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ABSTRACT 
 

 

 

The problem of estimating a spectral representation of exponentially decaying signals from a 

set of sampled data is of considerable interest in several applications such as in vibration 

analysis of mechanical systems. In this paper we present a nonparametric and a parametric 

method for modal parameter identification of vibrating systems when only output data is 

available. The nonparametric method uses an iterative adaptive algorithm based in the 

formation of a two dimensional grid mesh, both in frequency and damping domains. We 

formulate the identification problem as an optimization problem where the signal energy is 

obtained from each frequency grid point and damping grid point. The modal parameters are 

then obtained by minimizing the signal energy from all grid points other than the grid point 

which contains the modal parameters of the system. The parametric approach uses the state 

space model and properties of the controllability matrix to obtain the state transition matrix 

which contains all modal information. We discuss and illustrate the benefits of the proposed 

algorithms using a numerical and two experimental tests and we conclude that the 

nonparametric approach is very time consuming when a large number of samples is 

considered and does not outperform the parametric approach. 
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1. INTRODUCTION 

 

 In many applications the mechanical structure under consideration is excited by a brief 

input signal, called an impulse. This is particularly so in mechanical vibration analysis test 

situations, where the test system is excited by a force acting over a very short duration time: 

for example, the system is struck by a hammer. Other common types of vibration testing 

services are conducted using a step force which is constant through a time frame. The 

corresponding response of the system to an impulse or a step force is a transient response, 

since steady-state oscillations are not produced and oscillations of the system reduce to zero 

after a finite time. Consequently, transient responses are short time events whose time 

behavior cannot be predicted and are totally varying in nature, both in time and frequency. 

Two fundamental parameters to identify from the transient response of a vibrating system are 

the eigenfrequencies and the damping coefficients and we are faced to a problem of spectral 

analysis. The problem of estimating the spectral parameters of damped signals has attracted 

significant attention during recent decades as such signals arise naturally in many engineering 

domains. We can mention the vibration monitoring [1, 2], where the spectral content of 

measured signals gives information on the wear of mechanical parts under study, the magnetic 

resonance spectroscopy [3] to obtain further information about cellular activity, in speech 

analysis [4] for speech synthesis and speech recognition, in geophysical seismology [5] to 

predict subsurface geologic structure, in sonar and in radar [6] to estimate the locations and 

waveforms of  acoustical or electromagnetic sources. Nonparametric and parametric spectral 

estimators are usually used [7]. A nonparametric estimator attempts to compute the spectral 

content of a signal without using any a priori information about it: there is no assumption 

about how the data is generated. The most common nonparametric estimator is the traditional 

periodogram which basically reduces to the computation of a Discrete Fourier Transform and 

gives a power spectral density estimate of the signal. Bartlett, Daniell and Welch [7] have 

proposed refined periodograms by smoothing or averaging the traditional periodogram 

obtained from segments which are windowed. Recently, Gudmundson [8, 9] has implemented 

an iterative adaptive approach for radiofrequency spectroscopy in the case of irregularly 

sampled data. The algorithm uses data from nuclear quadrupole resonance experiments and is 

employed to determine ammonium nitrate and cyclonite in a liquid.  
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A parametric or model-based estimator assumes that the structure of the signal is known: 

the signal satisfies a generating model with known functional form. Parametric methods are 

used to estimate the parameters in the assumed model and the most common of the parametric 

estimation technique is the auto-regressive moving average (ARMA) modeling of the signal 

[10]. The modal parameters are obtained from eigendecomposition of the companion matrix 

which is formed with the AR coefficients. The ARMA approach, unlike the nonparametric 

approaches, requires the selection of the order, or the structure, of the model. The selection of 

model order is a problem always under investigation. Other parametric methods using 

subspace algorithms and derived from the state space model have been developed and are 

always part of an intense research [11-15]. Note that none of these parametric methods is able 

to cope with very low snapshot numbers or with a severe measurement noise. The problem of 

measurement noise has been investigated by J.N. Juang and R.S. Papa in [16] where the errors 

characteristics on modal parameters due to noise have been analyzed by numerical 

simulations using the Monte Carlo technique and the eigensystem realization algorithm. More 

recently S. Dorvash and S.N. Pakzad [17] have presented the influence of measurement noise 

on modal parameter identification using experimental tests and the eigensystem realization 

algorithm. It is shown that the deviation of the modal parameters obtained by the low-noise 

sensors is generally less than the deviation of the modal parameters identified by the sensors 

with higher noise level. The authors concluded that the attenuation of this deviation can be 

performed by increasing the model order of the system and through the use of a stabilization 

diagram. 

  To estimate the eigenfrequencies and damping coefficients of a vibrating system from 

output data only we propose a nonparametric iterative adaptive algorithm and a parametric 

approach based on a subspace algorithm. The iterative adaptive technique does not require the 

specification of any user parameters. Furthermore, no assumptions have to be made on the 

sampling scheme and the spectrum can be estimated from regularly or even irregularly 

sampled data [3]. To our knowledge it is the first time that the iterative adaptive method is 

applied to modal parameter identification of mechanical systems and constitutes a novelty. 

Furthermore, this algorithm uses a two-dimensional grid mesh, both in frequency and 

damping domain and a strategy to choose the grid mesh is presented. 

The proposed subspace algorithm, which is derived from the state space model, is based 

on shifted properties of the controllability matrix. The matrices operations that yield from the 

controllability matrix to the state transition matrix are a peculiarity of the paper. To illustrate 

the effectiveness of the proposed algorithms, we examine the results on simulated data from 
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exponentially damped sinusoids corrupted by white noise, on experimental measurements 

from the displacement of a micro electro mechanical system (MEMS) constituted of a 

perforated microplate and on measurements from the vibrations of a line cable excited 

through an impact hammer. Note that to our knowledge it is the first time that the proposed 

subspace algorithm is used to identify the modal parameters of a MEMS and one of the goals 

of this work is to compare the iterative adaptive algorithm and the subspace algorithm using 

numerical and experimental tests.  

The paper is outlined as follows. In the next section we present the data model and derive 

a nonparametric approach based on the iterative adaptive algorithm for modal parameter 

identification. In section 3 we propose a parametric approach derived from the state space 

model with a subspace algorithm. The performances of the proposed methods are studied in 

section 4 using both simulated and measured data obtained from the movement of a 

perforated microplate and from the vibrations of a line cable. This paper is briefly concluded 

in section 5.  

 

 

2. THE ITERATIVE ADAPTIVE ALGORITHM IN MECHANICAL 

VIBRATIONS 

 

2.1 Response of a MDOF system 

 The linear MDOF system is governed by the general equation 

                                                              

                                               M (t)Z  + C (t) Z  +  K Z(t)  = F                                              (1) 

 

where M, C, and K are mass, damping and stiffness matrices respectively, and F is the 

excitation vector. The response Z of the system can be obtained using well known modal 

analysis or a direct forced response method. Instead of the MDOF system given by (1), N 

uncoupled equations similar to a SDOF system can be obtained 

                                        

                                               mi (t)z + ci (t)z   + ki z (t) =  fi (t)                                             (2) 

 

for i = 1, 2… , N.  
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The impulse response of this MDOF system is obtained as the superposition of the N relevant 

modes  

                                           h(t) = 



N

i

)t(ωcos
)t

ni
ω

i
ξ(

eA idii
1

                                (3) 

 

where for the ith mode niω  = 2π Fni  is the natural or undamped frequency in rad.s-1 (Fni  is the 

ith natural frequency in Hz), iξ  is the ith damping ratio and diω  is the ith damped natural 

frequency ( diω  = niω
2

iξ-1 ), Ai is the ith residue magnitude and i  is the ith phase lag. In 

many practical vibrating systems we have iξ <<1, so we shall consider diω  niω . This 

response is a linear combination of single modal components and each mode is given by an 

exponentially decaying harmonic function. In complex notation, this equation can be 

represented as a sum of N complex exponentially damped sinusoidal components (or damped 

sinusoids) and if we add a measurement noise e(t) we obtain:  

 

                               y(t) =  


N

i

])
i

t
di

ω(jt
ni

ω
i
ξ[

 i eA
1

+ e (t)                                        (4)    

 

If we set iα = nii ωξ   and  Bi =Ai 
ij

e


  (4)  can be written as 

                                y(t) =  


N

i

tωjα(
eB

dii
i

1

)
  +  e(t)                                                   (5)    

The additive noise is assumed to be zero mean, Gaussian with variance σ  and uncorrelated 

with the damped sinusoids. Note that the noise component can be omitted in the model and 

can be included implicitly via Bi. Given the knowledge of the response y(t), the goal is to 

identify the decay rate iα  and the damped natural frequency diω  for each mode from the 

impulse response of a MDOF system. We can then readily obtain the damping ratio iξ  and 

the natural frequency niω  :  

 

                                     iξ  = 
2
di

2
i ωα

iα



 and niω  = 
2
iξ -1

diω
  diω                                         (6) 
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2.2 The iterative adaptive algorithm 

 

         In this section we propose a nonparametric iterative adaptive algorithm based in the 

formation of a grid mesh in frequency and damping domains and in the estimation of the 

signal energy at each grid point. An original strategy for multiresolution grid refinement is 

described at the end of this section. 

 Let y = [ yt1  yt2 .... ytT ]
T be the vector of available measurements, ( )T denotes the transpose 

operation and  T
1ppt


 the sampling times of T available samples. Let K denote the number of 

grid points in the damped frequency domain and let 
K

1k
dk

ω









be the corresponding damped 

frequencies. Usually K is chosen to be quite large (K>>N) and the damped frequency grid of 

interest 








dk
ω is uniform. Let M denote the number of grid points in the decay rate domain 

(M>>N) and let  M

1mm
α


 be the corresponding decay rates. We will now rewrite the 

response (5) as the sum of the contributions from each damped frequency grid point and each 

decay rate grid point 

 

                                 ytp = 
tp)ωjα(

eB

M

1m

K

k

dkm
mk,






1

+ etp                                (7) 

 

where Bk,m represents the amplitude for a possible damped sinusoidal component  (or a grid 

point), with damped frequency dkω  and decay rate mα . In our framework, the estimates of 

modal parameters are confined to a scanning grid. We cannot make the grid very fine since 

this would increase the computational complexity significantly. We explore the idea of 

adaptively refining the grid in order to achieve better precision. The idea is a very natural one: 

instead of having a universally fine grid, we make the grid fine only around the regions where 

the modes are present.  

We denote the damped Fourier vector for damped frequency dkω  and decay rate mα as  

 

                   ak,m = ]....[ T21
)tωjα(

e
)tωjα(

e
)tωjα(

e
dkmdkmdkm 

T               (8) 
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and the data vector takes  the form 

 

                                                 y = 
 


K

k

M

1m
mk,mk,

B
1

a +  e                                                     (9) 

where e is defined similarly to y. Denote the signal energy at the grid point ( dkω , mα ) as 

pk,m=
2

mk,
B . This value is small except for a number of grid points (N grid points) 

corresponding to the positions of the true modal parameters and our objective is to find these 

grid points. The covariance matrix of the vector y is defined as: 

 

                                                 R = mk,
mk,mk,

K

k

M

1m

p *

1

aa
 

  +  σ I                                     (10)  

 

Where the superscript * indicates the complex conjugate transposition. In order to find an 

estimate of Bk,m we consider the general linear estimator: 
mk,

B̂ = w*
k,m y . The weight vector 

wk,m can be found by minimizing the power from all grid points other than the grid point ( dkω , 

mα ) which passes the component of interest undistorted: the true modes of the vibrating 

system are perfectly reproduced in appropriate grid points. We have then the following 

minimization problem: 

 

   min  ( w*
k,m R wk,m )           subject to the constraint       w*

k,m ak,m = 1                                (11) 

 

It is shown in Appendix that :  

 

                                                     wk,m = 

mk,
1

mk,

mk,
1

aRa

aR





                                                      (12) 

 

and an estimate of the amplitude at the grid point ( dkω , mα ) is  

                                                    
mk,

B̂  = 

mk,
1

mk,

1
 mk,

aRa

yR
*

a




                                                   (13) 

As the covariance matrix R depends on the estimates of the amplitudes at each grid point (13) 

must be implemented as an iterative algorithm. The initial estimator is obtained with R = I, 
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the identity matrix. The iterative adaptive algorithm for spectral estimation is thus found by 

iterating the estimation of R in (10) and the grid point amplitudes in (13) until a suitable stop 

criterion is met. The procedure is as follows: let 
)  (i

mk,

1
B

ˆ denote the estimate of the amplitude 

at iteration i +1 and R(i) the matrix formed from (10) with 
(i)

mk,
B̂  (or 

(i)

mk,
p ), then the iterative 

adaptive algorithm updates the estimates as: 

                                                  
1)(i

mk,
B

ˆ  = 

mk,
1-

(i)mk,

1-

(i)
 mk,

aRa

yR
*

a


               i=1, 2…                        (14) 

The iterative process will be stopped when the relative change in the estimated amplitude 

mk,
B̂  i.e. 

2
(i)

mk,
B

1)(i
mk,

B ˆˆ 


< 10-3.  It has been found that the algorithm does not provide 

significant improvements in performance after about 10 iterations. Table 1 provides a 

summary of the required steps used in the iterative adaptive algorithm.  

        The estimates are confined to a scanning grid and we make the grid fine only around the 

regions where the two modal parameters are present. This requires an approximate knowledge 

of the locations of the modes, which can be obtained by using a coarse grid first or from the 

periodogram. We have the following procedure:  

- Create a rough grid of potential modes 

- Compute the signal energy estimate 
mk,

p̂  (step 2 of the algorithm given in Table 1) 

- Compute the estimated covariance matrix  (step 3 of the algorithm given in Table 1) 

- Compute the amplitude estimate  
mk,

B̂  (step 4 of the algorithm given in Table 1) 

- Get a refined grid around the locations of the modes 

Many different ways to refine the grid can be imagined, however, we choose simple 

equispaced grid refinement. The iterative process is stopped by the residual amplitude 

threshold: the difference between the amplitudes given in step 4 of the algorithm or (14) are 

smaller than a threshold (see Table 1). It has been found that iterating the algorithm 10 times 

is generally enough to give a good solution.  

Numerical and experimental examples are shown in section 4 to illustrate the performances of 

the proposed algorithm.  
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3.   THE STATE SPACE MODEL 

 

              In this section we propose a parametric approach based in the state space model and 

the use of a subspace algorithm for modal parameter identification. The key point of the 

subspace algorithm is the determination of the state transition matrix which contains all modal 

information. This state transition matrix is obtained using shifting properties of the 

controllability matrix, and this approach is used from experimental measurements in time 

domain, for modal parameter identification of a MEMS. In the state space model the 

covariance matrices of noisy data are given by [11-14] 

 

                                                            Ri = CAi-1G                                                                (15) 

 

where (A, C, G) are the state space parameters of the system [11,13]. The eigenvalues of the 

NxN state transition matrix A are equal to 
)

dii
i

ωjα(
ez


 , the parameters of interest, 

and our objective is to estimate the transition matrix. In order to estimate the matrix A we 

form the Hankel matrix H with two factorizations: the first factorization uses the observability 

and controllability matrices, O and K, as: 

 

 

                H   =  



























1pf1ff

1p32

p21

R.RR

....

R.RR

R.RR

=      























1-fCA

.

CA

C

[G  AG. . . Ap-1G] = O K          (16)             

 

where O is the observability matrix and K is the controllability matrix :  

 

 

                   O   = 























1-fCA

.

CA

C

          ;               K = [G  AG. . .  A p-1G]                                    (17) 

               

 The second factorization uses the singular value decomposition (SVD) of H  

 

                                                         H = U Σ VT = U Σ 1/2 Σ 1/2 VT                                     (18) 
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with UTU and VTV identity matrices and Σ  a diagonal matrix of singular values.  

The two factorizations of the block Hankel matrix are equated to give 

                                                                                 

 

                                      H = U Σ 1/2 Σ 1/2 VT = OK                                                            (19) 

 

implying O = U Σ 1/2 and K = Σ 1/2 VT. To determine the transition matrix A we use properties 

of the controllability matrix (properties of the observability matrix can also be used). We 

introduce the two following matrices: 

                          

                        K  = [ AG   A2G.....Ap-1G ]   and   K = [ G  AG   A2G.....Ap-2G ]            (20) 

 

where K  is the matrix obtained by deleting the first block column of K and K  is the 

matrix obtained by deleting the last block column K. We obtain then: 

   

                          K  = A K   or   )V (
T1/2

Σ = A )V Σ (
T1/2

                             (21)  

 

We use properties of shifting columns operators ’’  ’’ and ’’  ’’ : let Φ  and Ψ  be two  (axb) 

and (bxc) matrices, we have  : (ΦΨ )  =(ΦΨ  )  and (ΦΨ )  =(ΦΨ  )  consequently 

 

                                       )V Σ (  
T1/2

  =  A )V Σ (
T1/2

                                           (23) 

 

The transition matrix is   

 

                                                A = )V Σ (  
T1/2

 )V Σ (
T1/2


+                                     (24) 

 

where (  )+  represents the pseudo inverse of a matrix, and the eigenvalues of the transition 

matrix are given by 

                                             )(A  = λ [ )V  (  
T

 )V  (
T


+]                                              (25) 

 

       This approach constitutes a subspace modal identification method and in the case of noisy 

data a problem of model order determination occurs: when extracting physical modes this 

algorithm can generate spurious modes. For this reason, the assumed number of modes, or 

model order, is incremented over a wide range of values and we plot the stability diagram. 
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The stability diagram involves tracking the estimates of eigenfrequencies and damping ratios 

as a function of model order [14, 15]. As the model order is increased, more and more modal 

frequencies and damping ratios are estimated, hopefully, the estimates of the physical modal 

parameters stabilize using a criterion based on the modal coherence of measured and 

identified modes [14].  

      

4. APPLICATIONS 

 

4.1 Simulated data 

      We illustrate the performances of proposed algorithms using simulated data. We generate 

data containing three exponentially damped sinusoids and a harmonic component. The 

normalized frequencies are 0.1; 0.2; 0.3 and 0.4 and the decay rates iα  are 0.03; 0.04; 0.05 

and 0. We have to identify three structural modes and a harmonic component. The data was 

corrupted using a complex white Gaussian noise and the SNR is equal to 3 dB or 10 dB. The 

problem to distinguish harmonic and structural components has been analyzed by T-P Le and 

P. Argoul [18] using a time-frequency decomposition. This lead to the computation of the 

kurtosis and histograms corresponding to the ridges of the wavelet transform. The procedure 

for the distinction between such components is very time consuming and the technique is 

extremely cumbersome. The two methods presented in the paper can be used to obtain 

directly the distinction between harmonic and structural components. In our numerical test, 

only 30 time samples are used for the identification by nonparametric approaches. In first, we 

compare the traditional periodogram spectrum and the Welch spectrum with the spectrum of 

the iterative adaptive algorithm. The periodogram spectrum is commonly used for estimation 

of dampings and eigenfrequencies where the dampings can be estimated from half the width 

of the peaks at half their heights. Figures 1 and 2 show the traditional periodogram and the 

Welch spectrum with SNR=3 dB or SNR=10 dB: from these plots it is very difficult to 

identify the damping coefficients, furthermore some spurious modes appear and the harmonic 

component has a damping coefficient. These nonparametric estimators fail in the procedure of 

modal parameter identification. To improve the results the iterative adaptive algorithm and the 

subspace algorithm are proposed. 

Figure 3 shows the iterative adaptive spectrum with SNR=10 dB for different iterations. We 

present the evolution of the spectrum after one iteration, five iterations and ten iterations. 

After ten iterations the modal parameters are well identified as shown in Figure 4 with the 

contour plot. No spurious modes appear and we can differentiate the damped sinusoids and 
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the harmonic component. Even with a low SNR of 3 dB we can identify the modal 

parameters. Note that with ten iterations the computation time is a few minutes. 

Subspace algorithms have a problem of model order determination. When extracting physical 

or structural modes, this time domain modal identification algorithm always generate spurious 

or computational modes to account for unwanted effects such as noise, leakage, residuals, 

non-linearity’s…A modal indicator to distinguish structural and spurious modes has been 

proposed in [14] and is used in the paper. Figure 5 shows the stabilization diagram on 

eigenfrequencies and damping ratios. We have used 150 time samples and the computation 

time is a few seconds. The true damping ratios are 4.7%; 3.18%; 2.65% and 0% and are well 

identified from these stabilization diagrams. A different color is used for each mode and the 

color is associated in each pair of stabilization diagrams, for eigenfrequencies and damping 

ratios. Note that the stabilization diagrams are plotted only for model orders higher than about 

20. Indeed, the modal indicator used to distinguish structural and computational or spurious 

modes may fail for very low model orders because the true modes can be considered as 

spurious and disappear of the stabilization diagram.  

 

4.2 Modal parameter identification of a perforated microplate 

         The design of micro electro mechanical systems (MEMS) includes oscillating elements 

which are often perforated microplates supported by elastic suspensions. These microplates 

must be involved for MEMS applications as switches, varactors, transceivers, radio frequency 

devices and energy harvesters. The study of the damping caused by the surrounding fluid and 

by the dissipation in the material is very important to predict the dynamic response of the 

structure and to estimate some important parameters such as the quality factor, the release 

time and the switching time [19]. A single degree of freedom model is generally suitable to 

study such microplates with elastic supports, because the mass is concentrated in the central 

plate and the suspensions correspond to the elastic deformable part. A traditional spring-mass-

damper mechanical model is used to describe the comportment of a microplate and the model 

is then defined by the following parameters to identify: the microplate mass mp, the stiffness 

(or elastic coefficient) kp and the damping ratio ξ  of the system. 

          Figure 6 shows a schematic of the perforated microplate where the geometrical 

dimensions are: microplate side a = 185.96 m , microplate thickness hc = 6.312 m , gap 

thickness h = 3 m , hole size s0 = 7.19 m , microplate density ρ = 19.32x103 kg.m-3. The 

number of holes is Nh = 64. The electrode area is A =a2–Nh s0 = 3.127x10-8 m2 and the 
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microplate mass is m = ρ A hc = 3.81x10-9 kg. Our objective is to determine the plate stiffness 

kp from the resonance frequency Fr (we have the following relation kp = m (2 πFr)
2 ) and the 

damping ratio ξ  using algorithms developed in the paper. The dynamic measurements are 

conducted in the time domain by means of a laser vibrometer. The time response of the 

microplate to a step actuation force is given in Figure 7 and the sampling frequency of signals 

is 2 MHz. Using only a part of this response (3000 time samples), the iterative adaptive 

algorithm is then applied and we obtain the spectrum and the contour plots given in Figures 8 

and 9.  We can then deduce the resonance frequency: Fr = 2.28x104 Hz, the microplate 

stiffness kp = 78.25 N.m-1, the decay rate α = 2 πx342 and the damping ratio of the system 

ξ = α / 2 πFr = 0.015.   

Using the subspace algorithm developed in the paper with 3000 data points to form auto-

covariance matrices, we plot in Figure 10 the stabilization diagram on eigenfrequencies and 

damping ratios for the experimental system. The resonance frequency of the vibrating 

microplate is Fr = 2.28x104 Hz and the damping ratio is ξ =0.0164. These modal parameters 

have been obtained by an average over the orders of stabilization diagrams and the results are 

comparable to those obtained by the iterative adaptive algorithm. To our knowledge, it is the 

first time that the iterative adaptive algorithm and the subspace algorithm are applied to a 

micro electro mechanical system and in particular to a microplate. Note that the iterative 

adaptive algorithm is very time consuming compared with the subspace algorithm where only 

a few seconds are needed for the identification.  

 

4.3 Modal parameter identification of a line cable in laboratory 

For validation of the proposed algorithms another experimental test is performed in laboratory 

with a horizontal line cable excited through an impulse. The length of the cable is 32.3 meters 

and the excitation is obtained through an impact hammer at 5.38 meters of the extremity of 

the cable. The experimental time data are acquired using accelerometers placed along the 

cable. The recording time is 32 s and the sampling frequency is 64 Hz. We have then 2048 

time samples available. Details on the experimental procedure and results obtained by another 

subspace algorithm and by the wavelet transform can be found in [14]. Figures 11 and 12 

show the spectrum and the contour of the iterative adaptive algorithm using time data of an 

accelerometer. The modal parameters of the cable are then obtained and are presented in 

Table 2. 



Mechanical Systems and Signal Processing 

 15 

Figure 13 shows the stabilization diagram on eigenfrequencies and damping ratios. The 

stabilization diagram shows very stable eigenfrequencies and stable damping ratios, and from 

this plot we obtain the experimental eigenfrequencies and damping ratios of the cable by 

averaging the values obtained from different orders. Table 2 shows the theoretical and 

experimental natural frequencies and damping ratios of the cable using the methods presented 

in the paper. The results obtained by the iterative adaptive algorithm and by the subspace 

method are comparable, however the iterative adaptive algorithm is very time consuming.   

 

5. CONCLUSION 

 

       The problem of estimating the modal parameters of vibrating systems from output data 

only attracts significant attention as such parameters can be used for fault detection, structural 

health monitoring and model validation. These modal parameters have been identified using 

two approaches: a nonparametric adaptive iterative algorithm and a parametric subspace 

algorithm. The spectrum contour plot of the adaptive algorithm gives the eigenfrequencies 

and damping ratios of vibrating systems. Using the subspace algorithm, the stabilization 

diagram on eigenfrequencies and damping ratios gives directly the modal parameters. The 

proposed methods outperform the commonly used periodogram method and display similar 

results for the extracted modal parameters. Damped modes and harmonic components can be 

identified using the two developed algorithms. The principal advantages of the iterative 

adaptive algorithm are: 

 

- it does not require the specification of any user parameters, in particular it is not 

necessary to know (or to find) the model order of the system 

- it has better performances than the classical periodogram algorithm 

-  it yields an accurate 3D (amplitude, frequency and damping) spectral representation 

and we can identify simultaneously eigenfrequencies and damping ratios from this 

representation.   

 

However, with a large number of samples the benefits of the iterative algorithm are restricted: 

this algorithm is very time consuming, since additional computational cost is necessary due to 

the inversion of the sample covariance matrix and the use of iterations, so this algorithm does 

not outperform the subspace algorithm. It will be interesting to optimize this algorithm in 
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order to obtain a reduction of the computational complexity without parameter identification 

degradation. Furthermore, it is necessary to note that the iterative adaptive approach can be 

applied only when exponentially decaying signals are considered, whereas the subspace 

algorithm does not suffer this limitation. 

The algorithms presented in the paper have been originally tested for the modal parameter 

identification of a micro electro mechanical structure and are an alternative to wavelet 

transform algorithms which constitute a time-frequency representation and are currently used 

in modal parameter identification [18]. It will be interesting to compare the results obtained 

by the two approaches developed here with the wavelet transform method in particular for the 

analysis of micro electro mechanical systems. The algorithms developed in the paper can be 

used easily in order to differentiate between harmonic and structural components.  
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Appendix 

 

We have then the following minimization problem: 

 

   min  ( w*
k,m R wk,m )           subject to the constraint       w*

k,m ak,m = 1                                 

 

Using the Langrange’s method we can minimise the power subject to this constraints by 

defining the cost function 

 

H(w*
k,m) =  w*

k,m ak,m + 2 λ ( w*
k,m ak,m -1)  

 

where λ  is a Lagrange multiplier.  

The optimal value is obtained when grad ( H(w*
k,m)) = 2 R wk,m + 2 λ  ak,m = 0 

wk,m = - λ R-1 ak,m . Using the constraint we deduce λ  = - ( a*
k,m R-1 ak,m )-1     

and the optimum weight vector is     wk,m = 

mk,
1

mk,

mk,
1

aRa

aR
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Figure 1: Normalized spectrum from the classical periodogram  

(a) SNR=3dB; (b) SNR=10 dB 
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Figure 2: Normalized spectrum from the Welch estimator (a) SNR= 3 dB, (b) SNR=10 dB 
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( a ) 

 
( b ) 

 
( c ) 

 

 

Figure 3: Spectrum of the iterative adaptive algorithm for the simulated case with SNR=10 dB 

( a ) : one iteration; ( b ) : five iterations ; ( c ) : ten iterations 
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Figure 4: Contour plot spectrum of the iterative adaptive algorithm after ten iterations 

 (a) SNR= 3 dB, (b) SNR=10 dB 
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Figure 5: Stabilization diagram on eigenfrequencies and damping ratios for the simulated case 
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Figure 6: Schematic of the perforated microplate  
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Figure 7: Time response of the microplate to a step force actuation 
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( a ) 

 

( b ) 

 

 Figure 8: Spectrum of the iterative adaptive algorithm for the experimental microplate 

( a ) : one iteration; ( b ) : ten iterations 
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Figure 9: Contour plot spectrum of the iterative adaptive algorithm for the experimental 

microplate (after ten iterations) 
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Figure 10: Stabilization diagram on eigenfrequencies and damping ratios for the experimental 

microplate 
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( a ) 

 

 

( b ) 

 

 

Figure 11: Spectrum of the iterative adaptive algorithm for the experimental line cable 

( a ) : one iteration; ( b ) : ten iterations 
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Figure 12: Contour plot spectrum of the iterative adaptive algorithm for the experimental line 

cable (after ten iterations) 
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Figure 13: Stabilization diagram on eigenfrequencies and damping ratios for the experimental 

line cable 
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Initialisation 

Step 1 : Compute the initial estimate :                      
(1)

mk,
B̂  = 

mk,mk,

 mk,

aa

y
*

a


    

Step 2 : Compute the signal energy estimate at a grid point :    
(1)

mk,
p̂ = 

2
(1)

mk,
B̂  

Step 3 : Compute the estimated covariance  matrix R(1)  with the estimate 
(1)

mk,
p̂ using (10) 

 

Iteration 

Step 4 : Compute the amplitude estimate at the ith iteration 
(i)

mk,
B̂ = 

mk,mk,

 mk,

a
1-

1)-(i
Ra

y
1-

1)-(i
R

*
a


  with the 

most recent estimate of the covariance matrix  

 

Termination 

Step 5 : The iterative process will be stopped when the relative change in 
mk,

B̂  between two 

iterations is  :  
2

1)-(i
mk,

B
(i)

mk,
B ˆˆ  < 10-3 

 

 

 

 

Table 1. Outline of the iterative adaptive algorithm 
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Modes 1 2 3 4 5 

FTheo (Hz) 1.765 3.530 5.295 7.060 8.825 

FIAA (Hz) 1.742 3.516 5.247 6.981 8.741 

FSubEsp (Hz) 1.771 3.521 5.248 7.121 8.795 

ξ IAA (%) 0.507 0.231 0.304 0.148 0.166 

ξ SubEsp (%), 0.511 0.218 0.289 0.138 0.153 

 

 

Table 2. Natural frequencies and damping ratios of the line cable using the  

iterative adaptive algorithm (IAA) and the subspace method (SubEsp) 

 

 

 

 

 

 

 


