
Impedance-based real-time position sensor for lab-on-a-chip
devices.†
B. Brazey,a J. Cottet,b,c A. Bolopion,a H. Van Lintel,b P. Renaudb and M. Gauthiera

This paper presents the theoretical and experimental development of an integrated position sensor for Lab-On-a-Chip devices. The interest for
single cell analysis is growing. However, this requires to monitor and control cell displacements in real-time during their journey in the chip. Due
to the high number of cells that must be monitored at the same time, classical vision-based sensors are not suitable. This paper aims to present
an alternative based on impedance measurement. The position of the cells is obtained from the variation of impedance measured between two
electrodes. This technique presents several advantages: the sensor is integrated into the chip, the measurement electrodes are compatible with the
fabrication process of actuation electrodes for dielectrophoresis, the sampling time of the sensor is high and the position of the cells can be obtained
in real time. This article highlights the concept of position-sensitive impedance sensing. The design of the chip, and in particular of the electrodes,
is discussed to improve the sensitivity and repeatability of the measurement. The issue of real-time detection in a noisy environment is solved by
using an Extended Kalman Filter. As a first proof of concept this article presents experimental validation on a 1D case to determine the longitudinal
position of 8.7 µm diameter beads in a channel.

1 Introduction

Among the various areas of cell analysis, there is an increasing
attractiveness for single cell analysis1. The complex nature of
tissues has motivated the development of tools for single-cell ge-
nomic, transcriptomic and multiplex proteomic analyses2. In ad-
dition, many applications are foreseen in the study of the immune
system3.

To go beyond classical fluorescence-activated cell sorting, and
in particular to offer a wide range of cell analysis tools (based
for example on its mechanical, electrical and fluorescence prop-
erties), a number of Lab-On-a-Chip (LOC) devices have been de-
veloped. They have undergone a strong development in recent
years for cell study and sorting4–6. The low production cost and
the small sample volumes enhance their attractiveness for both
cell sorting and characterization.

Most of these devices exploit dielectrophoresis (DEP)7, mi-
crofluidics8–10 and/or electrical impedance measurement11 to
separate or characterize the cells. Dielectrophoresis-based meth-
ods are carried out when the electrical properties of the cells can
be used as a discriminant criterion. Microfluidics are most often
used when the cells can be differentiated by their size or their
density. Impedance measurement has a large place in cell charac-
terization. Electrical impedance spectroscopy (EIS) is commonly
exploited to characterize the electrical properties, the size or the
morphology of the cells12,13. A model in EIS describing a cell
electrical behavior has been given14,15. At low frequencies, the
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cell membrane, which is equivalent to a capacitance, prevents
the electric field lines from penetrating the cell. When the sig-
nal frequency increases, the total impedance decreases since the
membrane capacitance tends to be short-circuited. Internal prop-
erties such as the electrical resistance of the cytoplasm can then
be evaluated. These analyses are mostly performed either to get
statistical data on a large cell population, or to get precise mea-
surement of a single cell. However, single cell analysis requires
to perform measurement on each single cell of a large cell popu-
lation, to combine knowledge about the individual properties of
the cells with statistical analysis.

One of the main challenges of single cell analysis is to analyze
a large number of cells in a restricted time. As an example, to
analyze around 200 000 cells in around 35 minutes, 100 cells per
second must be tested. It necessitates to be able to perform high
speed trajectory control so that a large number of cells can be
tested per second, and to parallelize the analysis. A conceptual
view of such cell sorters is depicted in Figure 1. The cell flow is
split through different distribution levels to perform cell analysis
in parallel in tens of bioreactors.

Actuation of the chip can be performed in parallel using dielec-
trophoretic actuation. However sensors must be used to measure
the trajectory of the particle in real-time. Most of the works use vi-
sion feedback16–18. However, classical vision-based sensors have
limited field of view19. Indeed, with a high magnification, (e.g.
20x) the field of view is reduced (typically 0.5 x 0.5 mm2) com-
pared to the size of the optical objective (e.g 25 mm diameter).
Because of the huge ratio between the vision range and the ob-
jective size only a few parts of the chip surface (typically 0.04 %)
are visible simultaneously with the camera. As single cell analysis
only makes sense if we are able to massively parallelize the anal-
ysis or the treatment, the density of test zones on a chip has to
be maximized. By using cameras, the density of test zones on the
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Fig. 1 Conceptual view of a cell sorter for single cell analysis. The total
cell population is split to perform analysis in parallel in several tens of

bioreactors.

chip is highly limited by the optical objective size (as the test zone
has to be concentrated in the 0.04 % visible part of the chip).

In this paper, we propose to develop a proof of concept of an
original alternative to vision consisting in impedance measure-
ment. Impedance measurements are made on electrodes which
can be easily integrated on Lab-On-a-Chip devices to perform par-
allelized sensing. In EIS, a lack of precision regarding the posi-
tion of the cell between the electrodes may induce errors in the
cell characterization, particularly when dynamic characterization
is performed20. Consequently, the dependence of the measured
impedance on the cell position between the measurement elec-
trodes is desired to be as low as possible in cell characterization
devices. In this paper, we propose to exploit this position depen-
dence to get a position sensor. Currently, impedance measure-
ments are also used to localize particles21–25 or to estimate their
velocity26. These current works consist in detecting the presence
of a particle closed to two electrodes by detecting an impedance
peak. The principle is also extended to two pairs of electrodes
in order to determine locally the particle velocity. The current
methods are limited to a single measure of the position or of the
velocity from which a trajectory can be extrapolated based on
a model of the flow. In the hypothesis of a high speed manip-
ulation of cells, the cells are actuated by coupling fluidic and
dielectrophoretic forces, which magnitude can potentially vary
abruptly in time and space. In this sense, a punctual and fixed
in space measurement cannot be invoked for continuous trajec-
tory error correction due to a poor estimation (model errors or
disturbances) of the flow or the dielectrophoretic force. In this
paper, we propose a method to measure the whole particle trajec-
tory based on a compromise between a model of the flow and the
real-time impedance measurement.

Several issues have to be confronted regarding this approach.
First, the electrodes must be designed to ensure the sensitivity
of the sensor with respect to the position of the cell between the
electrodes. Numerical simulations are performed to propose an
electrode design dedicated to position sensing. Second, contrar-
ily to most impedance-based applications, signal processing must
be performed on-line and consequently should not introduce de-
lays. Extended Kalman Filters (EKF) are well suited to real-time
localization27,28, and have already been applied to impedance
measurements to extract information from a noisy signal29–31. In
this paper, an Extended Kalman Filter is implemented to extract

the position based on noisy impedance measurements. As a
first proof of concept, the proposed approach is validated exper-
imentally on 8.7 µm diameter polystyrene beads in a 1D case to
determine their longitudinal position in real-time in a channel.

This paper is organized as follows: Section 2 is dedicated to
the methodology of impedance measurement for position detec-
tion and to sensor design. Section 3 deals with signal processing.
An Extended Kalman Filter is implemented and experimental val-
idation of the proposed approach is performed using calibrated
microbeads in Section 4. Section 5 discusses the obtained results,
in particular as regards real-time detection of cell position. Sec-
tion 6 concludes this paper.

2 Impedance measurement for sensitive and repeat-
able position detection

2.1 Electrical impedance measurements

Top wall (insulating)

ElectrodeElectrode

Bottom wall (insulating)

Z𝑚(p)Flow

p

𝑧

𝑥
𝑦

Fig. 2 Simplified equivalent circuit model, illustrating the dependency of
impedance on cell position. The impedance of the system (composed of
the medium and the cell) is modeled as a variable impedance, the value

of which depends on the cell position in the channel.

Electrical impedance measurement consists in applying a low-
amplitude voltage U as the excitation signal between electrodes
and measuring the resulting current intensity I. The impedance Z
of the system is then deduced:

Z =
U
I

(1)

When a fluidically actuated cell is moving between the elec-
trodes, the impedance varies due to the difference of the electri-
cal properties between the cell and the medium. The measured
impedance of the system composed of the fluid and the particle
can be represented as a variable impedance Zm, as illustrated in
Figure 2.

The value of the variation depends on the impedance of the
medium Z0 which will be referred to as the baseline and a vari-
able impedance due to the presence of the cell Zc(p) where p
represents the position of the cell along the longitudinal axis x of
the channel with respect to the electrodes:


Zm(p = ∞) = Z0 no cell between the electrodes (2)

Zm(p) = Z0 +Zc(p) cell detected (3)

In this paper we propose to exploit the variation of impedance
for position sensing in LOCs. As a first proof of concept, this
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Fig. 3 FEM simulations of the variation of impedance due to the presence of an insulating bead between two electrodes as a function of its longitudinal
position in a fluidic channel. Two electrode designs are considered: a) a classical electrode design (square-shaped) and b) a star-shaped design. The
parameters of the simulation are: medium: PBS (σs = 1.6 S/m, εs = 80), channel width: 40 µm, channel height: 20 µm, object: 8 µm diameter bead
(σb = 10−14 S/m, εb = 4, spacing between the electrodes: 80 µm, altitude of the bead: 10 µm (center of the channel height).

article focuses on the position of a particle along the longitudinal
axis x of the channel. As will be explained in the next sections the
lateral position of the cell as well as its height will be controlled
using focusing electrodes, as is commonly done in DEP actuated
LOC13.

As mentioned in the introduction, at low frequencies, the cell
membrane, which is equivalent to a capacitance, prevents the
electric field lines from penetrating the cell. Under these con-
ditions, the electrical behaviour of a cell is similar to that of an
insulating microbead of identical size. Consequently, studying cell
position detection or microbead position detection is equivalent.
The rest of the paper will focus on bead simulations and measure-
ments.

2.2 Sensitivity of position detection

Sensitivity is the ratio between the measured signal (output)
and the measured property (input). In classical EIS, since the
measured properties are cell characteristics, the variation of
impedance with respect to the position of the cell should be
as low as possible, as it is well known in the literature26. In
this work, sensitivity definition (impedance variation per unit of
length along the x axis) requires a variation of impedance with
respect to the position of the cell. In order to maximize the detec-
tion range of the sensor, the sensitivity should be different from
zero.

Finite Element Method (FEM) simulations are performed with
Comsol software. A classical example involving an insulating

8 µm diameter bead passing through a microchannel in a PBS
(phosphate buffered saline) solution is studied. The results
obtained for two representative designs of electrodes, square-
shaped and star-shaped (with smooth tips), are presented in Fig-
ure 3. The square shaped electrodes are the ones commonly used
in EIS (Figure 3.a). However, this design is not suitable for po-
sition sensing due to the 20 µm zone in which the impedance is
almost constant. On the contrary, sensitivity using star-shaped
electrodes (Figure 3.b) is non-zero except at the exact center be-
tween the electrodes. It means that impedance directly depends
on the position of the bead. Providing an adequate response, this
geometry is retained for the impedance-based position sensor pro-
posed in this paper. Finding the optimal electrode layout design
is out of the scope of this article. However, several designs have
been tested to select the star-shaped electrode layout. They are
presented and compared in the Appendix, Section 7.

2.3 Repeatability of electrical impedance measurement

As mentioned previously, this article focuses on a first proof of
concept which consists in detecting the position of a bead along
one direction, the longitudinal axis x of the channel. In this sec-
tion, the goal is to identify the influence of the position of the
bead along the other axes on impedance measurement, and to
ensure the repeatability of the experiment. FEM simulations have
been conducted to analyse the impedance variation due to the
height of the cell in the channel. Results are presented in Figure
4. For beads close to the bottom wall of the channel (z = 4.1 µm),
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Fig. 4 Simulation of (a) the variation of impedance and (b) sensitivity of the sensor induced by the passage of a 8 µm diameter cell in PBS for the
star-shaped electrode geometry at different altitudes in a 20 µm high channel.
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Fig. 5 Electric field intensity in the microchannel when an insulating
bead is present while DEP focusing electrodes are activated. The
dielectrophoretic force displaces the bead to the low electric field

regions. The bead finds its equilibrium position at the center of the
channel section.

the plot of dependence of impedance on position exhibits three
inflection points (corresponding to a sensitivity equal to zero),
which makes the position detection more complicated. To ob-
tain repeatable impedance measurements, the height of the beads
should be controlled and they should be elevated, by at least a
few micrometers, to ensure a good sensitivity and the shape of
the impedance variation. Similarly, FEM simulations (not pre-
sented in this document) show that the impedance also depends
on the lateral position of the beads in the channel. Consequently,
the beads will be centered in the channel section to obtain re-
peatable results. To do so, liquid electrodes13 are used to focus
the beads along the y axis (which means that the beads are at
the center of the channel width) and to control the height of the
particle. Liquid electrodes are coplanar electrodes fabricated on
the bottom of dead-end chambers placed on the side of the main
channel. The insulating walls and ceiling of the channel guide
the electric field lines in the liquid into the main channel, and
determine the electric field distribution inside the microstructure.
A phase opposition potential on the electrodes generate a nega-
tive dielectrophoretic force which acts on the beads, and focuses
them toward the low electric field regions. Figure 5 presents the

electric field intensity for a microbead located between the liq-
uid electrodes. The dielectrophoretic force maintains the beads
at the center of the channel width (y axis) due to the generated
field gradient. Furthermore, the bead presence interferes with
the homogeneous vertical (z axis) electric field generated by the
liquid electrodes. The induced electric field gradient is source of
a vertical dielectrophoresis force which controls the z position of
the beads. In the rest of the paper, beads crossing the detection
zone are then assumed centered along the channel width (y axis)
and their height is controlled so that they are in the middle of the
channel (along the z axis).

3 Real-time detection

The goal of this section is to detect in real-time the presence of
a bead between the electrodes. The challenge is to isolate the
signal of interest (ie the variation of impedance Zc) from a noisy
and drifted signal (the measured impedance Zm).

3.1 Experimental setup
The experimental setup is composed of a microfluidic chip (Figure
6), with actuation and sensing units.

The microfabricated chip is composed of a layer of electrodes
and a microfluidic channel. A lift-off process involving Cr/Au lay-
ers (15 nm / 120 nm) on a 500 µm thick glass wafer is performed
to design the electrodes. A 20 µm thick SU8 layer is deposited
by spin coating and patterned by photolithography to make the
channel. The chip is mechanically sealed by pressing a PDMS
(polydimethylsiloxane) cover layer on the SU8 microchannel, and
is mounted on a printed circuit board to connect the electrodes to
the sensing and actuation units.

The actuation unit’s purpose is to translate the beads inside
the channel and make them cross the detection area centered
in the channel section. A pumping station (pressure controller
Elve f low OB1 and syringes) induces a laminar flow of approxi-
mately 800 µm/s that guides the beads across the chip channel.
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Fig. 6 Illustration (left side) and photograph (right side) of the chip. The fluidic actuation guides the beads into the
channel, and DEP focusing electrodes center them in the channel section. The position of the beads is detected by

impedance measurement (in the detection area).

A low frequency generator associated to amplifier and inverter
mountings applies phase opposition potentials on the DEP focus-
ing electrodes that maintain the beads at the center of the channel
section. The potentials applied on the electrodes are sine waves
of respectively V+ = 23 Vpp and V− =−23 Vpp, with a frequency
of 70 kHz.
The sensing unit aims at detecting the position of the beads. The
measurement electrodes are powered with an AC signal of 1.6 Vpp

at a frequency of 500 kHz. A pre-amplifier followed by a lock-
in amplifier (Zurich Instruments HF2TA and HF2LI) are used to
measure the impedance between the measurement electrodes.
This measurement unit filters the signal. In our particular exper-
iments, we assume that the bead travel time between the center
of each detection electrodes is around 100 ms. The sampling rate
is set to 10×103 samples per second and the low pass filter time
constant of the impedance spectroscope is set to 70 µs.
To calibrate the impedance based position sensor a camera is
used. A vision platform (Leica inverted microscope and Allied
Vision camera, model Stingray) records images. V ISP (Visual Ser-
voing Platform) libraries are used for image processing, to detect
the position of the beads. This calibration is performed off-line.
To increase the variation of the measured impedance Zm when
the bead is located between the measurement electrodes, the
bead and the medium must have significantly different electri-
cal properties. A conductive solution (diluted PBS, σs = 1 S/m,
εs = 80) and infinite impedance beads (Estapor, 8.7 µm diameter
calibrated polystyrene beads considered as perfectly insulating)
are chosen.

3.2 Signal extraction

The chip is filled with the solution of diluted PBS in which beads
are injected. The bead concentration in the medium is approxi-
mately 106 beads per milliliter. They are moved inside the chip by
the flow. The impedance between the detection electrodes is mea-
sured, and the result is presented in Figure 7.a. Two phenomena
can be noticed in this figure: (i) there is a drift in the measured
signal and (ii) high magnitude peaks, corresponding to the pres-
ence of beads or impurities between the measurement electrodes,
are present.

The drift is mainly due to a change of conductivity which is,
among other causes, due to the change of temperature. Heat
changes the conductivity of the medium which changes the
value of the baseline Z0. One solution to evaluate this baseline
despite the noise and the drift is to apply a moving median to
the signal. This method is similar to a low-pass filtering and it is
robust to rare events, which here are the variation of impedance
induced by the bead passages. Furthermore, the moving median
can be stopped while a peak is detected to minimize estimation
error on the baseline value. Integration period of the moving
median has to be low compared to the drift constant time and
high compared to bead passage and noise constant time. A
100 ms moving median is applied on the measured signal Zm.
The drift is compensated by subtracting this average value from
the current measured value Zm. Result of this drift compensation
is displayed in Figure 7.b. It can be noticed that this filtering
only necessitates to get information on the previously measured
values and it is thus compatible with real-time signal processing.
As an alternative this drift issue can be addressed by performing a
differential measurement12. This method consists in subtracting
the impedance measured by an additional electrode, identical
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Fig. 7 Real-time extraction of the signal of interest. (a) The measured signal Zm is filtered and thresholded to obtain the baseline Z0 by applying a
moving median. (b) The two signals are substracted to obtain the variation of impedance Zc due to the passage of the beads.

and not influenced by the presence of the particle, from the
signal of interest Zm.

From this signal with compensated drift (Figure 7.b) it is now
necessary to detect the variation of impedance Zc due to the pres-
ence of a bead. To do so, a threshold is set on the measured
impedance Zm above which a bead is considered as present. The
baseline evaluation using the moving median is then stopped un-
til the bead leaves the detection zone (i.e. Zm decreases below
the given threshold). The impedance variation Zc due to the pres-
ence of a bead is extracted by subtracting the estimated value of
the baseline Z0 at the instant the bead is detected from the signal
Zm. The detected beads are indicated in Figure 7.b by the triangle
markers. A small deviation on the peak amplitudes for two differ-
ent beads can be noticed. It can be due to an error between the
real and measured baseline, to a variation in the altitude of the
beads in the channel, or to impurities. In particular the small am-
plitude peak at around 2.6 s is due to the passage of an impurity,
as confirmed by the video recording.

4 Real-time position estimation

4.1 Principle of the Extended Kalman Filter

The previous section aimed at performing signal processing to
compensate for the drift, and to detect the passage of beads. The
goal is now to get information about the position of the bead
based on the impedance measurement when a bead is detected.
Two main challenges must be overcome: (i) the signal noise (ii)
the fact that there is no unique relation between the impedance
value and the position of the bead since the impedance varia-
tion is symmetrical with respect to the point located at the center
between the two measurement electrodes. This is especially an
issue when the bead is located near the center between the two
measurement electrodes since despite the design chosen for the
electrodes the variation of impedance remains low (see Figure

3.b).
The classical method, which consists in calibrating the sensor

off-line and then in using a look-up table which gives, for a mea-
sured impedance value, the corresponding position, cannot be ap-
plied in this paper. Indeed, the signal is noisy and the relation be-
tween the measured impedance and the position of the bead is not
one-to-one. As depicted in Figure 8, a given value of impedance
corresponds to two positions of the bead. It is not possible, from
the sole measurement, to determine which one is the correct one.
This is why a state observer based on the Extended Kalman Filter
(EKF) equations is proposed. Kalman filtering consists of two
recursive steps aiming to provide an estimation of a state xk. The
first one is a prediction step in which an estimate of the state is
provided, considering only knowledge about the dynamics of the
system studied. When a new (noisy) measurement is available,
the estimated state is corrected. This is the second step. For each
iteration k the state vector xk and the measurement vector yk are:


xk =

[
pk

vk

]
(4)

yk =
[
Zc(pk)

]
(5)

where pk is the bead position, vk its velocity and Zc(pk) the
impedance variation induced by the bead as defined in the previ-
ous sections.

The system is described by the state and observation models.
The state model (6) corresponds to the mathematical model of
the system, while the observation model (7) corresponds to the
measured data:


xk = f (xk−1,uk−1)+wk−1 (6)

yk = h(xk)+ vk (7)
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where v is the measurement noise and w represents the distur-
bances which affect the system (also called process noise).

The Extended Kalman Filter is an extension of the Kalman filter
dedicated to nonlinear systems. At each time step, the non-linear
functions describing the mathematical model and the observation
model of the system ( f and h in Eq. 6 and 7) are linearized. These
linearized functions are processed using the standard Kalman fil-
ter equations. Details about the theory of observers and Extended
Kalman Filter can be found in the litterature32,33.

The state model input vector uk is related to the fluidic actua-
tion. f represents the bead dynamics. It can be estimated based
on the knowledge of the physical equations ruling the system and
in particular on Newton’s second law and fluid velocity. h is the
observation model. It will be identified during the calibration
phase.

These elements (state and observation models, measurement
noise and disturbance characteristics) of the filter are determined
in the next sections.

4.1.1 State model f
The first equation of the state model, which is the mathematical
model, is obtained by considering that the derivative of position
is velocity. The second equation is obtained by assuming that
the velocity of the bead is equal to the one of the fluid. This
means that at each instant the bead is in equilibrium (the sum
of the forces applied on it is null). The DEP force applied by the
measurement electrodes is considered negligible. The state model
is thus linear and defined as follows:[

p̂k

v̂k

]
=

[
1 ∆t
0 0

][
p̂k−1

v̂k−1

]
+

[
0
v f

]
, (8)

where v f is the fluid velocity, ∆t the time interval between two
measurements and uk = [0 v f ]

T is the state model input vector.
A rough estimation of v f will be set at the initialization of the
detection. This value is then updated at each time step based
on the velocity of the bead estimated by the Extended Kalman
Filter. The Kalman Filter will correct this estimation based on
new impedance measurement.

4.1.2 Observation model h
To identify the observation model, which corresponds to the mea-
sured, filtered and interpolated data, the proposed sensor is cali-
brated. The calibration consists in finding the dependence of the
measured impedance on the position of the bead. The impedance
spectrometer Zurich Instruments provides impedance measure-
ment as a function of time. The position of the bead as a function
of time is estimated by an additional external position sensor (in
this case: a camera). This camera is needed only for the calibra-
tion phase, which is performed just once, off-line. The sampling
period of the camera being lower than the spectroscope’s one, the
positions obtained from the camera are interpolated such that the
period between two impedance measurements and two position
measurements with the camera is equal.

Positions as a function of time provided by the camera and
impedance measurements as a function of time provided by
the impedance spectroscope are then correlated to obtain the

Fig. 8 The impedance variation as function of the bead position
Zc = h(p) is experimentally obtained by camera and impedance

spectrometer data correlation. The curve is smoothed to remove the
noise and recorded as the observation model.

Fig. 9 Measurement noise distribution (the mean value has been
subtracted to the signal). The signal is recorded for a sufficient duration

(30 s) to obtain a statistical distribution of the noise.

impedance as a function of the position, as presented in Figure 8.
The experimentally obtained impedance variation is smoothed us-
ing a zero-phase low-pass filter. These data are used to define the
h function of the observation model.

4.1.3 Covariance of the measurement noise v
The reliability of the observation model depends on the measure-
ment noise (v). It varies as a function of the averaging time
of the lock-in amplifier, which determines the bandwidth of the
impedance measurement. This noise is characterized experimen-
tally.

The covariance matrix R of the measurement noise is necessary
for the implementation of the Extended Kalman Filter. R depends
on the standard deviation of the measurement noise Sv:

R =
[
S2

v

]
(9)

To identify Sv experimentally, the impedance of the medium is
measured over 30 s without bead nor actuation. The mean value
of the noise is computed, and it is subtracted from the signal (see
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inset of Figure 9). From this measurement noise the standard
deviation is evaluated as presented in Figure 9. It follows a gaus-
sian distribution with a standard deviation of Sv = 14.5 Ω. This
reinforces the choice of the Extended Kalman Filter since Kalman
filtering provides an optimised observation when noise is gaus-
sian.

4.1.4 Covariance of the disturbances w
Similarly, trust in the state model is related to the covariance ma-
trix Q of the disturbance (w). Disturbances related to the posi-
tion and the velocity of the bead are assumed not to be corre-
lated34,35.

This leads to:

Q =

[
Sw1

2 0
0 Sw2

2

]
, (10)

where Sw1 and Sw2 are the covariances of the disturbances re-
lated to the state model (8). The first relation of the state model
corresponds to the fact that the derivative of position is velocity .
We assume that no disturbance affects this relation. Thus Sw1 is
set to 0:

Q =

[
0 0
0 Sw2

2

]
, (11)

Sw2 represents the standard deviation of the disturbance linking
the fluidic force applied to the bead and its velocity. It can hardly
be identified analytically, so this parameter is tuned empirically.
One of the main issues while using Extended Kalman Filtering is
to find a tradeoff between the trust in the mathematical model
(given by the state model) and the trust in the measured data
(given by the observation model). If too much trust is given to
the mathematical model the system cannot correct errors due to
inappropriate modeling or to inherent disturbance in the system
that modifies the trajectory of the bead. On the contrary, mea-
surements are subjected to noise and are a source of errors in the
low sensitivity region at the center of the electrodes (see Figure
3.b and Section 5). Consequently, we choose here to give equal
trust in both the mathematical model and measured data. This
tuning is performed by selecting the appropriate disturbance co-
variance Q. The higher the covariance, the lower is the trust that
the filter gives to the mathematical model. The value Sw2 is cho-
sen experimentally. It is set to 80 µm/s as it provides a precise
estimation of the position of the bead.

4.2 Implementation of the bead tracking

Figure 10 presents the different steps of signal processing and
position estimation. The total impedance Zm is measured and
signal processing is performed to compensate for the drift, as ex-
plained in Section 3.2. When a bead is detected, the variation of
impedance due to the presence of the bead Zc is sent to the Ex-
tended Kalman Filter. Based on both this measurement and the
state model, the state vector is computed.

For each new bead j detected, an initial state vector x̂ j
0 must be

defined. Concerning the initial position of the bead, it is assumed
that p j

0 = −40 µm. It corresponds to the position of the center
of the first measurement electrode. As depicted in Figure 3, this

is the first position at which the bead is detected. The initial
velocity v̂ j

0 is more complex to determine. Two cases must be
considered: the initial velocity of the first bead v̂0

0 and the initial
velocity of the bead j, v̂ j

0, where j 6= 0.

The velocity of the first bead v̂0
0 is set to an arbitrary value (here

1200 µm/s) chosen according to the settings of the pressure con-
troller. Controlling the flow velocity with a syringe pump would
make it more straightforward to estimate the velocity of the parti-
cles, and thus the Kalman filter convergence would be faster since
the initial state would be known more precisely. However, pres-
sure controllers present several advantages, such as fast response
time and high stability and pulseless flow. If the flow rate has
to be known, it is still possible to integrate a flow meter with a
feedback loop. The goal here is to show that the Kalman filter
would converge despite a large error on the initial prediction of
the particles velocity. This is why we did not consider controlling
the flow rate precisely. In addition, the initial bead velocity esti-
mation is voluntarily biased in this article (around 30% of error)
to test the robustness of the method proposed in this paper. Thus
the initial state vector x̂0

0 is set to:

x̂0
0 =

[
p̂0

0
v̂0

0

]
=

[
−40 µm

1200 µm/s

]
(12)

The initial velocity of the jth bead is set to be equal to the ve-
locity of the j− 1th bead. As the velocity of the bead is equal to
the velocity of the flow this assumption holds if the variation of
the flow velocity is low between the two beads. This is commonly
true since the beads are separated by only a few seconds. To
avoid noise the last estimated velocities of the j−1th bead during
its passage between the electrodes are averaged over 100 ms.
Consequently, the jth bead initial state vector is:

x̂ j
0 =

[
p̂ j

0
v̂ j

0

]
=

[
−40 µm

SMA(v̂ j−1) m/s

]
(13)

where SMA is the simple moving average function, here applied
on the previous bead estimated velocities.

Based on these initial state vectors x̂ j
0 (where j can be equal

to 0), the filter provides at each iteration an estimation x̂ j
k of the

state vector exploiting the state and observation models, and their
associated trust defined by the matrices Q and R. To improve the
estimation of the position of the jth bead (where j can be equal
to 0), the state model is constantly updated. As previously pre-
sented, it is assumed that the bead velocity is equal to the velocity
of the flow. Thus, at each time step, i.e. even during the bead pas-
sage, the velocity of the fluid v f in Eq. (8) is updated based on
the value of the bead velocity estimated by the Kalman Filter (see
the feedback loop in Figure 10). To eliminate the influence of
noise the velocity of the fluid v f is assumed to be equal to the last
1000 estimated velocities of the bead. This corresponds to a mov-
ing average of τ = 100 ms. It consists, at time t, in averaging the
estimated velocity between t− τ and t to update the model. This
method increases the convergence time of the filter, but stabilizes
the estimation regarding punctual observation model errors. The
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Fig. 10 Diagram presenting the principle of signal processing for position estimation based on impedance measurements. The first step consists in
extracting the signal of interest, as explained in Section 3. Extended Kalman Filter is then implemented to estimate the state of the bead based on both
the impedance measurement and knowledge about the state model. In particular it necessitates to know the velocity of the flow, which is considered

equal to the velocity of the bead. This value is thus updated at each time step using the estimation provided by the Kalman Filter.

state model given by Eq. (8) is thus modified as:[
p̂k

v̂k

]
=

[
1 ∆t
0 0

][
p̂k−1

v̂k−1

]
+

[
0

SMA(v̂)

]
. (14)

4.3 Experimental position estimation of a bead

This section aims to discuss the position estimation obtained from
impedance measurements as presented in the previous sections.
It is compared to positions obtained from images given by a cam-
era. The camera is here only used as a comparison and not for
the impedance based position detection, apart from the calibra-
tion step that can be performed off-line (see Section 4.1.2).

Results are given in Figure 11. Figure 11.a presents the veloc-
ity of the beads flowing in the channel. Both the velocities ob-
tained from impedance measurements and from images obtained
by the camera are compared. Concerning the velocity obtained
from impedance measurements, it is obtained by averaging the
estimated bead velocities obtained by the Kalman Filter (100 ms
integration time). As described in the previous section, averaging
the estimated bead velocities allows to obtain a stable and con-
tinuously corrected value of fluid actuation for the state model.
Velocity estimation starts at 1200 µm/s as defined in the input
state vector x0

0 (Eq. 12). Then the feedback corrects this value.
Despite the large initial error on the velocity, the filter estimation
converges to the value obtained from the camera. As expected,
the moving average induces a non negligible convergence time
of the measurements obtained from impedance but it avoids the
large variations due to noise. This convergence time can be set by
tuning the moving average in Figure 10.

Figure 11.b (resp. Figure 11.c) presents the position estimation

of the first (resp. fifth) bead obtained both by impedance and by
the camera. For the estimation based on impedance measure-
ment the bead detection starts at p =−40 µm, which corresponds
to the center of the first electrode and ends at p = 40 µm which
corresponds to the center of the second electrode. For a given
bead, the position estimation initially tends to present large dif-
ferences with vision detection. This might be due to several issues
such as a lag in the bead detection since the impedance has to
reach a given threshold so that the bead is detected. In addition,
the magnitude of the difference with vision detection depends on
the accuracy of the state model. Here, the difference with vision
detection for the first bead position estimation is about 10 µm,
whereas this value is around 4 µm and less after a few beads.

Vision detection does not rely on a state model, so there is no
convergence time. However, vision presents several drawbacks,
in addition to the size of the objectives that has been discussed
earlier: with high magnification, the camera sampling rate (30
fps maximum) must be decreased to get a long enough expo-
sure time due to the low amount of light reaching the camera.
In our experiment, the sampling rate of the camera was set at
about 15 fps. Since the bead passage lasts approximately 100 ms,
the camera can provide only one image of the bead in the de-
tection area. The plots of Figure 11, which depicts the position
of the bead with respect to time are thus obtained using a linear
interpolation between two available measurements. Currently, it
is thus not possible to get in real time the position of the bead
between the electrodes due to this low sampling rate. This ap-
proximation is consistent insofar as the fluid velocity undergoes
very slow variations (considered as negligible over a period of
100 ms). The use of the impedance-based technique improves the
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(a) (b) (c)

Fig. 11 Real-time position and velocity estimation using both impedance and vision feedback and associated differences. (a) The velocity of the first
beads is highly overestimated using the proposed approach based on impedance measurements compared to vision due to the initial velocity value set
to the Kalman filter (v0

0). It results in a difference of around 10 micrometers in the position estimation for bead j = 1 (b). As the Kalman filter corrects
the value of velocity the estimation converges towards the velocity values obtained from the camera (a). The position estimation difference between
impedance and vision based techniques remains below 4 micrometers for bead j = 5(c).

sampling rate of the position measurement: an impedancemeter
such as the HF2LI from Zurich Instruments allows to get 210 x
106 samples per second, which is significantly higher than the
commonly obtained camera rate of 30 images per second.

These results demonstrate that the impedance based approach
is an attractive alternative solution to vision to provide integrated
real-time position sensing inside LOCs.

5 Discussion

This paper presents the proof-of-concept of an impedance based
position sensor to get the position of cells in Lab-On-a-Chip de-
vices along one direction. To validate experimentally the concept,
insulating microbeads with a calibrated diameter are used. How-
ever, impedance measurement is widely used on cells, and for the
frequency of the excitation signal (500 kHz), their electrical be-
havior (high impedance) is similar to that of polystyrene beads
due to their low conductivity. The position sensor should thus
provide similar results on cells, under the hypothesis of a small
dispersion in the radius of the cells, or that this radius has been
determined beforehand, using measurements by impedance spec-
troscopy for example. In order to make the observation model in-
sensitive to temperature, all measurement values are divided by
the updated baseline magnitude. For the sake of clarity, this does
not explicitly appear in the preceding conceptual description.

For this proof of concept, impedance measurements are post-
processed. However, special care has been taken to develop tools
compatible with on-line processing. The only step that is com-
monly realized off-line is the calibration step. Otherwise, all the
signal processing steps are based only on previous measurements.
In addition computation time is negligible (about 40 µs per itera-
tion). The proposed methodology can thus be readily transferred
to perform on-line position estimation.

As discussed in Section 4.1.4, the relation between the mea-
sured impedance and the position of the bead is not one-to-one.
It is thus not possible to use the classical method for position
sensing, which consists in calibrating the sensor off-line and then
using a look-up table to deduce the position from the measure-

ment only. Figure 12 illustrates this issue. Data previously used
for position estimation (see Figure 11), are used again with a dif-
ferent filter tuning. Now the filter is tuned so that the trust in the
state model is zero (Sw2 → ∞). This is equivalent to using only
impedance measurements. It can be seen that the difference be-
tween the position obtained from impedance measurement and
from the camera is huge when the bead is in the middle of the
electrodes, where the sensitivity of impedance measurement is
null. The position estimation can even estimate that the bead
went backward (see Figure 12.b). This non unique relation be-
tween the measured impedance and the position of the bead jus-
tifies the use of a Kalman filter, which combines both knowledge
of the state model and of impedance measurements. This work is
thus the first step toward a fully integrated sensor for cell position
detection in real-time in Lab-on-Chip devices.

We propose in this paper an original design of electrodes to
obtain a position sensitive signal in the entire zone between the
electrodes. An alternative consists in using the classical design
(square-shaped electrodes) and reducing the spacing between the
electrodes. The sensor response for such a configuration is de-
scribed in the litterature26. This technique increases the mean
sensivity of the sensor, but decreases the detection range.

6 Conclusions and perspectives

This paper presents a sensor dedicated to position estimation of
cells in Lab-on-chip devices. It is based on measurements of the
impedance between two electrodes. When a cell is present be-
tween these electrodes the impedance varies depending on the
position of the cell with respect to the electrodes. A specific de-
sign of electrodes enables to enlarge the sensitivity distribution
compared to classical designs. In order to estimate the cell posi-
tion despite drift and signal noise, signal processing is proposed to
detect the cell passage. A dedicated Extended Kalman Filter is im-
plemented to estimate the position of the cell from the impedance
measurements. It exploits both the measurement and knowledge
about the behaviour of the cells.

This sensor has been experimentally tested on polystyrene
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(a)

(b)

Fig. 12 Real-time position and velocity estimation using both impedance
and vision feedback and associated differences when no trust is given to
the state model as a function of time for (a) bead j = 1 and (b) bead j =
5.

beads by means of post processed impedance measurements. It
demonstrates the ability of the sensor to estimate the position of
an object between two measurement electrodes along one direc-
tion. As discussed, this sensor can be easily applied to on-line cell
position estimation since cells and insulating beads present sim-
ilar electrical characteristics and the signal processing methods
are compatible with real-time processing.

This paper is thus the first step towards the development of an
innovative and integrated sensor for cell 3D position estimation
based on impedance measurement. This proof of concept also
opens the way for implementing 2D or 3D integrated position
control in LOCs by exploiting the electrodes for both actuation
(DEP) and sensing (impedance measurement).

7 Appendix - influence of the shape of the electrodes
on the impedance measurement

Geometry

Sensitivity
around
the
center

Number
of zero-
sensitivity
points

Mean
sensitivity
(Ω/µm)

G1
(Classical)

No 1 14.0

G2
(Selected)

Yes 1 12.5

G3 No 1 14.1

G4 Not
significant

1 13.3

G5 Yes 3 14.4

G6 Yes 1 11.6

Table 1 Comparison of the performances of different geometries of
electrodes for position detection based on impedance measurements.

This section compares the impedance measurement obtained
when a bead is flowing in the channel for different electrode de-
signs. Several geometries of electrodes are tested, with different
properties: concave or convex, with rounded or tapered shapes.
Six geometries are compared in Table 1. Only the case for which
the two electrodes are identical is considered. Two criteria are
considered in the choice of a geometry: (i) the number of zero-
sensitivity points and (ii) the sensitivity of the signal around the
center of the electrodes. Due to the symmetry of the detection
area, which is composed of two identical electrodes, at least one
zero-sensitivity point is expected in the center, between the two
electrodes. Ideally, it should be the only zero-sensitivity point
since errors in the reconstruction of the position are more likely
to occur around these points. As an additional criterion to select
the geometry of the electrodes, the mean sensitivity should be
maximized.

Figure 13b presents FEM simulations of the impedance mea-
sured between the electrodes when a bead is flowing inside the
channel. The parameters used for the simulation are the ones
given in Section 2. One design, G5, presents 3 zero-sensitivity
points (see Figure 13c). It is thus discarded. The designs G1,
G3 and G4 present no (or not significant) sensitivity around the
center of the sensor detection area (Figure 13d). They are dis-
carded. Two designs, G2 and G6, are compatible with the above
mentioned criteria. Since G2 has the highest mean sensitivity
(Table 1), this geometry is selected as the measurement electrode
design.

This comparison aims at finding a suitable design for position
detection based on impedance measurement. This might not be
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(a)

(b)

(c)

(d)

Fig. 13 Simulation of the response of the sensor for different electrode
designs. (a) Tested designs summary. (b) Variation of impedance as a
function of the position of the bead. (c) Sensitivity of the sensor. (d)
Zoom around the center of the detection area. Simulation parameters
are identical to Section 2.

the optimal design, but full optimization is out of the scope of this
article. It would necessitate advanced computation techniques
such as the implementation of a genetic algorithm. Nevertheless,
it can be noticed that concave shapes are likely to be satisfying
designs.
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