7 g (6). (17)

6co

2. Construct an estlmator of S based on the initial
GMM estimator 0

N
Z O FW,L, 6T (18)

For GMM based on the moments, S ~ can be shown
to be almost surely non singular. Also, under the
condition that \;’s, 7 = 2,...,0 are multiples of Ay,
S can be shown to be almost surely non singular
for GMM based on the Laplace transform. Then the
optimal two-step GMM estimator of 8 is given by

A

O = argmingy (0)" Sy gn(0). (19)
0co

Furthermore, for both approaches, it can be shown
that



~ ~ -1
LetVy = (Dg S;,1D0> denote the estimator of the

asymptotic variance V. Theorems 3.2, 3.5 imply that
an approximate 100 x (1 — €)% confidence interval
for Oy(i),i=1,...,pis given by

On (i) £ qej2\/ Viv(i,9)/N] (20)

where ¢/, is the (1 — ¢/2) quantile of the standard
normal distribution.

4 A PARAMETRIC FORM FOR THE SCALE
AND SHAPE FUNCTIONS

Let 6 = (a,a,b,0,¢), a(t,0) = at* and
b(t,0) = b(t + c)”. The parameter space is given by

O = (R} x (—1,+00) x R x R x Ry)

U{(aa,b, 8,0) € RY x (1, +00) x B} x R x {0}

such that o > 23 — 1}. (21)

Based on Section 3, we have the following results
for this parametric form using both approaches of
GMM for an EGP. Firstly, we address the issue of
identification (see (H3)) which is the most technical
point to verify. Secondly, we provide conditions under
which GMM estimator using this parametric form is
consistent and asymptotically normal.

4.1 GMM based on the moments

Theorem 4.1. Consider f(w, 0) as defined in (13). If
at least 5 increments are observed (d > 5), then (H»)
is satisfied, namely the model is identifiable.

From Theorem 3.1, it follows

Corollary 4.2. Let us consider f(w,0) as defined in
(13) withd > 5 and 8y € © C © where O is a compact
set. Assume that assumption (Hy) holds, then

Prob,

é N — 00.
Now, we define

OV = (R: x (—1,400) x R: x R x R})

4.2  GMM based on the Laplace transform

Theorem 4.4. Consider f(w,0) as defined in (15). If
d >4 and o > 3, then (H,) is satisfied.

Corollary 4.5. Let us consider f(w,0) as defined in
(15) withd > 4,0 > 3 and 8y € © C © where © is a
compact set. Under assumption (H,) it follows that

Prob

éN — 90.
Corollary 4.6. Consider f(w,®) as defined in (15)
with d > 4,0 > 3 and a compact set © C O. If 0 is

an interior point in © and if we assume that (H,) and
(H7) hold for P = S™%, then

VN (éN . 00> P, N(0, (DTS Dy) 1.

5 NUMERICAL EXPERIMENTS

Here, we test GMM based on the moments
(GM M) and Laplace transform (GM Mj,,) on
simulated data.

We first generate N sample paths on [0,7] using a
simulation technique from Al Masry et al. (2015).
By taking P = I, an initial GMM estimator is
obtained (see step 1, Subsection 3.4). Then, using
this estimator, we construct S’N and compute éN
using (18) and (19) respectively. In order to study the
behavior of the estimator, we consider T sets of N
sample paths. For each set, we compute 6 and then
we report the mean, the standard deviation and the
quantiles based on these r estimations of .
Moreover, by the asymptotic normality of GMM
estimators, we give the coverage probabilities (CP)
of hyper-ellipsoid confidence region. Firstly, we
evaluate the squared distance from @y to 8, given by
N(Oy —0))V 1Oy — 6,)". Secondly, we compare
it to the chi-squared value X(2).95,p and compute

op— H{N Oy — 00)V 1Oy — 00)" < X345, }
T

(23)

U{(a,a,b,B,c) € R x (—=1,400) x R% x R x {0}If the squared distance from O to 6y is less than the

such that o > 45 — 1}. (22)

Corollary 4.3. Consider f(w,0) as defined in (13)
with d > 5 and a compact set @N c ON. If 6, is an

interior point in 0" and (Hy) and (H7) are satisfied
for P = S71, then

VN (éN . 00) P, N(0, (DTS Dy) Y.

chi-squared value then the true value @, lies inside
the region. The CP should be close to the nominal
value which is here 95%.

As a first step, the methods are compared for
estimating two unknown parameters. Let d = 10,
T =10, N =400, » = 500 and let us consider an EGP
X with A(¢,0) = t* and b(t,0) = t°. The results
are presented in Tables 1 and 2. As we can observe,
GM My and GM My, provide similar results.
The C'P, for all two approaches, is approximately



Table 1: Mean, standard deviation and quantiles for A(t, 0) = ¢,
b(t,0) =1, d=10,T = 10, N = 400, r = 500.

& B
True value 2 0.5

Mean (std) Mean (std)
GMMpynr 1.9954 (0.0363)  0.4942 (0.0457)
GMMrp,, 1.9994(0.0320) 0.4991 (0.0413)

[Q.025,Q.975] [Q.025, Q.975]
GM My [1.9235,2.0655]  [0.4027,0.5839]

[
GMM,, [1.9398,2.0610] [0.4228,0.5793]

Table 2: Coverage probability of hyper-ellipsoid confidence
region for A(t,0) =t, b(t,0) =t%,d =10, T = 10, N = 400,

r = 500.

CP
GMDMyar  94.8%
GMM,, 94.4%

equal to 95%. Also, the computing time of 01(3) using
GM My or GM M, is around 1s. Thus, both
methods can be used to estimate two parameters.

We next present the estimation results
for four  unknowns. Let us  consider
A(t,0) = at*,b(t,0) = bt’ and generate 500
sets of 500 samples paths. Then we compute the four
estimates using both GMM approaches. From Table
3, it is clear that GM M, shows better performance
against GM M. The time needed for computing
the estimators using GM My, is around 1s, while
it is around 7s for GM Mj,,,. In addition, in Table 4,
we see that the C'P for GM M, becomes closer to
95% by increasing N while for GM M)y, it tends to
be less than the nominal value. GMM based on the
moments seems less accurate than GMM based on
the Laplace transform when we increase the number
of parameters to be estimated.

6 CONCLUSION

In this work, we have dealt with parametric
estimation techniques to estimate the shape
and scale functions of an EGP. Two approaches
dedicated for an EGP have been proposed: GMM
based on the moments and GMM based on the
Laplace transform. General asymptotic results

Table 3: Mean, standard deviation and quantiles for
A(t,0) = at®, b(t,0) = bt?, d = 10, T = 10, N = 500,
r = 500.

True Method Mean (std) [Q.025, Q.975]
value
a 1 GMMpar  1.0402 (0.0635) [0.9138,1.1725
GMMipq, 1.0053 (0.0501) [0.9159,1.1081
a 2 GMMpyr  1.9897 (0.0282)  [1.9369,2.0478
GMMrpq, 2.0030(0.0247) [1.9534,2.0513
b 1 GMMpyr  1.0398 (0.0538)  [0.9387,1.1457
GMMrpq, 1.0083 (0.0440) [0.9301,1.1025
B 05  GMMyy 0.4873 (0.0299) [0.4286,0.5487
GMMipq, 0.5023 (0.0270) [0.4490,0.5582

Table 4: Coverage probability of hyper-ellipsoid confidence
region for A(t,0) = at®, b(t,0) = bt?,d =10, T = 10, r = 500.

CP (N=500) CP (N=800)
GMMuyy 84.83% 87.6%
GMMp., 89.8% 93.4%

for GMM for an EGP were presented and the
results were illustrated for one parametric form
of the shape and scale functions. Note that the
results of Section 3 could be used for studying
other parametric forms (we have studied another
parametric form, where A(t,0) = a(1 — exp(—at))
and b(t,0) = b(1 — exp(—[3t)), but is not presented
here due to the reduced size of the paper).

As for the numerical assessment, GMM based on the
Laplace transform is more performing than GMM
based on the moments and particularly when we need
to estimate more than two parameters.

In regard to inspections, the proposed methods are
applicable when the interval time is common to
all trajectories. This is not always the case in an
industrial context. In this purpose, we have tested
an approximate likelihood method. From Al Masry
etal. (2015), an EGP can be approximated by another
EGP with a piecewise constant scale function. This
provides an approximation of the pdf of an increment
and the likelihood function can be computed using
this approximation. However, the computational
time seems to be very long and we do not have any
theoretical results. It could be interesting to study
other parameter estimation techniques which take
into consideration this problem.
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