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Many research deals with the standard Gamma process to model the evolution
of the cumulative deterioration of a system with time. When the variance-
to-mean ratio of the system deterioration level varies with time, the standard
Gamma process is not convenient anymore because it provides a constant ra-
tio. A way to overcome this restriction is to consider the extended version of
a Gamma process proposed by Cinlar [1980]. However, based on its technic-
ity, the use of such a process for applicative purpose requires the preliminary
development of technical tools. In this paper, we propose methods to simulate
its paths and approximate its cumulative distribution function, as a first step.
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1. Introduction

Standard Gamma processes are widely used to model the phenomena of

cumulative degradation (see Van Noortwijk [10]). However, a notable re-

striction of a standard Gamma process is that its variance-to-mean ratio

is constant with time. In order to overcome this restriction, we propose

to use the extended version of a Gamma process introduced by Cinlar [1].

A standard Gamma process is characterized by a shape function and a

constant scale parameter. For an Extended Gamma Process (EGP), the

scale parameter may vary with time. This allows for more flexibility than

its standard version, for modelling purpose. However, there is a cost and

the use of an EGP presents some technical difficulties. Firstly, except for

specific cases, there is no explicit formula for the probability distribution.

Secondly, the exact simulation of such a process is generally impossible.

These technical difficulties have lead Guida et al. [4] to use a discrete ver-

sion of an EGP. We here propose to deal with the original continuous time



version.

This paper presents methods to simulate approximate paths of an EGP

and to numerically assess its probability density function (pdf) and cumu-

lative distribution function (cdf).

2. Definition of an EGP and first properties

Let a : R+ → R+ be an increasing and continuous function, and let b >

0. Recall that a standard Gamma process Γ0(a(t), b) with a (t) as shape

function and b as (constant) scale parameter is a stochastic process with

independent, non-negative and gamma distributed increments. Its pdf at

time t is given by

ft(x) =
ba(t)

Γ(a(t))
xa(t)−1 exp(−bx), ∀x ∈ R+.

Now, let b : R+ → R+ be a function such that
∫ t

0
1

b(s)da(s) < ∞,

for all t ∈ R+. Following [1,2], the process X = (Xt)t∈R+ is said to be an

EGP Γ(a(t), b(t)) with shape function a(t) and scale function b(t) if it can

be represented as a stochastic integral with respect to a standard Gamma

process:

Xt =

∫ t

0

dYs

b(s)
(1)

where (Yt)t≥0 is a standard Gamma process Γ0(a(t), 1).

If b(t) is constant, we obtain a standard Gamma process. An EGP

can be proved to have independent increments and its distribution to be

infinitely divisible. Also, an explicit formula is available for its Laplace

transform, with

LXt
(λ) := E

(

e−λXt
)

= exp

(

−

∫ t

0

ln

(

1 +
λ

b(s)

)

da(s)

)

, (2)

for all t ∈ R+ and all λ ≥ 0. The mean and variance of an EGP are given

by E(Xt) =
∫ t

0
da(s)
b(s) and V(Xt) =

∫ t

0
da(s)
b(s)2 . In all the following, (Xt)t∈R+

stands for an EGP Γ(a(t), b(t)), without any further notification.

3. Extensions of known results

3.1. Series representations

Series representations of an EGP are here presented, which can be used to

approximately simulate its paths. The four series representations proposed



by Rosinski [9] for standard Gamma processes can easily be extended to the

case of EGPs. The four methods have been studied and tested, but we only

provide two of them here, which have been selected for their performance

(in terms of computing time and precision).

Let T ≥ 0 and let {Un}n≥1 be the points of a homogeneous Poisson

process M with parameter a(T ). Let also {Vn}n≥1 be a sequence of i.i.d.

random variables (r.v.) with distribution H (dv) = da(v)
a(T ) 1[0,T ](v), indepen-

dent of M . We have the two following representation results of (Xt)0≤t≤T ,

where
D
= means ”is identically distributed as”:

• Bondesson’s series representation:

Xt
D
=

∑

n≥1

1

b(Vn)
exp(−Un) Wn1[0,t](Vn), for 0 ≤ t ≤ T,

where {Wn}n≥1 is a sequence of i.i.d exponential r.v. with mean

1, independent of the Poisson process M and of the Vn’s,

• Rejection’s series representation:

Xt
D
=

∑

n≥1

1

b(Vn)

1

exp(Un)− 1
1[0,t](Vn)1E (Un, Rn) , for 0 ≤ t ≤ T,

where E (u, r) = { exp(u)
exp(u)−1 exp(−(exp(u)− 1)−1) ≥ r} and where

{Rn}n≥1 is a sequence of i.i.d uniform r.v. on [0, 1], independent

of M and of the Vn’s.

Approximate simulation of (Xt)0≤t≤T is done by truncating the series

and by selecting only the points of the Poisson process which belong to

a compact set [0, B]. This allows to have some control on the truncation

error (see [5] for details).

3.2. Post-Widder formulas

As already noted, the distribution of an EGP is infinitely divisible and its

Laplace transform is available in full form (see (2)). This allows to use the

method from [11] to compute the pdf and cdf of an EGP, by inverting its

Laplace transform through the Post-Widder formula. We get:

FXt
(x) = lim

N→∞

N
∑

k=1

(

−
N

x

)k
1

k

k−1
∑

j=0

(−1)k−j
L
(j)
Xt

(Nx )

j!

∫ t

0

da(s)

gN,x(s)k−j
, (3)

fXt
(x) = lim

N→∞

(−N)N

xN+1

N−1
∑

j=0

(−1)N−jL
(j)
Xt

(Nx )

j!

∫ t

0

da(s)

gN,x(s)N−j
, (4)



for all x ∈ R+, where gN,x(s) = (b(s) + N
x ) and L

(j)
Xt

stands for the j-th

derivative of LXt
.

4. A new approach

In case of a piecewise constant scale function b(t), the process (Xt)t∈R+

can be seen as the sum of standard Gamma processes. The simulation of

its paths is hence immediate. Also, the random variable Xt simply is the

sum of standard Gamma variables, and different tools are available in the

literature to compute both its pdf and cdf (see [8] for a review). Based on

this, we propose to approximate an EGP with a general scale function by

another EGP with a piecewise constant scale function.

4.1. Construction of the approximate process X
(ε)

Let ε > 0 and T > 0. We first construct a piecewise constant 1
b(ε)(t)

ap-

proximation of 1
b(t) on [0, T ] as below:

∀t ∈ [0, T ],
1

b(ε)(t)
=

nt(ε)
∑

i=0

1

bi
1[li,li+1[(t)

where nt(ε) is such that lnt(ε) ≤ t < lnt(ε)+1, l0 = 0 and the li’s are defined

recursively by

li+1 = sup

{

l ∈]li;T ] : for all l′ ∈ [li; l],

∣

∣

∣

∣

1

b(li)
−

1

b(l′)

∣

∣

∣

∣

< ε

}

and

1

bi
=

1

li+1 − li

∫ li+1

li

1

b(s)
ds.

Note that, based on the definition of an EGP (1) where we divide by b(t), we

construct an approximation of 1
b(t) instead of b (t). Also, by construction,

∣

∣

∣

1
b(t) −

1
b(ε)(t)

∣

∣

∣
< ε, for all t ∈ [0, T ].

Two other piecewise approximations of 1
b(t) are used in Subsection 4.3:

1
b(ε,−)(t)

=
∑nt(ε)

i=0
1
b−
i

1[li,li+1[(t) and 1
b(ε,+)(t)

=
∑nt(ε)

i=0
1
b+
i

1[li,li+1[(t) where

1
b−
i

= inf
{

1
b(l) , l ∈ [li, li+1[

}

and 1
b+
i

= sup
{

1
b(l) , l ∈ [li, li+1[

}

. This pro-

vides

1

b(ε,−)(t)
≤

1

b(t)
≤

1

b(ε,+)(t)
, for all 0 ≤ t ≤ T. (5)



In the following, we set X(ε) (X(ε,−), X(ε,+)) to be EGPs with

scale functions b(ε) (t) (b(ε,−) (t), b(ε,+) (t)), and the same shape function

a (t). Let us note that, under mild assumptions, one can check that

X(ε)(X(ε,−), X(ε,+)) −−−−→
n→∞

X in distribution, in norm L2 and almost surely

when ε → 0+.

4.2. Approximation of the pdf and cdf of X
(ε)
t

(and of Xt)

We use a representation in terms of an infinite integral of the pdf and cdf

of a finite sum of independent Gamma r.v.s [3] to compute the pdf and the

cdf of X
(ε)
t . We obtain:

f
X

(ε)
t

(x) = lim
K→∞

f
(K)

X
(ε)
t

(x), F
X

(ε)
t

(x) = lim
K→∞

F
(K)

X
(ε)
t

(x),

for all x ∈ R+, where

f
(K)

X
(ε)
t

(x) =
1

π

∫ K

0

cos(
∑nt(ε)

p=1 αp arctan(u/bp)− xu)
∏nt(ε)

p=1 (1 + (u/bp)2)αp/2
du, (6)

F
(K)

X
(ε)
t

(x) =
1

2
−

1

π

∫ K

0

sin(
∑nt(ε)

p=1 αp arctan(u/bp)− xu)

u
∏nt(ε)

p=1 (1 + (u/bp)2)αp/2
du (7)

with αp = a(lp)− a(lp−1).

Taking K large enough, (6− 7) provide approximations of the cdf and of

the pdf of X
(ε)
t , and consequently of Xt. Note that an upper bound is

available for the truncation error, with:

E
(K)

X
(ε)
t

(x) = |F
X

(ε)
t

(x)−F
(K)

X
(ε)
t

(x)| ≤

∏nt(ε)
p=1 bp

∑nt(ε)
p=1 (a(lp)−a(lp−1))

πa
(

lnt(ε)

)

K
∑nt(ε)

p=1 (a(lp)−a(lp−1))
,K ≥ 0.

(8)

Similar results can be written for X
(ε,−)
t and X

(ε,+)
t .

4.3. Bounds for the cdf of Xt

Based on (5), we easily derive bounds for Xt and for FXt
:

∀t,X
(ε,−)
t ≤ Xt ≤ X

(ε,+)
t ,

F
X

(ε,+)
t

(x) ≤ FXt
(x) ≤ F

X
(ε,−)
t

(x). (9)

Applying (8) and (9) we obtain:

F
(K)

X
(ε,+)
t

(x)− E
(K)

X
(ε,+)
t

(x) ≤ FXt
(x) ≤ F

(K)

X
(ε,−)
t

(x) + E
(K)

X
(ε,−)
t

(x)



Table 1. Relative errors for the different methods of simulation of Xt for t = 1

Approximation Bondesson Rejection

Relative error on mean 2.799× 10−3 2.784 × 10−3 2.755 × 10−3

Relative error on variance 8.778× 10−3 8.678 × 10−3 8.762 × 10−3

Relative error on Laplace 2.191× 10−3 2.256 × 10−3 2.232 × 10−3

and next:
∣

∣

∣

∣

FXt
(x) −

mt(x, ε,K) +Mt(x, ε,K)

2

∣

∣

∣

∣

≤
Mt(x, ε,K)−mt(x, ε,K)

2
, (10)

with

mt(x, ε,K) = F
(K)

X
(ε,+)
t

(x)− E
(K)

X
(ε,+)
t

(x),

Mt(x, ε,K) = F
(K)

X
(ε,−)
t

(x) + E
(K)

X
(ε,−)
t

(x).

This method provides us with computable bounds for the cdf FXt
of an

EGP, where the bounds can be made as tight as necessary, taking ε small

enough. This method hence provides a way to numerically assess the cdf

FXt
at a known precision. This is used in Section 5 to get reference results.

5. Numerical Application

Here, we compare the methods presented before for an EGP Γ(t, (t+ 1)2).

Firstly, we generate 105 approximate paths on [0, 1] by each of the three

proposed simulation methods: the two series representations from Subsec-

tion 3.1 and the approximate processX(ε) from Subsection 4.1. The control

of the quality of the approximate simulation methods is made through the

matching of empirical and theoretical mean, variance and average Laplace

transform (mean on a grid of the domain). Table 1 gives the relative error

for these three criteria and for the three methods. The results provided by

the three methods are very close to one another.

We now compare the quality of the numerical assessment of the cdf

of an EGP through both Post-Widder’s (Subsection 3.2) and the approx-

imation method provided by (7). Reference results are first computed for

FXt
(x) according to Subsection 4.3 for t = 2, with a precision lower than

3.10−6. The results are next provided in Table 2 for the mean absolute

error on FXt
(x) for x ∈ [0.01 : 0.1 : 10], for both the Post-Widder’s and

approximation methods with respect to the reference results. Both meth-

ods provide similar results with similar computation times. However, the

approximation method may easily yield more accurate results (diminish-

ing ε and increasing K) whereas the highest precision by Post-Widder’s



Table 2. Mean absolute error on FXt
(x) for t = 2 and x ∈ [0.01 : 0.1 : 10]

Method Mean absolute error cpu time

Post-Widder (N = 100) 6.10−4 4

Post-Widder (N = 110) 7.10−4 4

Approximation (ε = 10−2,K = 12) 7.10−4 3

Approximation (ε = 10−2,K = 50) 2.10−5 7
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Figure 1. The pdf of Xt for t = 10 as a function of x

method is obtained for N ' 100 in the present example. This shortcut of

Post-Widder’s method had already been observed in [7].

6. Conclusion

Different tools have been presented here, firstly, for the approximate sim-

ulation of an EGP, secondly, for the numerical assessment of the cdf/pdf

of an EGP. As for the simulation procedures, it seems that our approx-

imate simulation scheme behaves as well as two of the most usual ones

(Bondesson’s and rejection methods), previously developed in the context

of subordinators. Note that a specific simulation procedure for EGPs was

proposed by [6]. It was not included here, because of the reduced size of the

paper. However, we have tested it and it seems to be a little less performant

than the three other ones presented here.

As for the numerical assessment of the cdf of an EGP, we could not

find in the literature any procedures with a control on the precision. We

here propose three discretization schemes of the rate function 1/b (t): one

provides the best approximation among the three (b(ε) (t)), the other two

(b(ε,+) (t), b(ε,−) (t)) provides bounds for Xt and for its cdf FXt
. Beyond

the fact that we have a control on the precision of the approximation of

FXt
, the results have been compared to those obtained by Post-Widder’s



formula, at the advantage of our method.

As a consequence, the discretization method of the rate function seems

to behave well, both for simulating paths and for the numerical assessment

of the cdf of an EGP. Just as Post-Widder’s method (4), the method also

provides a way to compute an approximation of the pdf through (6). We il-

lustrate it in Figure 1, where we plot a non-parametric estimation obtained

from a sample of size 105, and the results by Post-Widder’s and the present

methods. The present method better agree with the non-parametric esti-

mation than Post-Widder’s method (see Figure 1b). Note, however, that

contrary to the cdf, we do not have any control on the precision of the

approximation of the pdf of an EGP.
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series representation. J. Comput. Appl. Math. 253, 264-283(2013).

[6] H. Ishwaran, L. F. James,“Computational methods for multiplicative inten-
sity models using weighted Gamma processes: proportional hazards, marked
point processes, and panel count data,” J. Amer. Statist. Assoc. 99(465),
175-190(2004).

[7] V. Masol, J. L. Teugels,“Numerical accuracy of real inversion formulas for
the Laplace transform,” J. Comput. Appl. Math. 233, 2521-2533(2010).

[8] S. Nadarajah. A Review of Results on Sums of Random Variables,” Acta
Appl. Math. 103(2), 131-140(2008).

[9] J. Rosinski. Series representations of Lévy processes from the perspec-
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