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Abstract

Random number generation refers to many applications such as simulation, nu-

merical analysis, cryptography etc. Field Programmable Gate Array (FPGA)

are reconfigurable hardware systems, which allow rapid prototyping. This re-

search work is the first comprehensive survey on how random number generators

are implemented on Field Programmable Gate Arrays (FPGAs). A rich and up-

to-date list of generators specifically mapped to FPGA are presented with deep

technical details on their definitions and implementations. A classification of

these generators is presented, which encompasses linear and nonlinear (chaotic)

pseudo and truly random number generators. A statistical comparison through

standard batteries of tests, as well as implementation comparison based on speed

and area performances, are finally presented.
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1. Background and Motivation

Randomness is a common word used in many applications [1] such as sim-

ulations [2], numerical analysis [3], computer programming, cryptography [4],

decision making, sampling, etc. The general idea lying behind this generic word

most of the times refers to sequences, distribution, or uniform outputs gener-5

ated by a specific source of entropy. In other words, the probabilities to generate

the same output are equal (50% to have “0” or “1”). If we take the security

aspect, many cryptosystem algorithms rely on the generation of random num-

bers. These random numbers can serve for instance to produce large prime

numbers which are at the origin of cipher key construction [5] (for example, in10

RSA algorithm [6], in Memory Encryption [7] or Rabin signatures [8]). Further-

more, when the generators satisfy some very stringent properties of security, the

generated numbers can act as stream cyphers in symmetric crytosystems like

the one-time pad, proven cryptographically secure under some assumptions [9].

Randomization techniques are especially critical since these keys are usually15

updated for each exchanged message. Even if an adversary has partial knowl-

edge about the random generator, the behavior of this latter should remain

unpredictable to preserve the overall security.

From a historical point of view, numerical tables and physical devices have

provided the first sources of randomness designed for scientific applications. On20

the one hand, random numbers were extracted from numerical tables like census

reports [10], mathematical tables [11] (like logarithm or trigonometric tables,

of integrals and of transcendental functions, etc.), telephone directories, and

so on. On the other hand, random numbers were extracted also from some

kind of mechanical or physical computation like the first machine of Kendall25

and Babington-Smith [12], Ferranti Mark 1 computer system [13] that uses

the resistance noise as a physical entropy to implement the random number

instruction in the accumulator, the RAND Corporation [14] machine based on

an electronic roulette wheel, or ERNIE (Electronic Random Number Indicator

Equipment [15]), which was a famous random number machine based on the30

2



noise of neon tubes and used in Monte Carlo simulations [16, 17].

These techniques cannot satisfy today’s needs of randomness due to their

mechanical structure, size limitation when tables are used [11], and memory

space. Furthermore, it may be of importance to afford to reproduce exactly

the same “random sequence” given an initial condition (called a “seed”), for35

instance in numerical simulations that must be reproducible – but physical gen-

eration of randomness presented above does not allow such a reproducibility.

With the evolution of technologies leading to computer machines, researchers

start searching for low cost, efficient, and possibly reproducible Random Number

Generators (RNGs). This search historically began with John von Neumann,40

who presented a generation way based on some computer arithmetic operations.

Neumann generated numbers by extracting the middle digits from the square

of the previously generated number and by repeating this operation again and

again. This method called mid-square is periodic and terminates in a very short

cycle. Therefore, periodicity and deterministic outputs that use an operator or45

arithmetic functions are the main difference with the earlier generators. They

are known in literature as “pseudorandom” or “quasirandom” number genera-

tors (PRNGs), while circuits that use a physical source to produce randomness

are called “true” random number generators (TRNGs).

In most cases a random number generator algorithm can be defined by a50

tuple (S, f , g, U , x0), in which S is the state space of the generator, U is the

random output space, f : S → S is the transition mapping function, g : S → U

is the output extractor function from a given state, and x0 is the seed [18],

see Figure 1. The random output sequence is y1, y2, . . . , where each yt ∈ U

is generated by the two main steps described thereafter. The first step applies55

the transition function according to the recurrence xt+1 = f(xt), where f is

an algorithm in the PRNG case and a physical phenomenon in the TRNG one.

Then, the second step consists in applying the function generator to the new

internal state leeading to the output xt, that is, yt = g(xt). The period of

a PRNG is the minimum number of iterations needed to obtain twice a given60

output (a PRNG being deterministic, it always finishes to enter into a cycle).
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Figure 1: General architecture of a random number generator

As stated previously, the old hardware manner to build such RNGs was to

use a mechanical machine or a physical phenomenon as entropy source, which

can thus be based on noise [19], metastability (frequency instability [20]), semi-

conductor commercial or industrial component circuit (PLL [21], amplifier, in-65

verter,. . . ), or a variation in the CMOS/MEMS process technologies (transis-

tor). In spite of the quality of the generated randomness, most of these tech-

niques are however, either slow processes (i.e, extracting noise from a compo-

nent) or costly (e.g., extracting or measuring noise may require specific equip-

ment like an oscilloscope). All these previous drawbacks are the motivation70

behind the development of hardware generators based on a software design.

The latter consist of developing deterministic algorithms by targeting a spe-

cific hardware system, like a Field Programmable Gate Array (FPGA), before

automatically deploying it on the hardware architecture by using ad hoc tools.

FPGA devices are reconfigurable hardware systems. They allow a rapid75

prototyping, i.e., explore a number of hardware solutions and select the best

one in a shorter time. The design methodology on FPGA relies on the use of a

High Description Language (i.e, Verilog, VHDL, or SystemC) and a synthesis

tool. Because of this, FPGA has become popular platforms for implementing

random generators or complete cryptographic schemes, due to the possibility to80

achieve high-speed and high-quality generation of random. The general archi-

tecture of a FPGA presented in Figure 2 is based on LCA (Logic Cell Array),
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Figure 2: General structure of a Xilinx’s FPGA

which is composed of three parts, namely: Configurable Logic Block (CLB) [22],

Input Output Block (IOB), and interconnect switches. FPGA could addition-

ally include more complex components like a Digital Signal Processing (DSP),85

a Random Access Memory (RAM), a Digital Clock Manager (DCM), or an

Analog-Digital Converter (ADC/DAC). The nomination of the internal blocks

depends on the FPGA vendors (Xilinx, Altera, Actel . . . ) even they have a

similar functionality. The CLB structure is mainly based on Look-Up Tables

(LUTs [23]), additionally with a Flip-Flop and some multiplexers. A K-input90

LUT is a 2K × 1-bit memory array based on a truth table of K-bits inputs.

These later can executes any logic functions as XOR/ADD/SHIFT. . .

Different implementations of RNG on FPGA have diverse characteristics.

First of all, does it provide true random or pseudorandom numbers? In the

second reproducible case, which algorithm is implemented? The next charac-95

teristic is the way each block is deployed on the FPGA, namely by computing or

in a hardware manner. For instance, for a polynomial division, there is a choice

5



between look-up table in software and a hardware shift register. Furthermore,

the quality of the FPGA model that implements a random number generator

can be evaluated according to many criteria. In a statistical perspective, the100

output has to be verified against some well-known test suite like the NIST [24],

DieHARD [25], or TestU01 [26] ones. From the hardware perspective, one ob-

jective is to provide the highest frequency per randomly generated bit with less

FPGA hardware resources (CLB, IOB, ...).

This article surveys a large set of selected hardware implementations of ran-105

dom number generators on FPGA. Both pseudorandom and true random gen-

erators are investigated, while linear and non-linear generators are discussed in

the PRNG case. Each approach is explained in details, and a discussion on

the choices of both implementations and generations are systematically given.

Performance with respect to frequency, area size, weaknesses, and statistical110

evaluations are finally presented, when they are available.

The remainder of the article is as follows. Section 2 describes FPGA imple-

mentations of linear PRNGs, whereas the next section 3 focuses on non-linear

ones. Each of these 2 sections ends by a short comparison regarding area re-

sources and throughput frequency of the FPGA implementations. The true115

random ones are detailed in Section 4, while recalls regarding statistical bat-

teries of tests and scores of some RNGs on FPGA are provided in Section 6.

This article ends by a conclusion section, in which the review is summarized

and future investigative directions are outlined.

2. Linear Pseudorandom Number Generators120

This section and the next one are devoted to pseudorandom number gen-

erators on FPGA. Recall that the latter are defined by a tuple containing a

recurrent equation of the form xt+1 = f(xt). This recurrence may be linear or

not. The linear case is investigated in the current section, while the non-linear

case is detailed in Section 3.125

Linear PRNGs are a special case of linear recurrence modulo 2. They are
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convenient for low power and high speed requirement but, due to the limita-

tion of the shift register state (two possibilities: 0 and 1), the period of these

generators is usually short. Because of this, many hardware optimizations are

proposed to increase the period (they will be detailed thereafter). A linear

PRNG of w bits can be defined by the following Equations (1) [27]:

xt+1 = A× xt (a)

yt = B × xt (b)

rt =
w∑̀
=1

yt`−1 2−`(c)

(1)

Indeed the first equation (a) defines the function f , where xt = (xt0, . . . , x
t
k−1) ∈

S = Fk2 is the k-bit vector at step t (F2 is the finite field of cardinality 2 and

S is the internal state space of the generator). The other equations (b) and (c)

define the function g, where yt = (yt0, . . . , y
t
w−1) ∈ U = Fw2 is the w-bit output

vector at step t, and U is the state space of the output. Additionally, A is a k×k130

transition matrix, B is a w × k output transformation matrix, which produces

the output bits which corresponds to the internal RNG state, and rt ∈ [0, 1] is

the output at step t. All the elements of A and of B are in F2.

In the simplest case we have w = k and B is the identity matrix, which

means that the state bits are directly used as random output bits. In case135

where w < k, the output are either propagating in another circuit, or multi-

ple state bits are XORed together to produce each output bit, as in the case

of Mersenne Twister [28]. These linear generators are covering Tausworthe or

Linear Feedback Shift Register [29], polynomial Linear Congruential Genera-

tors [30], Generalized Feedback Shift Register (GFSR [31]), twisted GFSR [32],140

Mersenne Twister, linear cellular automaton, and combinations between them.

More details will be presented regarding each of these generators in this survey.
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2.1. Linear Congruential Generators

Linear Congruential Generators (LCGs) [30] are founded on system of linear

recurrence equations defined as:145

xt+1 = (axt + b) mod 2k, (2)

where a (the “multiplier”), b (the “increment”), s.t. 0 ≤ a, b ≤ 2k−1 are

parameters of the generator,

This latter is often called a Multiplicative Congruential Generator [33] (MCG)

if b = 0, and Mixed Linear Congruential Generator, otherwise.

In [34], two optimized LCGs are proposed, namely the Ranq1 and Ran [35].150

Ranq1 is a MCG working modulo 264, while its seed is produced by a 64-bits

right XORshift [36]. Let us first recall that the XORshift takes an input and

iteratively executes an exclusive or (XOR) of the binary number with a bit

shifted translation (left and right) of itself. The second one, the Ran generator,

combines a LCG generator with two XORshifts, and the results are XORed by155

a Multiply with Carry (MWC) generator [37]. In MWC, the equation (2) is

modified as follows: the constant b is replaced by the carry bt which is defined

by b0, the initial carry, is less than a and bt+1 = bax
t + bt

232
c.

Authors of [34] optimized the implementation of the 64-bits constant coeffi-

cient multiplier a× xt. However the 64-bit multiplication is problematic due to160

DSP macro limitations that support only 18-bit operations in Xilinx’s FPGA.

This is why these authors proposed a pipeline of multiplier-adder architecture,

which takes 5 cycles for Ran and 4 for Ranq1, while the output is the least

significant 32 bits. Comparisons realized in their article showed that these two

new optimized implementations have a lower cost in the area than other PRNGs165

like the Mersenne Twister [28], which use memories or multiplier macros of the

FPGA. But the authors were wrong when they assumed that the multiplication

by a constant is similar to the multiplication by a variable. In the former (Oud-

jida et al [38, 39, 40]), the multiplication is implemented in a multiplierless way,

i.e., using only additions, subtractions, and left shifts.170
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Authors of [41] have presented a coupling of two Coupling Linear Congruen-

tial Generators (CLCG), further denoted as CLCG-1 and CLCG-2. Each one

generates a separate output with different parameters described as follow:

xt+1
1 = (a1x

t
1 + b1) mod 2k

xt+1
2 = (a2x

t
2 + b2) mod 2k

Ct+1
1 =

 1 if xt+1
1 > xt+1

2

0 otherwise.

(3)

xt+1
3 = (a3x

t
3 + b3) mod 2k

xt+1
4 = (a4x

t
4 + b4) mod 2k

Ct+1
2 =

 1 if xt+1
3 > xt+1

4

0 otherwise.

(4)
The first CLCG-1 of [41] is characterized by {xt+1

1 , xt+1
2 , Ct+1

1 } while the

second CLCG-2 is defined with {xt+1
3 , xt+1

4 , Ct+1
2 } (Ct1 and Ct2 are bit sequences).

CLCG-2 aims at selecting which bit must be taken from CLCG-1 as a final

output yt: yt = Ct1 if Ct2 = 0, otherwise the bit Ct1 is ignored. For instance,

the authors assume a simple format of the multipliers: a1 = a3 = 2δ1 + 1 and

a2 = a4 = 2δ2 + 1, where 1 < δ1, δ2 < k. Indeed, the new format of xt+1
1 for

CLCG-1 (and similarly for x2, x3, and x4) is as follow:

xt+1
1 = ((2δ1 × xt1 mod 2k) + xt1 + b1) mod 2k, (5)

where 2δ1 × xt is the result of shifting xt exactly δ1 times to the left, and the175

modulation is computed as the k least significant bits of what is in parentheses.

However, a large value of k leads to a large latency. To solve this problem,

an implementation of P stages of addition and comparison for the two CLCGs

has been proposed in this article. It divides the k-bits numbers into P -pipeline

parts, processes each k/P -bits part in a pipeline stage, and finally generates 1-180

bit of C1 and C2 simultaneously. Additionally, it takes the results of each stage

and sends them to both the previous and the next stages, in order to produce

the current and the next outputs.

2.2. Linear Feedback Shift Register generators

Linear Feedback Shift Register generators (LFSR) or Tausworthe [29] are

linear recurrent generators. An LFSR uses a sequence of shift registers to gen-

erate one bit per iteration. Each register is connected to its neighborhoods, the
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(a)A 4-bits Galois LFSR architecture

(b)A 4-bits Fibonacci LFSR architecture

Figure 3: A 4-bits linear feedback shift register generator with a feedback polynomial

a0 ∗X4 + a1 ∗X3 + a2 ∗X2 + a3 ∗X + a4 (a0 = a4 = 1).

binary value in each register is shifted at each iteration, while the last regis-

ter produces the output (see Figure 3). A XOR is operated on some designed

registers to build a feeadback input to the first register, which is expressed by

a characteristic polynomial. As depicted in Figure 3, two configurations are

usually considered, namely the Galois and Fibonacci setups. The matrix A of

Eq. (1) is in this case:

A =

 0 Ik−1

ak ak−1, . . . , a1

 . (6)

The characteristic polynomial of the matrix A is xt+1 = a1x
t + · · ·+ akx

t+1−k.185

In the above equations, a1, . . . , ak represent the LFSR coefficients, each in F2.

Accordingly, if any of these coefficients exists, it deploys a XOR operand on the

output (remark that the matrix B of Equation (1) is the identity matrix I).

Even though many FPGA implementations of such LFSRs can be found
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in the literature, only few of them are really optimized for this architecture.190

In [42], the authors present two types of LFSRs. The first one, called Shrinking

Generator (SG), it uses two LFSRs of 67 bits (LFSR-1 and LFSR-2). At each

clock cycle, the SG directly takes the value of the output bit which is generated

by the second LFSR-2 if the output bit from the first LFSR-1 is equal to 1; if

not, both outputs are discarded. The second version, named Alternating Step195

Generator (ASG), considers a third LFSR-3 of 141 bits in addition of the two

previous ones. This latter is used to control which output bit will be taken from

the two first LFSRs of 131/137-bits. For comparison purposes, if T1, T2, and T3

are the periods of LFSR-1, LFSR-2, and LFSR-3 respectively, let us note that

the SG has a total period of TSG = (2T1 − 1) × (2T2 − 1) (length ' 64 bits),200

while it is TASG = 2T1(2T2 − 1)× (2T3 − 1) for ASG (length ' 128 bits).

LFSR based Accumulator Generator proposed in [43] is a PRNG based on

Digital Sigma-Delta Modulator [44] made from accumulator circuits. This lat-

ter is used to divide the frequency in a Fractional-n Frequency Synthesizer [45].

Authors of [43] propose a pipeline of N = 9 serial digital accumulators of w = 8

bits based FPGA as described in Figure 4. Each accumulator, which can pro-

duce M = 2w possible values, is a self-recursive structure based on quantization

error mapping function formalized in Eq. (8), where the accumulator’s feedback

coefficients are time-varying, using another linear feedback shift register. The

accumulator, which is presented in Equation (7), is parameterized by the input

seed x0, the accumulator sum p, the carry output accu, the quantization error e,

and the feedback coefficients c = 2−w of the accumulators as outputs. The in-

put of each n = 0, . . . , (N −1) stage during the processing uses the quantization

error et−1 of the previous stage. Therefore, the PRNG gives a better uniform

outputs by propagating the latter (e) at all stages following the Equation (7).

The accumulator feedback coefficient c is implemented with another accumu-

lator. The latter are multiplied by a binary variable dw ∈ {0, 1} of the LFSR

to control the feedback depending on the period of LFSR. The final output
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source [43]

Figure 4: Block-level model of a w-bit digital accumulator PRNG comprising n stages

yt = eout is the last generated etN−1 evaluated in Equation (8).

pt+1
n =


x0 + et0 + accut1d

t
0, n = 0

et+1
n−1 + etn + accutn+1d

t+1
w−1, 0 < n < N − 1

et+1
n−1 + etn, n = N − 1

(7)

et+1
n = pt+1

n mod 2w and accutn =

 1 ptn ≥M

0 ptn < M
(8)

2.3. Look-up Table Optimized Generators

Look-up Table (LUT [23]) optimized generators use logic block as a digital

component defined in a CLB provided by the FPGA vendors. It is used for205

implementing many function and operation generators for a hardware optimiza-

tion purpose. A LUT consists of a block of RAM (Random Access Memory)

implemented as a truth table that is indexed by the LUT inputs.

In [46, 47, 48], the authors present a series of LUT PRNGs based on F2

linear matrix recursive algorithms (see Figure 5). The main idea is to produce210

a maximum efficiency at area level. The authors associate either Flip-Flops

(FF), Shift Registers (SR), or block of RAMs (RAM) with LUT to perform

shift/multiplication operations in FPGA. However, creating long period se-
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quences T = 2w with this method is a difficult task. To solve this problem,

large optimized LUT based {FF, SR, RAM} pairs are investigated.215

The first proposed PRNG is called LUT-OPT (LUT optimized, (a) in Fig-

ure 5). It maps each row of the recurrence matrix A as a XOR gate using just

LUT and FF. To generate w bits per cycle requires w LUT-FFs in a single

LUT of k-bits during a period of T = 2w where w = k (see Figure 5). Their

estimations of the FPGA resources conclude that even if an application requires220

64 bits for each cycle, their implementations necessarily use 512 LUT-FFs to

produce a period of 2512 − 1. The second one, the LUT-FIFO (b), is used to

increase the period up to T = 2(w+k∗L) without using the pair LUT-FF, which

uses RAM block memory (dual-port RAM) of FPGA as L × k FIFO to store

the recursive sequences. In this case, each new output bit is depending on one225

bit from the last iteration. They next propose a FIFO based shift-register SR

(c) with a fixed length L of 1-bit, to load the w-bit state in parallel instead of

using dual-port RAM. They also propose a LUT-SR PRNG (d) that turns the

use of LUT as a k-bit Shift-Register using “Xilinx SRL32”, with the length of

each “SR” varying as follows: 1 < Li < L. The “Xilinx SRL32”, allows the230

cascading of any number up to 32-bit shift registers to create a shift register

with any size needed.

2.4. Twisted Generalized Feedback Shift Register PRNG

Twisted Generalized Feedback Shift Register (TGFSR) proposed in [32] is

an extension of Generalized Feedback Shift Register “GFSR” [31], which uses235

an array of shift registers to generate more than one bit for each state change.

Therefore, a TGFSR is based on recurrence of N sequences of words, x0, . . . ,

xN−1, each containing k-bits and two parameters, namely a bitmask size c, such

that c 6 k − 1 and a initial median position m with 1 ≤ m ≤ N .

TGFSR computes the t+N -th word (t = 0, 1, . . . ) by operating with three240

words: the first two words xt and xt+1 with the median word xt+m. More

precisely (see Figure 6):

1. It computes the c least significant bits (LSB) of xt+1 and the k − c most

13



source [48]

Figure 5: LUT based shift-register and FIFO FPGA optimized PRNG: (a) maps each row of

the recurrence matrix as a XOR gate using LUT-FF, (b) uses RAM block memory as k × k

FIFO to store the recursive sequences, (c) loads the state in FIFO based shift-register SR

instead of BRAM, (d) cascading of any number of Xilinx SRL32 to create a k-bit SR

significant (MSB) ones of xt. These two vectors are obtained thanks to

the two following bitmask vectors: Sc for (0, . . . , 0, 1, . . . , 1) and Sk−c for245

(1, . . . , 1, 0, . . . , 0).

2. These two vectors are further concatenated through (xt &Sk−c) | (xt+1 &

Sc).

3. The result x′ is then ”multiplied” with a matrix A, caracterized with

values (a0, a1, . . . , aw−1) as defined in Eq. (10).250

4. The final results of the previous calculations are then XORed with the

median word xt+m.

By putting c = 0, then the Equation (9) represents the TGFSR PRNG [32],

conversely it is Mersenne Twister [28].

xt+N = xt+m ⊕ (((xt & Sk−c) | (xt+1 & Sc))×A), where (9)

14



Figure 6: Twisted Generalized Feedback Shift Register architecture: at each recurrence oper-

ation t, it computes xt+N thanks to the three words xt, xt+1, and xt+m and generates the

output with tempering function

x′ ×A =

 x′ � 1 if x′0 = 0

(x′ � 1)⊕ (a0, a1, . . . , aw−1) otherwise
(10)

Consider c1 and c2 as given bitmasks and b1, b2, b3, and b4 are constant inte-

ger parameters. At iteration t, TGFSR uses a tempering module to improve

the equidistribution. This step, which is described a sequence of bitwise/shift255

computation is equivalent to a matrix product as formaized in Eq. (1)(b).

This one is defined in Equation (11) where c1, c2 (resp. b1, b2) are tempering

bitmasks (resp. bit shifts).

z = xt+N ⊕ (xt+N � b1),

z = z ⊕ ((z � b2) & c1),

z = z ⊕ ((z � b3) & c2),

yt = z ⊕ (z � b4).

. (11)

Mersenne Twister (MT) is proposed as a special case of TGFSR that has a

long period of 2wN−c − 1. To achieve this, the authors in [28] propose two MT260
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configurations:

• “MT11213” with a period of 211213 − 1 that has w = 32, N = 351, m =

175, c = 19, and a = 0xE4BD75F5 as recurrence parameters, and c1 =

0x655E5280, c2 = 0xFFD58000, b1 = 11, b2 = 7, b3 = 15, and b4 = 17

for tempering ones265

• “MT19937”, which has a period of 219937 − 1, has w = 32, N = 624,

m = 397, c = 31, and a = 0x9908B0DF as recurrence parameters, and

c1 = 0x9D2C5680, c2 = 0xEFC60000, b1 = 11, b2 = 7, b3 = 15, and

b4 = 18] for Tempering ones.

Two FPGA implementations of Mersenne Twisters MT19937 and MT11213270

are proposed in [34] for Monte Carlo applications in finance. The authors imple-

ment many Block RAM memory or namely “BRAM” for matrix multiplications:

a single dual-port BRAM for MT11213 and two dual-port BRAM for MT19937.

The RAM memory, configured in the read-before-write mode, operates like a

feedback shift register. In this mode, the new inputs are stored in memory at275

appropriate write address, while the previous data are transferred to the out-

put ports. This latter coming from BRAM are then processed following the

Equation (6). The same approach has been proposed in [49] for MT19937 using

2 BRAM. Authors of [50], for their part, have implemented the MT11213 in

three platforms for the sake of comparison, namely: FPGA, CPU, and GPU.280

Remark that, for testing the FPGA performances, initial and Tempering matrix

parameters have been extracted from a PC software, due to the hardware cost

consuming by the initialization stage of MT. However, both transformation and

Tempering modules are executed in FPGA. In this case, two dual-port BRAMs

are necessary for the other stages. This structure reduces the area compared285

to other MT implementations in FPGA, and the speed up is about ≈ 9× and

≈ 25× compared to GPU and CPU respectively.

In [51], the authors have proposed two parallel PRNG implementations with

many levels of three different Mersenne Twisters: the MT19937-32bits, the

MT19937-64bits, and the SIMD-oriented Fast Mersenne Twister SFMT19937 [52].290
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The first one is the Interleaved Parallelization (IP), that generates w-bits for

each P memory block separately.

In the IP configuration, the N = 624-words state vector is located across

multiple memory banks of the same size. Each P memory bank has d in-

put/output ports I/O of w-bits, while each I/O port generates v-bits per clock295

cycle every q read operation. Therefore, the number of clock cycle τ required to

generate a random number is equal to τ = (w ∗ (q+ 1))/v ∗d. The second one is

the Chunked Parallelization (CP), that uses the output bits of each RAM bank

as the far recurrence input for the next RAM bank. Therefore, the N -words

state vector is sequentially split into chunks across a number of banks of differ-300

ent size. Even though the IP version has a better throughput than the CP one,

the latter uses lesser RAM blocks compared to the IP version (3 levels of CP

use 2 BRAMs while IP uses 3).

Authors of [53] give more hardware details for the deployment of RAM mem-

ories. Their MT19937 implementation consists of a transform unit, a Temper305

Unit, a control unit “Crossbar” implemented using 7 multiplexers, a 3R/1W

RAM, and an address unit for RAM access (3 read addresses and 1 address

for writing). The main key of the latter is the implementation of 624 states of

32-bits register using BRAM memory of the FPGA (see Figure 7). Therefore,

instead of fetching the 3 state vectors using 3 BRAM as in [51], two dual-port310

BRAMs of 312×32-bits can perform in each cycle 3 read operations and 1 write

one. The R/W for the first BRAM operates with an even address, while the

second R/W is in the odd address.

In [54], various degrees of parallelization of the MT19937 architecture (of

degrees 2, 3, 4, and 6) implemented in [53] and used for Monte-Carlo based315

simulations are proposed. In this case, the configuration of BRAM is the key of

the parallelism, where each degree corresponds to the number of BRAM that are

used (4 degrees = 4 implemented RAMs). The authors use one 206×32-bit, two

207 × 32-bit dual-port BRAM, and four registers to provide state consistency

for the given parallelized states for 3 degrees as an example. Here, all I/O ports320

of three BRAM are in read mode during initialization, while in the runtime just
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Figure 7: Mersenne Twister MT19937 architecture using 3R/1W BRAM: at each cycle, R/W

address is even address for BRAM0 and odd for BRAM1

one is in read mode (the others being in write mode).

Finally, a recent FPGA implementation of Mersenne Twisters is presented

in [55]. The authors propose an alternative solution of the use of RAMs, which

is named Circular Buffer (CB). It is implemented for MT19937 (see Figure 8).325

The solution is based on the fixed relationship between word indices. Words xtj ,

xtj+1, and xtj+m written in the buffer are passed to the transform unit. At each

iteration, the first word xtj is clocked out of the buffer while new data xt+1
j is

written to the free location. By this way, the linear recurrence and the buffer of

registers can be considered as a circular buffer. The linear recurrence is carried330

out by some combinational logic between the input and the output of the buffer.

Therefore, the architecture is simplified since no logic operation for the table

indices is needed.

2.5. Cellular Automata based PRNGs

Cellular Automata (CA) is a discrete model, proposed by John von Neumann

and Stan Ulam [56] as formal models of self-reproducing robots. The basic

representation of one dimensional CA PRNG includes N cells with an internal
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(a)BRAM configured as 3R/1W (b)Circular Buffer

source [55]

Figure 8: Different deployments of the linear recurrence (L.R) for Mersenne Twister PRNG:

(a) using BRAM configured as 3R/1W, (b) using Circular Buffer of registers (L.R is linear

recurrence of transferring function of MT)

state machine that can be a Boolean function rule and k = 1-bit output as

described in Equation (12). The latter consider the function f : {0, 1}N → {0, 1}

as the local transition rule, and the cells neighborhood size N is 2 ∗ rd + 1,

where rd is the radius that represents the standard 1-D cellular neighborhood.

Therefore, at each iteration t, the CA structure can hold and update the internal

state for each cell, depending on the local rules and the states xt ∈ {0, 1} of their

neighborhoods j (j = 1, . . . , N). There are 2N (rd = 1 and N = 3) states for a

single CA producing 256 (28) possible rules classed by the Wolfram code [57].

xt+1
j = f(xtj−rd . . . x

t
j . . . x

t
j+rd) (12)

As an example, let us consider thatN = 3, which leads to xt+1
j = f(xtj−1, x

t
j , x

t
j+1).335

The 184 rule updates the middle bit xtj and then left shifts the input in the

next iteration t as follows: f(111) = 1, f(110) = 0, f(101) = 1, f(100) = 1,

f(011) = 0, f(010) = 0, f(001) = 0, f(000) = 0 (i.e. 11101011→ 101011).

Hybrid CA generator (HCA) is defined with more than one rule and can

be integrated as a state transition machine of 2N/2 cycles between 2N rules.340

Each transition cycle has a 2× 2N length cycle. Two hybrid CAs are proposed

in [58] as part of an encryption system. The first one is a PRNG of single state
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transition using rules 90, defined by f(xt1, x
t
2, x

t
3) = xt1 ⊕ xt3, and 150, defined

by f(xt1, x
t
2, x

t
3) = xt1 ⊕ xt2 ⊕ xt3 to generate an encrypting real-time key stream.

The second one is a block cipher of two state transitions, each having 8 cycles345

length with 51/153/195 rules. The aim of this application is to use the first

HCA to select the transition sequences between rules used by each cell of the

second HCA in the block cipher. The FPGA implementation of each CA is done

with a logic combinational circuit (LCC) to define the rules. Then it uses LCG

to control the loading operation of the CA and stores the data into a D flip-flop.350

Authors of [59], for their part, create an automatic software tool to generate

the RTL code of any HCA configuration. Finally, in [60], authors increase the

ratio of frequency/area and the security of their previous PRNG [59] by using

a chain of HCAs instead of a single one.

Mixed CA generator is proposed in [61], where the author mixes the outputs355

of a 37-bits hybrid CA (rules 90 and 150) with a 43-bits LFSR to obtain a large

period. However, some drawbacks of this implementation are revealed during

statistical evaluation, which can be surpassed only if the two PRNGs are clocked

at different clock frequencies. This is why a new solution is presented in [62].

In this article, authors propose to XOR the last bit of HCA with the last bit360

of LFSR to generate 1-bit per clock cycle. As a repercussion, they found that

the optimal combination for a PRNG of high quality is 16-bits for CA with a

37-bits LFSR.

Self-Programmable CA (SPA) was presented first as a new rules for CA

generator in [63]. The topological behavior of the generator proposed in [64] is365

the use of a super-rule 90/156 to dynamically determine when the rules have

to change in each CA cell (see Figure 9). In practice, the input rules of each

neighbor cell are also a second CA which is executed in parallel with the main

cellular automata. Remark that, despite SPA gives a better throughput than

the LFSR/HCA combination PRNG [62], it fails to pass the statistical tests of370

DIEhard battery.

Another cellular automata based PRNG is proposed in [65]. This latter

combines a CA with a Non-LFSR (NSFR) generator based on A2U2 stream
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Figure 9: Self-Programmable cellular automata generator: uses a super-rule 90/156 to dy-

namically determines when the rules have to change in each CA cell

cipher design. Recall that the stream cipher A2U2 [66] was presented as a

new key cryptographic generator of 56-bits for RFID tags application. It has a375

LFSR counter of 7-bits and two non-linear feedback shift registers (NFSRs, 17

and 9-bits). However, NFSR is known for its short period length. Hence, their

main contribution is to associate a CA PRNG of 9-bits to increase the period

of NFSR, both having feedback between them (which means that the seed of

NFSR is provided by CA and vise versa). This approach improves resistance380

to various forms of cryptanalysis like correlation attacks and algebraic ones.

For the sake of completeness, notice that the authors of [67] have proposed a

different implementation concept of the usual rules in CA. In their proposal, the

initial state configuration of CA and its length depend on the current date.

3. Non-Linear Pseudorandom Number Generators385

3.1. Blum Blum Shub based PRNGs on FPGA

Blum Blum Shub generator (BBS) proposed in [68] is a non-linear and cryp-

tographically secure PRNG based on the quadratic residue problem x2 = q
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mod w, where q is the “quadratic residue”. It works as follows: consider

n = p × q, where p and q are prime numbers that are congruent to 3 mod 4.390

Let x0 be an integer lower than w, which operates as a seed of the BBS

generators. Consider now the recurrent sequence xt+1 = (xt)2 mod w, and

j = blog2(log2(w))c, where bxc is the integral part of x. Then, at iteration t,

the BBS generator outputs the j least significant bits of xt.

Despite its cryptographic security, only a few FPGA implementations of395

BBS can be found in the literature. They are listed hereafter. In [69], the

authors present an area comparison without any optimization between a 4-bits

LFSR and a 16-bits BBS PRNG. Another proposal is provided in [70] for RFID

tag applications. In this article, the authors present a FPGA implementation of

BBS with n ranging from 160 to 512-bits. They consider various modular multi-400

plication algorithms to optimize the main BBS equation. The Montgomery [71]

iterative approach exhibits the lowest cost area. In [72], the authors propose a

hybrid RNG of an off-chip TRNG based on Ring Oscillator 4 and a BBS PRNG

generator implemented in FPGA. The TRNG generates the first random clocked

by a RC circuit used as a seed for BBS. Then, the BBS uses an ALU structure405

to implement the squaring and modulo operations.

3.2. Chaotic PRNG

Chaotic generators (CPRNGs) are non-linear generators of the form x0 ∈ R:

xt+1 = f(xt), where f is a chaotic map. They are attractive applications of the

mathematical theory of chaos. Reasons explaining such an interest encompass410

their sensitivity to initial conditions, their unpredictability, and their ability

of reciprocal synchronization [73]. From a cryptographer point of view, these

chaotic PRNGs have major drawbacks often reported [74].

Chaotic Mapping PRNG are based on a polynomial mapping that uses a non-

linear dynamic transformation, which is a quadratic mapping. Most of these415

generators are based on the Logistic Chaotic Map called also “LCG” map [75],

defined as follows: xt+1 = α × xt(1 − xt), where 0 < xt+1 < 1 and α is the

biotic potential (3.57 < α < 4.0). The logistic map is mainly depending on the
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parameter α: its chaotic behavior is lost when α is out of the range provided

above. Moreover, if α > 4 and for almost all initial values, the outputs diverge420

and leave the interval [0, 1]. The second most frequently used function is the

Hénon chaotic map [76], which takes a point (xt,yt) within the plan square

unit and maps it into a new point (xt+1, yt+1). This map is defined by these

equations: xt+1 = 1 + yt − a(xt)2 and yt+1 = bxt, where a and b are called

canonical parameters.425

In [77], the authors have used fixed point representation [78] to implement

the logistic map using Matlab DSP System Toolbox software. Fixed-point for-

mat is an approximation of real numbers, with much less precision and dy-

namique range than the floating-point format. Nevertheless, it has the merit of

being very efficient in high-speed and low-power applications. This unit requires430

less power and cost to manipulate such kind of numbers than usual floating-point

circuitry. They generate many designs with different lengths from 16 to 64 bits,

where the resources are depending on the precision (24 to 53 bits). The mul-

tiplication is implemented with DSP blocks of FPGA that perform 18x25 bits

multiplications, while the multiplication by a constant α is a simple series of435

add and left-shift operations.

Authors of [79] compare the implementation of logistic map with the Hénon

one. Unlike the logistic map, the 64 bits multiplication in Hénon [76] map cannot

be implemented with a left shift operation, which leads to the use of DSPs blocks

of the FPGA for all multiplications needed to implement ax2. Two optimized440

versions of PRNGs based on chaotic logistic map are proposed in [80], which

aim to reduce resources and increase frequency, unlike in [77, 79]. The first one

is based on LUT and DSP blocks of the FPGA. The second one rewrites the

logistic map equation as follows: xt+1 = αxt − α(xt)2. The objective of these

two PRNGs is to pipeline the multiplication operations and synchronize them445

while adding some delays into each stage, in order to ensure a parallel execution

of sequences. The outputs are generated for each 8-16 clock cycles and in each

cycle a new seed is inserted.

In [81], the authors vary the biotic potential α and observe the divergence
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of random for almost all initial values. Accordingly, they propose a range of450

the form [α, 1−α], where the biotic potential is α < 0.5. Another way to select

the parameter α is presented in [82]. They propose a couple of two logistic

map PRNGs, each having different seed and parameter (x0, α1 and y0, α2

respectively), where both generates pseudorandom numbers synchronously. The

main idea is to recycle the pseudorandom number generated by the first chaotic455

map, namely xt+1, as the biotic potential α2 for the second one (yt+1) when

either 3.57 < xt+1 < 4 is satisfied or the sequence output is divergent. Another

coupling chaotic map is presented in [83]. In this work, the former is based

on the Hénon map and the latter is an 1-dimension logistic map. The former

is used to generate a random sequence, and the latter controls a multiplexer460

to choose the output of the first one according to the value generated by the

logistic map. The output of the logistic map generator is then decomposed in

32 bits; the first most significant bit is XORed with its neighbor bit. The result

is then XORed again with the next bit until reaching the least significant one.

Finally, in [84] four different chaotic maps are implemented in FPGA, namely,465

the so-called Bernoulli, Chebychev [85], Tent, and Cubic chaotic maps. The

implementation is done with and without FPGA’s DSP blocks for the multi-

plication operations. The results show that the Bernoulli chaotic map gives a

higher ratio of area/power compared to the other chaotic generators.

Spatiotemporal Chaotic PRNG is a temporally chaotic system which is an470

extension of chaotic maps. It is also spatially chaotic (many mathematical

models can be used to represent this type of generator). For instance, in [86] the

authors present a spatiotemporal chaotic PRNG , which is based on a coupled

chaotic map lattices defined as

xt+1
i = (1− ε)f(xti) +

ε

2
(f(xti−1) + f(xti+1)). (13)

In this equation, t (resp. i = 1, . . . , k ) is a temporal (resp. a spatial) index475

of discrete lattice, ε is the couple parameter, and f is a logistic map. They

first deal with continuous domain digitizing of all operands to be suited for
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hardware implementation. To achieve this, they consider a particular version of

Equation (13) where x ranges over {0, 1, . . . , 2k− 1} and f is a modified logistic

map, f(x) = b4x(2k − x)

2k
c for a k-bits precision. Secondly, to avoid the finite480

precision chaotic map problem, they compute only the insignificant bit which is

subject to be an output. Indeed, for each 25 clock cycles, only the w = 16 most

insignificant bits of the random numbers would be used from each lattice and

the computational precision k = 32.

Chaotic based Timing Reseeding (CTR) proposed first in [87] aim at remov-485

ing the short period problem due to the quantization error from a nonlinear

chaotic map PRNG. Instead of initializing the chaotic PRNG with a new seed,

the seed can be selected by masking the current state xt+1 at a specific time

(see Figure 10). More precisely, the reseeding unit compares the two register

states to check whether a fixed point has been reached. In this case xt+1 is not490

streamed out. It is masked with a constant and the result is stored in the initial

register state. Additionally, it increases the period each time the condition is

true or the reseed period is reached (counter). This main concept of CTR was

first implemented in FPGA [88], in which the Carry Lookahead Adder [89] has

been used to optimise the critical path of the partial products of the multi-495

plication operation. Unlike [88], authors of [90] present more hardware details

for reducing multiplication operation resources. They also mix the output xt+1

with an auxiliary generator zt+1 to improve statistical tests. The mixer module

is a DX generator [91], whose output is as follows: zt+1 = (zt + (228 + 28)zt−7)

mod (231 − 1). Then, the authors add the MSB-bit of xt+1 (32th bit) to the500

31 LSB-bits of the final output yt+1[30 : 0] = xt+1[30 : 0] ⊕ zt+1[30 : 0], which

generates a full 32-bits output state and has a full period. Both uses Circular

Left Shift [92] (CLS) and End-Around Carry Adder [93] (ECA) to optimize the

multiplication operations. They finally suggest to choose a reseeding period

that must be not only prime, but also not a multiple of the nonlinear chaotic505

map PRNG. The same approach has been used in [94] for plaintext encrypt-

ing/decrypting application system.

Differential Chaotic PRNG is a digitized implementation of a nonlinear
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Figure 10: Chaotic based Timing Reseeding PRNG: masking the current state xt+1 at a

specific time (fixed point between the two register states is reached)

chaotic oscillator system in Rössler format [95]. It uses an approximated nu-

merical solution to solve the dynamic system generalization of the Lörenz hy-510

perchaos. A basic representation of the dynamical system is proposed in [96, 97]

Equation (Eq. (14)).

−
...
X = Ẍ +B(Ẋ) +X

B(Ẋ) =

 α1, if Ẋ > 1

α2, otherwise,

(14)

where, α1, α2 are integer values in the switch condition. The idea is to

create a chaotic system with a unique equilibrium point at the origin. Indeed,

to guaranties a chaotic generation, B value must switch between α1 >1 and515

α2 < 1.

This latter can expand in more than one direction (i.e., Euler approximation

where Y = Ẋ and Z = Ẍ) and generates a much more complex attractor

compared to other chaotic systems.
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The resolution of Equation (14) was the main study done in [98] (with other520

differential systems as the Chen [99] and Elwakil [96] ones). The authors deploy

three different numerical methods for each system: 4th order Runge-Kutta [100],

mid-point [101], and Euler techniques [102]. Unlike the Euler techniques that

only require one calculus per iteration, the mid-point provides more precise

results but longer calculation paths. Additionally, the Runge-Kutta 4th-order525

have the longest calculation path but it has the most accurate numerical approx-

imation. Obviously, Euler techniques show better results for implementation of

differential chaotic methods in FPGA, with respects area and throughput per-

spectives.

More details regarding implementation and optimization of the multiplica-530

tion by a constant in Equation (14) are provided in [103]. In this article, authors

proposed to use the Euler approximation, as illustrated in Equations (15), where

the oscillation margins are within a time interval [h, α1] (h is the Euler step).

Xt+h = Xt + hY t, where Y = Ẋ

Y t+h = Y t + hZt, where Z = Ẍ

Zt+h = Zt − h(Zt + Y tB(Y t) +Xt)

(15)

Their optimization is based on transformation of the parameters h = 2−a

and α1 = 2b, α2 = 0 to simplify the multiplication to a simple shift operation (a535

and b are positive parameters). They use a Carry Lookahead Adder (CLA) [89]

and a Carry Save Adder (CSA) [104] for the multiplication in the first two

equations of (15), and a Carry Propagate Adder (CPA) [105] for the last one.

Additionally, a post-processing is integrated for better results in statistical tests,

which specifically discards the most significant bits. Authors of [79], for their540

part, have implemented the so-called Oscillator Frequency Dependent Negative

Resistors (OFDNR) [97], which uses the same Euler approximation illustrated

in Equations (15). However they have not detailed the resources they used for

such multiplication on their FPGA (e.g., DSP, LUT, . . . ).

In [106] is presented a non-autonomous four-dimensional hyperchaotic PRNG545
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based on Rössler differential equations. In such a chaotic system some undesir-

able behaviors can appear. Thus, an advanced process-control is necessary in

order to delay the occurrence of the hyperchaos. Therefore, the authors used

Euler approximation and a control function of 256 bits Linear Feedback Shift

Register (LFSR), whose outputs are multiplied by the appropriate coefficient550

of the control function. However, a post-processing of 256-bits based Fibonacci

LFSR is used to remove the short-term predictability of hyperchaotic generator

and to successfully undergo the statistical tests of NIST batteries. The post

processing combines two loops of rotation and XOR feedback loops. The first

one uses a fixed 1-bit static rotation to suppress the short-term predictability.555

The second one is based on a variable rotation controlled by a Fibonacci series

of k-bits. The differential sensitivity problem is solved by changing any bit while

the other bits is propagating during n-cycles.

Chaotic Iteration based PRNG (CI) has been proposed in [107, 108] to im-

plement a new post processing with the same chaos theory defined by Devaney560

and Li-Yorke. Chaotic iterations are defined by an initial configuration x0, a

function f , and a sequence S said to be a chaotic strategy. At the t-th iteration,

only the St-th cell is iterated. Among many proposed versions, one of them has

been implemented on FPGA using BBS and XORshift PRNGs as generators.

The internal state x is a vector of 16-bits, whereas two 64-bits XORshift gen-565

erators are provided as entropy sources. The outputs are then spread into four

32-bits integers. Then for each integer, there are 16 (2-bits) components that

can be found and every 12 of these components are used to update the states.

Lastly, the 4 least significant bits (LSBs) of the output BBS generator decide if

the state must be updated or not with the considered 13-bits block [109, 110].570

Two new families have then been proposed, which are based on chaotic

iterations [111] [112] (CIPRNG-XOR) on FPGA/ASIC on the one hand, and

on the deletion of an Hamilton Cycle [113] on the other hand. This latter

has to satisfy some balance properties: the associated Markov chain on the n-

cube must be close enough to the uniform distribution. In these first studies,575

the minimum length of the chain between two uniform outputs is larger than
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109 in [114], and it is equal to 9 in [115], for a Boolean function of 8 binary

variables. The new version on FPGA proposes only one jump in the n-cube and

a permutation, as sufficient condition to pass all statistical tests in NIST and

TestU01.580

4. True Random Number Generators

We focus now on FPGA implementations of truly random number generators

(TRNGs). FPGA based TRNGs are physical generators that use various hard-

ware components of FPGAs to produce random-like numbers in a faster way

than using software. These TRNGs use, as entropy source, either the electronic585

noise of embedded components or some environmental sensors (temperature,

noise, and so on). FPGAs are thus efficient and inexpensive random number

generators. Various techniques and hardware optimizations have already been

proposed in the literature, while FPGA components have been used in RNG con-

text for optimization, mixing with external components, or as post-processors.590

4.1. Phase-Locked Loop TRNGs

The Phase-Locked Loop (PLL) [21] is a circuit derived from an external

clock generator source like a quartz or a “Resistor Capacitor” circuit, which

can be configured to produce a signal whose phase is associated to the phase of

the input signal (see Figure 11a). This latter depends on the physical environ-595

ment (power, temperature, or any other physical quantity), and it uses a jitter

extraction technique as random stream, which is indeed a short-term variation

of the clock propagation. Analog PLLs use the jitter caused by Voltage Con-

trolled Oscillator (VCO) noise, while digital PLL [116] generators extract their

randomness from synchronous/asynchronous Flip-Flop components. The most600

common jitter measurements used by FPGA vendors are, namely, the period

jitter and the cycle-to-cycle one. The first jitter is defined as the difference

between the n-th clock period and the mean clock period, while cycle-to-cycle

jitter consists of the difference between adjacent clock cycles in the collection of

sampled clock periods.605
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(a)PLL architecture (b)PLL timing

Figure 11: Phase-Locked Loop TRNG: detecting the jitter by sampling the reference clock

signal TCLK using a correlated signal TCLJ synthesized in the PLL

The authors of [117] have proposed an analysis about extracting random-

ness from the jitter of a PLL implemented on an Altera FPGA. Their study

is based on detecting the jitter by sampling the reference clock signal TCLK

using a correlated signal TCLJ synthesized in the PLL, where TCLJ = TCLK ×

(KM/KD) with KM and KD as PLL multiplier and divider that must be

prime number constants. According to [117], the maximum distance, further

denoted as max(∆Tmin), between the two clocks CLK and CLJ must satisfy

max(∆Tmin) < σjit to be able to extract randomness. Indeed, according to the

authors, in ideal environmental conditions, we have σjit = 0 (we do not have

any jitter). In that situation, the sampled outputs are deterministic and can be

represented by a series of a bitwise addition of KD input. According to these

authors, the period in that situation is equal to TQ = KDTCLK = KMTCLJ .

Contrarily, in real case conditions, σjit is necessarily negative, and so the output

loses its deterministic character and becomes random. Indeed, the maximum

distance max(∆Tmin) between the two clocks is dependent on the jitter dis-

tribution, while the outputs has a direct impact by this latter following the

expression [117]:

xt(nTCLK) = x

(nTCLK)−
i∑

j=0

Jτj

, (16)

where τ is the jitter and J is the value of the output influenced by the jitter. The
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period is changed in max(∆Tmin) = TCLK × GCD(2KM ,KD)/(4KM ), where

KD is odd and max(∆Tmin) is divided by 2.

This research work has been deepened in [118] by combining more than one

PLL either in parallel or in series. By doing so and due to this combination,

the sensitivity S to the jitter effect is significantly increased according to the

formula:

S = TCLK max(∆Tmin). (17)

As expected, the lowest sensitivity is achievable by using only one PLL. In

that case, the number of random samples and their entropy are low, due to a610

low value of S. To solve this problem, the authors add a second PLL, either

in parallel or in a cascaded configuration, the objective being to increase the

entropy without increasing too much the sensitivity.

Authors of [119] have tested the impact of “environmental” PLL conditions

(encompassing its temperature, its bandwidth, etc.) on the statistical quality615

of the produced output. They have deduced that a low bandwidth of PLL

causes a higher number of critical samples, which decreases the output jitter,

and consequently increases the tracking jitter. Finally, authors in [120] propose

two configurations of PLL based TRNGs in embedded systems.

4.2. Ring Oscillator TRNGs620

A Ring Oscillator (RO) is a series of an odd number of NOT gates, whose

outputs states are balanced between two voltage levels, i.e., between bit 0 an

bit 1. The NOT gates, or Inverter Ring Oscillators IROs, are cascaded, while

the output of the last inverter is fed back to the first inverter of that chain (see

Figure 12). In [121, 122], the authors have proposed a TRNG based on two ring625

oscillators. This latter is rated by different clocks generated by an internal PLL

implemented on FPGA. The authors have also extracted the jitter of the 2 ROs

implemented in only one CLB slice.

Similarly, the authors of [123], have proposed an approach that combines

ROs based on inverters with XOR gates. Their approach is close to the LFSR630

one, except that they use inverters, the latter being combined either using the
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Figure 12: Inverters based ring oscillator

Fibonacci setup or the Galois one. The result also has an analog feedback to

the input, where the feedback polynomial form is f(xt) =
∑k
i=0 fix

t+i, with

f0 = fk = 1. However, the inverter does no reach a fixed state if f(xt) =

(1 + xt)h(xt) and the primitive polynomial is such that h(1) = 1. Authors have635

finally demonstrated their ability to extract a better stable state compared to

classical RO TRNG, from which randomness can be produced.

4.3. Self-Timed Ring TRNG

Self-Timed Ring (STR) proposed in [124, 125, 126] is an alternative approach

to generate clock jitter compared to the inverter RO based TRNG. The structure640

of STR consists of a micropipeline architecture [127], as described in Figure 13.

In this latter, a ring of L stages can generate k-bits outputs, denoted by yt (0 6

k 6 L − 1), at each stage and with a propagation phase equal to ∆ϕ = T/2L.

A stage consists of a Muller gate and an inverter. Therefore the jitter period in

STRs, for each ring stage, can be considered as an independent entropy source645

compared to the propagation of one event all around the ring in IRO.

Two situations can occur. If the outputs of two successive stages are equal

(yt = yt+1), then the clock jitter is propagated forward. Conversely, in case

where yt 6= yt−1, then the jitter is propagated backward. The final output

sequence (yt)16k6L−1 is extracted at each ring stage output using a Flip-Flop,650

and the result is combined according to the following XOR operation: ψ =

y1 ⊕ y2 ⊕ · · · ⊕ yt+k−1.

4.4. Metastability TRNG

Metastability is a phenomenon that can occur when a signal is transferred

between circuitry in unrelated or asynchronous clock domains. This short time655
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source [124]

Figure 13: Self-Timed ring architecture: at each ring stage L (Muller gate and an inverter),

the jitter is propagated forward if yt = yt+1 or conversely backward, when the output is the

XOR of each extracted jitter by a Flip-Flop

phenomenon can cause system failures in digital devices.

Authors of [128] have presented a way to use such metastability phenomena

as entropy sources generated by 5 IRO (Ring Oscillator based Inverters) stages.

Their goal is to maintain metastability as long as possible, while extracting ran-

domness from this entropy source. To achieve this objective, the authors have660

firstly implemented inverters as loop rings, and have used a clock generator

controller module to switch the connectivity between the IRO stages following

two modes, namely the metastability mode “MS” and the generation one, as

described in Figure 14. By doing so, the output converges to the metastabil-

ity level, and it stays a longer time in that state than when using a bi-stable665

circuit (Flip-Flop), causing thus a high entropy. Secondly, the authors wanted

to estimate the robustness of the system after applying the sampling process in

various environmental variation modes on FPGA. To achieve this second objec-

tive and for a higher quality output, they have added another stage to decrease

the operation rate, by applying a Von-Neumann post-processing. Such a post-670

processing stage influences the loads of the last inverter (RC parasitic). Let us

finally note that, operationally speaking, the end of the IRO was implemented

in ASIC while the post-processing process was achieved by using a FPGA in

order to test the global device.

Another metastability circuit used as a TRNG has been proposed in [129].675

Authors of this article have proposed to use the Flip-Flop metastability when
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(a)Metastability based TRNG architecture

(b)Metastability timing switching based TRNG

source [128]

Figure 14: (a) TRNG based on the metastability of multistage architecture inverter ring oscil-

lator, (b) The timing switching connectivity between the IRO stages following the metastability

mode “MS” and the generation mode.

there is a violation in setup/hold time [130] (see Figure 15). The setup time

ST is the amount of time a synchronous input of the Flip-Flop must be stable

before the active edge of the clock. The hold time HT is the amount of time a

synchronous input of the Flip-Flop must remain stable after this active edge of680

the clock (c.f. Figure 15). The violation occurs when the input data is between

these two times. However, due to their short time (ST/HT), the output must

converge rapidly to a stable state 0 or 1 if the input is stable during this two

times. Their system is based on a closed-loop feedback mechanism for auto-

adjustment on delay ∆, controlled by the Programmable Delay Lines (PDLs)685

stage based on a LUT, in order to avoid violation and maintain metastability.

The proposed system uses at-speed monitor to keep tracking the output

bit probability and the Proportional-Integral (PI) controller, in order to decide

to add or subtract the delay difference. As for the updated/corrected delay

difference ∆, it is the difference between the bias/skew caused by the asymmetric

routing ∆b, with delay issued by environment changes (temperature, etc.), and
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(a)Metastability creating in FF (b)Metastability timing of FF

source [131]

Figure 15: (a) The setup (ST) and hold (HT) scenarios operations in Flip-Flop, (b) the output

probability depending the delay difference (∆) of the input signal

the delay ∆f corresponds to the “corrected feedback delay difference” injected

by PDL, according to the following formula:

∆ = ∆p + ∆b −∆f . (18)

Their method consist of tuning sampling and signal arrival times by setting ∆

to 0, which leads to the metastability of the D-Flip-Flop.

An updated version of this TRNG has finally been proposed in [131]. Thanks

to an analysis of probability, they reach some metastable states for a long pe-690

riod and prevents deterministic states. To do so, they have used an additional

hardware resource as memory for storing the outputs, and a Hamming weight

to calculate the history of the probability bits.

5. Experimental Results and Hardware Analysis

5.1. Methodology695

Formally speaking, the space represents the allocation cost of most objects

used in the algorithm (tables, indexes, loops, etc.). It can also be combination

of many PRNG algorithms. In terms of FPGAs, the latter can be translated

in memories, registers, and LUT resources, etc. These resources can be a sin-

gle basic operation (like addition or subtraction, multiplication of variables or700
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constants), algebraic functions (division, modulo, etc.), or any other elementary

function. The question raised in this section is thus: how much hardware re-

sources are needed to provide pseudorandom numbers with a good statistical

profile? And which algorithms outperform the other ones in terms of internal

resources, while providing higher throughput?705

Almost aforementioned (P)RNGs have been evaluated regarding their hard-

ware performance according to three parameters: (1) the area, which is the

result of (LUT + FF ) × 8, (2) the throughput being the frequency (clock-to-

setup) multiplied by the RNG output length for one clock cycle, and (3) the

ratio between throughput over area in Mega bits per area unit.710

5.2. Hardware Comparison

Hardware implementation resources required by linear (P)RNGs, their through-

put, and the rate area over throughput are presented in Figure 16, when non-

linear ones are in Figure 17. Finally, the TRNGs are represented in Figure 18.

Let us start start to discuss the results obtained with linear PRNGs, as illus-715

trated in Figure 16. It appears clearly that the cellular automata has the lowest

area, when compared to the other approaches. Such results can be explained

by the need of a low amount of resources to store both the states and the rules

in the cellular automata. Conversely, the TGFSR family deploys BRAM block

memories to read 3 word and write the output in one cycle, whereas LFSR family720

uses more LUTs in order to parallelize the shifting process based on the poly-

nomial equation. Another parameter is the use of black box as DSP and block

memories. The latter optimize the logic operation as multiplication, support

the floating point, store internal process in a multidimensional bloc, and finally

read and write multiple states in parallel from the BRAM. These advantages,725

leading to the difficulty to compare such designs to other ones that do not have

that, lead naturally to further area bloc consumption in the case of an ASIC im-

plementation. As a consequence, we will consider that (P)RNGs without black

boxes are better and more recommended for cryptographic applications.

In terms of area, the PRNGs based on cellular automata [62, 64, 67] have730
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the lowest resource occupation of FPGA, if we compare them to the other

ones (see Figure 16a). By comparison, the PRNG based on LFSR [41] is 76

times larger. We can also remark that most TGFSR implementations do not

consider the seed process, while its computing increases the area and decreases

the throughput, during the load of 632 words sequentially in the block memories.735

The throughput, for its part, is completely related to both data path and width

(dynamic range) of the design. Additionally, we must take under consideration

the fact that most linear PRNGs are 32 bits ones, while the throughput increases

with generators manipulating more than 64 bits. However, as stated previously,

disabling DSPs and Block memories induces a decrease in the frequency and740

the throughput respectively. Figure 16b illustrates opposed results for the area,

where the LFSR based LUT family has the largest throughput of 343 Gbps,

while it is 5 Gbps for the Mersenne Twister. However, the latter are for 1, 042

bits and 128 bits respectively, when for 32 bits, we have 128 Gbps for the LFSR-

LUT [48].745

Let us focus now on the Throughput/Area ratio (see Figure 16c). Here,

the LUT and shift register based design [48] outperforms all the other linear

PRNGs: the ratio is twice as efficient as the second best one [54], which is the

Mersenne Twister based PRNG with parallel BRAM.

The performance of PRNGs belonging in the chaotic category are illustrated750

in Figure 17. The one that is based on the logistic map has the lowest area oc-

cupation. However, some differential chaotic PRNGs can be presented as good

competitors, namely the chaotic iterations based PRNGs. Results obtained con-

cerning area (Figure 17a) can be explained by the use of a basic operation (the

shift one), and because the bionic coefficient α can be considered as a constant755

when implementing the logistic map. PRNGs based on chaotic iterations, for

their part, need to embed linear PRNGs for their strategies: on the one hand,

CIPRNG-XOR uses 3 PRNGs, while on the other hand ICGPRNG manipulates

only one, but with a permutation function. Figure 17b illustrates the superiority

of chaotic iterations family, in which the differential PRNG based Euler opti-760

mization [103], an optimized logistic map [82], and these PRNG based chaotic
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iterations [113] have the largest throughput in this category of chaotic genera-

tors. Regarding the Throughput/Area ratio in Figure 17c, the chaotic PRNG

based on LCGM [79] outperforms all the other linear PRNGs: the ratio is 4.1

times more efficient than the second best one [107], which is a chaotic iterations765

generator based on BBS and XORshift.

Finally, considering the TRNG analysis, only a throughput comparison is

provided in Figure 18. Indeed, all the considered authors prefer not to discuss

about area... which is so low when compared with PRNGs. Hence, even with

this main advantage of optimized resources usage, the throughput is too low770

and it ranges from Hz to just a few kHz. Compared to PRNGs, TRNGs are

probably more secure, while PRNGs can be deploied as fast generators.

As a conclusion, linear PRNGs can play an important role for FPGA ap-

plications, due to their rapidity and parallel generation, if we compare them

to other pseudorandom generators. Chaotic PRNGs, for their part, are more775

secure. They are non linear PRNGs and have low hardware resources compared

to the linear ones. Finally, despite the low throughput generated by the TRNG,

they are still consuming only a few logic while generating a real random output.

6. Statistical Test Analysis

Statistical tests are used to evaluate whether the output of a given RNG780

can be separated from a real random sequence obtained, for instance, by rolling

a dice. Such tests are usually grouped in “Batteries”, like the FIPS [132],

DieHARD [25], NIST SP800 − 22 [133], TestU01 [26], or AIS [134] ones. In

what follows, the content of these tests is recalled, for completeness purpose so

as to make our article self-contained.785

The National Institute of Standard and Technologies introduced their first

test battery namely Federal Information Processing Standard (FIPS) 140-1 [132]

in 1994. These quick result tests have been further updated to the FIPS 140-

2 [135] version, which covers more complex test batteries (focused for instance

on security level).790

38



[4
2]
-S

G

[4
2]
-A

SG

[4
1]
-S

G

[4
1]
-P

L

[4
8]
-L

U
T

[4
8]
-F

IF
O

[4
8]
-S

R
[5
0]

[5
3]

[5
4]
-2

d

[5
4]
-6

p
[6
2]

[6
4]

[6
7]

0

1

2

3

·104

6
,3

3
6 1

2
,3

3
6

7
,3

9
2

1
0
,7

1
2 1
6
,3

8
4

2
5
,5

8
4

1
9
,9

6
8

3
,2

4
8

2
,3

6
0

2
,1

2
8

5
,3

5
2

4
7
2

3
4
4

9
8
4

LFSR TGFSR CA

(a)Area ((LUT+FF)×8)

[4
2]
-S

G

[4
2]
-A

SG

[3
4]
-R

an

[3
4]
-R

an
1

[4
1]
-S

G

[4
1]
-P

L

[4
8]
-L

U
T

[4
8]
-F

IF
O

[4
8]
-S

R

[3
4]
-M

T
19

93
7

[3
4]
-M

T
11

21
3

[4
9]

[5
0]

[5
1]
-M

T
-3

2i
p

[5
1]
-M

T
-3

2c
p

[5
1]
-M

T
-6

4i
p

[5
1]
-M

T
-6

4c
p

[5
1]
sf
m
t-
12

8c
p

[5
3]

[5
4]
-2

d

[5
4]
-6

p

[5
5]
-c
b

[5
5]
-3

p
[5
8]

[6
0]

[6
2]

[6
4]

[6
7]

0

200

400

3
.2

6

6
.4

6

1
0
.2

4

1
2
.8

4
.7 1
3
.3

1
2
8
.6

4
8

3
4
3
.2

4
.9

5
.5

0
.7

8

8
.5 2
2
.3

2
4 4
3
.9

4
2
.6

1
0
7
.5

1
4
.4

1
6
.7 4
4
.6

1
0
.8

1
1

2
·1

0
−

2

2
.4
·1

0
−

2

2
.3

5
·1

0
−

2

0
.2

4
LFSR

TGFSR

CA

(b)Throughput (Gbps)

[4
2]
-S

G

[4
2]
-A

SG

[4
1]
-S

G

[4
1]
-P

L

[4
8]
-L

U
T

[4
8]
-F

IF
O

[4
8]
-S

R
[5
0]

[5
3]

[5
4]
-M

T
-2

d

[5
4]
-M

T
-6

p
[6
2]

[6
4]

[6
7]

0

5

10

15

20

0
.5

1

0
.5

2

0
.6

4

1
.2

4

7
.8

5

1
.8

8

1
7
.2

2
.6

2

6
.1

7
.8

5

8
.3

3

4
.8

7

0
.1

5

0
.2

3

LFSR TGFSR CA

(c)Ratio (Throughput/Area) (Mbit per area)

Figure 16: Linear PRNGs FPGA hardware analysis.
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Figure 17: Non-lineair PRNGs FPGA hardware analysis.
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Figure 18: TRNGs FPGA implementation analysis: Throughput (Mbps).

Meanwhile, the DieHARD battery has been proposed by George Marsaglia [25].

It contains 18 tests of randomness. It was designed to provide a better way of

analysis in comparison to the previously released NIST tests. Unlike this latter,

the p-values have now to belong to some fixed chosen interval [α, 1 − α], with

a signification level of α for 5% for instance. An example of these batteries795

are: “Birthday spacings”, “Overlapping permutations”, “Ranks of matrices”,

“Monkey tests”, “Count the 1′s”, “Parking lot”, “Minimum distance”, “Ran-

dom spheres”, “The sqeeze”, “Overlapping sums”, “Runs”, and “The craps”.

The AIS-31 battery [134] is a German standard to test and evaluate the

security properties of truly random number generators. It uses 9 statistical800

tests for the evaluation of a TRNG. AIS can be divided in two categories: the

first one consists of T0-T4, which are the same function of FIPS 140-1 [132].

These later are mostly used to test the outputs of a post-processing. T0 is

the “disjointedness test”, which collects 65536 of 48-bit and verifies that two

adjacent values must not be equal. T1 is the monobit test, T2 is the poker805

test, T3 is the run test, and T4 is the longest run test. As for T5, it is part, is

the auto-correlation test, and T6 is a “uniform distribution test” including of 2

sub-tests. T7 is a “comparative test for multinomial distributions”, and finally

T8 is an entropy test (Coron’s test).

In the other side, National Institute of Standard and Technologies introduces810
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a new test battery known as “NIST SP800−22” [133]. This one aims at testing

the random profile of a given sequence using 15 tests. More precisely, it evaluates

a long binary sequences generated by the RNG for the randomness and a higher

security testing level than the FIPS 140-2. The tested sequences must have a

fixed length N , where the parameter N is such that 103 < N < 107. Then, for815

each statistical test, a set of s sequences is produced by the RNG under test,

and p-values are obtained. They all need to be larger than 0.0001 to reasonably

consider the associated sequences as uniformly distributed and cryptographically

secure according to NIST standards.

The TestU01 battery is now the most complete and stringent battery of820

tests for RNG [26]. It was initially developed by “Pierre L’Ecuyer” and was

implemented in the ANSI C language with more than 516 tests grouped inside

7 big sub-batteries. This new battery of tests covers various classical tests

already present in other batteries with new algorithms for performance and

cryptographic tests.825

6.1. Statistical results of FPGA based RNG

In Table 1 and 2, a number of generators are classified according to the bat-

tery test they have undergone. As it can be observed, the most stringent battery

(Big crush) has only been applied twice in the literature, namely [107, 122]. Let

us notice that most (P)RNGs pass the Diehard and NIST batteries, while only830

a few PRNGs have been tested using the FIPS that has been integrated latter

inside the NIST. Considering the TestU01 one, only crush batteries are usually

considered. All generators fail at least one test, with the exception of chaotic

iterations generators that can pass the whole battery.

Authors in [111, 112] investigate the related problem for linear PRNGs. They835

show too that usual chaotic PRNGs are not passing the BigCrush when they

consider its non linearity. However, being linear does not lead to a high linear

complexity, which is defined by the degree of their polynomial characteristic

function. However, most random number generators are linear recursive, and so

they fail in the so-called statistical Linear Complexity Test of TestU01 [26]. This840
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test characterizes the (P)RNGs by their longest LFSR model: non randomness

is claimed when the model is too short. This model is estimated by using

the well-known Berlekamp-Massey algorithm [136]. It determines the shortest

polynomial of a linearly recurrent finite output sequence in GF2. Note that

all the other generators fail too the linear complexity test, except for PCG32845

and MRG32K3a: indeed, only PRNGs based on chaotic iterations are passing

TestU01. Under this category, the authors propose too an extended internal

space of 64 bits (CIPRNG-XOR) for 32 bits generators, when they increase the

number of internal iterations to be uniformly distributed and to pass statistical

tests.850

Finally, TRNGs are hard to test with TestU01 (specially the BigCrush bat-

tery), as it needs 1038 random bits for a full test. Figure 18 shows a general

throughput of the order of Kbps, which makes it difficult to collect the min-

imum amount of data needed in such tests. Under these conditions, only the

TRNG of [122] based on ring oscillators has been proven to pass with success855

the BigCrush battery. Note finally that other batteries offer more flexibility and

need a lower amount of bits for their embedded tests (namely, Diehard, NIST,

and AIS), but they are less stringent and trustworthy than TestU01.

7. Conclusion

We have provided a widespread coverage of the current research in hardware860

implementation of random number generators on FPGA. We have first recalled

well known “linear generators”, encompassing LCGs, LFSRs, look-up table opti-

mised ones, twisted generalized feedback shift registers, and cellular automata.

We next have deeply investigated the non-linear ones, based on Blum-Blum-

Shub or on chaotic maps. Then a large review of the true random number865

generators for FPGA has been proposed, encompassing respectively the phase-

locked loop, the ring oscillator, the self-timed ring, and the stability TRNG. For

each type of RNG, a hardware analysis regarding area and throughput has been

provided. A section about statistical tests has finally been proposed, contain-
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