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Abstract— Nano force sensors based on passive diamagnetic
levitation with a macroscopic seismic mass are a possible
alternative to classical Atomic Force Microscopes when the
force bandwidth to be measured is limited to a few Hertz. When
an external unknown force is applied to the levitating seismic
mass, this one acts as a transducer that converts this unknown
input into a displacement that is the measured output signal.
Because the little damped and long transient response of this
kind of macroscopic transducer can not be neglected, it is then
necessary to deconvolve the output to correctly estimate the
unknown input force. The deconvolution approach proposed in
this article is based on a Kalman filter that use an uncertain
a priori model to represent the unknown nanoforce to be
estimated. The main advantage of this approach is that the
end-user can directly control the unavoidable trade-off that
exists between the wished resolution on the estimatedforce and
the response time of the estimation.

I. INTRODUCTION

The design of micro and nano force sensors is constrained
by the fact that only force effects can be directly observed.
Because of this, a transducer is necessary to convert the force
into a measurable effect. The force is the unknown input
to reconstruct and the effect is the measured output signal.
Most of the time, the measured force effect is related to
a displacement x and the usual scalar expression used to
calculate the component F of the applied force ~F in one
direction ~x of space simply consists in the equation:

F = K x K > 0 (1)

in which K is the mechanical stiffness of the transducer
along ~x (by convention x is set to zero when there is no
displacement). This steady-state equation supposes that the
transient response of the transducer can be neglected. This
is usually considered to be the case for classical designs
using monolithic elastic microstructures like microcantilevers
[1]: AFM based microforce sensors [2] [3], piezoresistive
microforce sensors [4], capacitive microforce sensors [5],
piezoelectric microforce sensors [6], etc. When the transient
dynamic of the transducer due to the evolution of the
successive derivatives of x is not negligeable, (1) can not be
used and the general framework of the force reconstruction
corresponds in fact to a deconvolution problematic of a
noisy output signal. In the specific case treated in this
article, the unknown input is a nanoforce that is applied to a
macroscopic seismic mass that levitates passively thanks to
the diamagnetic levitation principle. This seismic mass acts
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as a transducer that converts the unknown input force into
a displacement that is the measured output signal corrupted
by noise. This kind of macroscopic transducer has a badly
damped and long transient response, thus this dynamic
behaviour must be taken into account during the estimation
process contrary to (1). The estimation computation is based
on a discrete Kalman filter that use an uncertain a priori
model to represent the unknown force to be estimated. This
article begins by a short description of the force sensor and its
dynamic behaviour (state-space modelling). The calibration
process is then briefly presented and followed by the de-
velopment of the unknown input estimation under gaussian
assumptions usually used to derive a Kalman filter. To be
realistic, some performances of the force estimation obtained
are then characterized in a non gaussian framework. Finally,
some experimental results are presented.

II. PASSIVE MICRO AND NANOFORCE SENSOR
PROTOTYPE BASED ON DIAMAGNETIC LEVITATION

A. Sensor description

Microforce sensors based on “heavy” rigid seismic mass
are really uncommon. A force sensor with a range measure-
ment of several millinewtons and based on a mass moving in-
side a pneumatic linear bearing is described in [7]. The mass
is 21.17 grams and the force resolution is 0.5 micronewton.
The air friction inside the bearing is assumed small enought
to be neglected. Contrary to the last one, the design presented
in this article is based on levitation in order to reach the same
force resolution than an Atomic Force Microscope (AFM)
but with a larger range measurement. This design is based
on a lighter macroscopic mass (≈ 70 mg) that is levitating
passively thanks to the diamagnetic levitation principle. This
mass is a rigid ten centimeters long capillary tube made of
glass on which are stuck two small magnets M2. The whole
structure is called maglevtube (Figure 1). As it is shown in
figure 2, the maglevtube levitates passively around a given
equilibrium state thanks to repulsive diamagnetic effects
(generated by the graphite diamagnetic plates) coupled with
attractive magnetic effects (generated by the magnets M1

and M ′1). The maglevtube has a microscopic tip on which
is applied the unknown external force ~F . The sensor is
currently designed to only measure forces applied along the
longitudinal axis ~x of the tube. Thus, the unknown force
~F is assumed to be colinear to ~x and has the following
components in the global reference frame R0 given in figure
2:

~F
[
F x 0 0

]T
(2)
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Fig. 1. Macroscopic seismic mass sensitive to external forces.
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Fig. 2. Levitating seismic mass in the force sensing device that is using
magnets M1, M ′1, M2 and diamagnetic graphite plates.

B. Force sensing principle

When the force F x is applied to the tube tip, the dis-
placement obtained corresponds to a little damped behaviour
because the viscous friction due to the air is very small.
The simulated displacement computed with Matlab-Simulink
and obtained with a force F x set to one micronewton is
given in figure 3 (step response). This simulation of the
prototype presented in section II-C is done with a complete
computation of the internal magnetic and diamagnetic forces
at each time step of the Simulink solver. Thus, the complete
behaviour of the six dof of the maglevtube can be plotted if
necessary. The settling time at 5% along ~x axis is typically
20 secondes. Overshoot is 97%. The nonlinear steady-state
response of the maglevtube is given in figure 4 (“force
versus displacement” characteristic). The slope of this curve
corresponds to the magnetic stiffness Kx

m of the sensor that
is equivalent to an invisible magnetic spring with a small
damping. One can notice that the linearity of the stiffness
is good with displacements between ±1.5 millimeters. For
such range of displacements, the maximum relative error
between the linearized force and the nonlinear magnetic force
is 0.63% in this simulation. Knowing the magnetic stiffness
Kx
m, the force measurement is given by (1) in steady-state:

F x = Kx
m x Kx

m > 0. (3)

with x the displacement of the maglevtube measured with
an external distance sensor. Because the stiffness is equal to
0.0289 N/m in this simulation, the corresponding measured
force range associated to a ±1.5 millimeters range displace-
ment is ±43 µN. A more complete description of this sensor
can be found in [8].

C. Experimental prototype

Typical Kx
m stiffnesses obtained with the prototype shown

on figure 5 are between 0.005 N/m and 0.03 N/m (same
order of magnitude than for very flexible AFM cantilevers).
The stiffness can be easily adjusted by changing the distance
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Fig. 3. Simulated step response of the maglevtube with an external force
set to one micronewton.
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Fig. 4. Force versus displacement steady-state characteristic.

between magnets M1 and M ′1. Lower is the stiffness and
better is the sensitivity of the sensor. There is nevertheless a
limitation on the lower value that can be reached for Kx

m

because if magnets M1 and M ′1 are too far away from
each other, the magnetic force along the vertical axis is
not sufficient to compensate the maglevtube weight. Typical
mass m for the maglevtube is around 70 mg. Typical resonant
frequency is around 3 Hz. The sensor used to measure
the maglevtube displacement is a confocal chromatic sensor
(manufactured by STIL SA) that is aimed at a glass deflector
stuck at the rear of the maglevtube (see figure 1). Typical
standard deviation for a CL2 confocal head is 12 nm.
Thus, without any signal processing and in steady state, the
minimal standard deviation that can be expected for the force
is 0.12 nN if Kx

m = 0.01 N/m. In practice, such small values
can not be reached because of the seismic mass sensitivity to
seismic disturbances (subsonic air disturbances are avoided
by enclosing the sensor with a chamber). Stochastic low fre-
quency seismic vibrations of magnets M1 and M ′1 generate
unwanted magnetic return forces that are applied on magnets
M2 and a stochastic oscillating behaviour of the maglevtube
results. With a massive concrete ground slab to minimise
seismic vibrations, the minimal standard deviation currently
reached is 30 nm (measured with a CL2 head).
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Fig. 5. Force sensor prototype.

III. SENSOR MODELLING AND CALIBRATION

A. One dof linear modelling of the maglevtube dynamic

Let G the centre of gravity of the maglevtube and x its
position in the frame R0 (cf. figure 2). Coordinate x is set
to zero when the maglevtube is in steady state without any
external excitation. If an external force F x is applied under
assumption (2) to the maglevtube tip, the dynamic of G along
~x can be modelled by:

mẍ = F x + F xmag + F xvisc (4)

in which m is the maglevtube mass and F xvisc is the visquous
friction force due to the air. If the displacement of the tube
along axis ~x remains in the linear domain given in section
II-B and if the speed is small, equation (4) becomes:

mẍ = F x −Kx
m x−Kx

v ẋ (5)

where Kx
m is the magnetic stiffness and Kx

v the viscous
damping coefficient. A possible state equation associated to
(5) with X(t) =

[
x ẋ

]T
and x(t) as output is then:

Ẋ(t) = AX(t) +B F x(t) (6)
x(t) = C X(t) (7)

A =

[
0 1

−K
x
m

m −K
x
v

m

]
B =

[
0
1
m

]
C =

[
1 0

]
(8)

B. Calibration

Calibration is usually a complex problem for micro and
nano force sensors based on elastic microstructures because
of the lack of standard forces at this scale. Stiffness absolute
uncertainty is most of the time not specified and is still an
open problem on which are working international metrology
laboratories [9]. Calibrating micro force sensors based on
macroscopic seismic mass is easier and several dynamic
calibration methods have been investigated. They are based
on particular external force generation like impact force [10],
step force [11] and oscillating force [12], [13]. Because the
maglevtube mass m can be easily measured with a precision
balance, a Zero Input Response (ZIR) is another possible
way to identify the two others parameters Kx

m and Kx
v . It
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Fig. 6. Measured and reconstructed zero input response (ZIR) of the
maglevtube displacement.

requires an unknown excitating force F x with the following
dynamic {

F x(t) 6= 0 t0 ≤ t < t1 ∀F x

F x(t) = 0 t ≥ t1.
(9)

which can be generated using two coils located near the rear
diamagnetic plates (see figure 5). Knowing m, figure 6 shows
the matching between both experimental ZIR and the linear
model after the parametric identification of Kx

m and Kx
v in

(5) with F x set to zero (done with Matlab identification
toolbox which also estimate initial conditions).

IV. UNKNOWN INPUT FORCE ESTIMATION

Despite the fact that the model-based deconvolution frame-
work of a noisy output is an ill-posed problem with no exact
solution, numerous approaches have been developped in the
past such as for instance the Wiener deconvolution filter
or deconvolution methods based on regularization [14]. In
the specific context of micro or nanoforce measurement in
microrobotics, the deconvolution problematic has been little
addressed but some alternative approaches using unknown
input observers have been recently published [15]. These
approaches generally requires to set several parameters. The
method proposed here only requires one parameter to adjust
an intuitive trade-off (like in regularization methods) between
the wished resolution of the force estimated and the response
time of the estimation.

A. A priory force modelling

The noisy measurement ymk of the maglevtube displace-
ment with the confocal chromatic sensor is done with a
sampling rate Ts at each sampling time tk = k Ts. The
estimation of the unknown force with the set {ymk }k≥1 is
done at each sampling time tk. It is based on an a priori
discrete-time stochastic model for the force evolution that
will be processed inside a recursive discrete Kalman filter.
The working out of this a priori model is based on the
discretization of a Wiener process:

Ḟ (t) = ω(t) (10)
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F (t) is a model for the real force F x(t) and ω(t) is a sta-
tionary zero-mean infinite-variance white gaussian stochastic
process representing the fact that the evolution of the force
derivative is not known. The autocorrelation function φω,ω of
this stationary process is characterized by its power spectral
density WḞ :

φω,ω(τ) = WḞ δ(τ) ∀τ ∈ IR (11)

The term WḞ is a parameter to set by the end-user that
will influence in a given way the dynamic of the unknown
force estimation (see section V). To estimate with a discrete
Kalman filter the external force F x at each sampling time tk,
a discrete model of the continuous dynamic (6)-(7) is neces-
sary. This discretized model also includes the discretization
of the modeled force F (t) thus a concatenation of the
process generating the force and the maglevtube dynamic
must be considered. This extended system is represented by
the following extended stochastic state:

Xe(t) =
[
x ẋ F

]T
(12)

The associated state-space model is obtained with (10) and
(6) in which the unknown input force F x(t) is replaced by
the modelled random variable F (t):

Ẋe(t) = AXe(t) +Mω(t) (13)
x(t) = CXe(t) (14)

with

A =
[
A11 A12 B11

A21 A22 B21
0 0 0

]
M =

[
0
0
1

]
C =

[
1 0 0

]
(15)

The state equation (13) is driven by ω(t) and thus by the
parameter WḞ to set. Its discretization using a zero-order
hold (zoh) on ω(t) gives:

Xe
k+1 = F Xe

k + Ωk (16)
xk = CXe

k (17)

with

Xe
k =

[
xk ẋk Fk

]T
Ωk =

[
ωxk ωẋk ωFk

]T
(18)

and

F = eATs =

F11 F12 F13

F21 F22 F23

0 0 1

 (19)

Ωk is a discrete-time band-limited white gaussian random
process with zero-mean characterizing uncertainties on xk,
ẋk and Fk due to the stochastic force model used and the
zoh. Its 3× 3 covariance matrix Q is:

Q = E
[
ΩkΩT

k

]
=

∫ Ts

0

eAtMWḞM
TeA

Ttdt (20)

= WḞ

∫ Ts

0

eAtMMTeA
Ttdt (21)

= WḞ η(Ts) (22)

In (22), Q is proportional to WḞ and it can be easily shown
with (21) that the variance of ωFk is equal to

σ2(ωFk ) = Q33 = TsWḞ (23)

The evolution of Fk (third component of Xe
k) is obtained

from (16) and (18):

Fk+1 = Fk + ωFk k ≥ 0 (24)

and the statistic properties of the random process ωFk are

E
[
ωFk

]
= 0 E

[
(ωFk )2

]
= σ2(ωFk ) = TsWḞ (25)

E
[
ωFi ω

F
j

]
= σ2(ωFk ) δij = TsWḞ δij (26)

Equations (24) to (26) fully characterize the a priori discrete-
time gaussian stochastic model that will be used inside the
Kalman filter. The uncertainty model (24) corresponds to a
discrete-time gaussian random walk that is usually written
as follow (index shift on ωFk ):

Fk = Fk−1 + ωFk k ≥ 1 (27)

It comes from (27) that

Fk =

k∑
i=1

ωFi + F0 (28)

Because successive random variables ωFi form an a pri-
ori discrete zero-mean white gaussian process (the white
property is induced by (26)), Fk in (28) is gaussian if the
knowledge on F0 is assumed gaussian or if F0 is supposed
equal to some fixed value. Its a priori variance at each step
k can be calculated thanks to (26):

σ2(Fk) =

k∑
i=1

σ2(ωFi ) +σ2(F0) = k TsWḞ +σ2(F0) (29)

(29) shows that bigger is the parameter WḞ to set and
bigger is the a priori uncertainty (variance) on the possible
values of the modelled unknown force Fk at time tk and the
uncertainty growth in time is linear with tk (see figure 7). So
at this early stage, it is possible to say that if the unknown
force is supposed to vary rapidly, WḞ that represents the
growth rate of the a priori uncertainty on Fk should be set
greater than if the force is supposed to vary slowly. Finally,
the measurement mx

k of xk (given by (17)) takes into account
the discrete-time white gaussian noise vk with zero-mean and
variance R added by the confocal chromatic sensor:

mx
k = xk + vk = CXe

k + vk (30)

B. Force estimation using a time-varying Kalman filter
If the parameter WḞ is changed by the end-user during the

force estimation process, a time-varying Kalman filter must
be used and a numerical computation of Q must be done
each time WḞ is changed (the term η(Ts) in (22) can be
precomputed [16]). The prediction-estimation stages of the
Kalman filter are derived from equations (16) and (30):

X̂e
k|k−1 = F X̂e

k−1 (31)

Pk|k−1 = FPk−1FT +Q (32)

Kk = Pk|k−1CT
(
CPk|k−1CT +R

)−1
(33)

X̂e
k = X̂e

k|k−1 +Kk

(
mx
k − CX̂e

k|k−1

)
(34)

Pk = (I −KkC)Pk|k−1 (35)
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Fig. 7. WḞ effect on the a priori variance σ2(Fk)

mx
k is the noisy measurement of the mavlevtube displacement

(input of the Kalman filter). The output of the filter is the
estimation F̂k of F x(t) at time tk. It is given by:

F̂k = CF X̂e
k (36)

thanks to the output matrix CF =
[
0 0 1

]
.

The Kalman filter is initialized for instance with the ma-
glevtube in its equilibrium state when no force is applied to
it:

X̂e
0 =

[
0 0 0

]T
(37)

The covariance matrix P0 of the initial estimation error is
taken equal to:

P0 =

[
σ2(x0) 0 0

0 σ2(ẋ0) 0

0 0 σ2(F0)

]
(38)

in which each variance represents the a priori uncertainty
on x0, ẋ0 and F0. These values are chosen to be coherent
with the initial conditions associated to the experiment made.
In practice, they have little importance if the user starts the
Kalman filter with no force applied on the maglevtube and
waits a few seconds such that the Kalman gain Kk converges
to its steady-state K∞(WḞ , Ts, R) (solution to the discrete
Riccati equation that depends on WḞ , Ts and R) before
applying an unknown varying external force.

V. SIMULATED RESULTS

Studying in simulation the estimation behaviour with a
force F x(t) really generated by (10) has no interest in
practice because this model is purely theorical (it corresponds
to a brownian evolution of the input force). The character-
istics of F̂k will be illustrated on a canonical input force
instead. In this article, we focus only on a step input force.
To be independant of (38), a steady-state Kalman filter is
used substituting K∞ to Kk and using only equations (31)
(34) (36). Sampling time Ts is 0.001 sec. The variance of
measurement noise is R = 1.44×10−16 m2. The maglevtube
parameters are m = 74 mg, Kx

m = 0.02818 N/m (in linear
domain), Kx

v = 1.8 × 10−5 N.s/m (ζ = 6.23 × 10−3).
Identified values are Kx

m = 0.02812 N/m, Kx
v = 1.772 ×

10−5 N.s/m (ζ = 6.14 × 10−3). Figures 8 and 9 shows F̂k
for WḞ = 10−18 N2/Hz and WḞ = 10−15 N2/Hz with Ts
set to 0.001 seconde. Step amplitude to estimate is 100 nN.
Smaller is WḞ and smaller is the noise on F̂k but longer
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Fig. 8. step-force estimation with WḞ = 10−18 N2/Hz
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Fig. 9. step-force estimation with WḞ = 10−15 N2/Hz

is the estimation response time. As a consequence, smaller
is the amplitude to estimate and smaller must be WḞ to
have a good signal to noise ratio in F̂k. But in this case,
the force bandwidth of the sensor becomes also smaller.
This behaviour can be explained with the frequency response
F̂ (ejω)/mx(ejω) of the steady-state Kalman filter (see fig-
ure 10). This frequency response “inverts” the frequency
response of the maglevtube with its resonance peak. Bigger
is WḞ , bigger is the gain in the high frequencies. Thus
bigger is the amplification of the high frequency components
present in the noise vk inside mx

k . To reduce this noise level,
it is necessary to reduce WḞ . But in this case, the high
frequency components present in the displacement mx

k have
a very low amplitude (the maglevtube acts as a low pass
filter) and are insufficiently amplified by the kalman filter to
correctly reconstruct the high frequency composents in the
input F (t). As a consequence, the response time increases
(and the bandwith decreases).

VI. EXPERIMENTAL RESULTS

Figure 11 shows the evolution of the force during a pull-
off force measurement. A planar material is pushed against
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Fig. 11. Experimental pull-off force measurement

a micro-sphere stuck at the maglevtube tip (loading stage)
and then pushed back (unloading stage) until the contact is
broken between the material and the tip (ZIR displacement
that is a one-direction damped oscillating trajectory). After
this contact loss, the unknown external force applied on the
maglevtube becomes known because it is equal to zero and
thus it can be compared with the force estimated with (3)
or (36). Equation (3) gives a bad estimation because it is
proportional to the ZIR displacement. Kalman estimation
(36) gives a better result with a shorter and smaller oscillating
transient response. The vertical seismic disturbances of the
maglevtube probably participate to these residual oscillations
and their modelling is an outlook to this work.

VII. CONCLUSION

The force estimation presented in this article is based
on the displacement of a macroscopic seismic mass. This
displacement is processed by a Kalman filter that is using
a Wiener process to model the unknown input force. This
processing requires the adjustement of a single parameter
WḞ which directly adjusts a trade-off between the resolution
(variance) of F̂k and the response time of the estimation.

This parameter can be modified at any time by the end-
user in accordance with its own knowledge on the force
to measure. Compared to simple low-pass filter added on
the displacement measurement, the force bandwidth can be
extented reasonably four times higher than the displacement
bandwidth. This method is computationaly cheap and can
be implemented in small DSP or microcontrollers. Response
time shorter than 0.1 seconde can be reached with a correct
S/N ratio despite the very long settling time of the transducer
(20 secondes) and its low damping.
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