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Abstract Today, wireless sensor networks (WSNs) have been widely used in
monitoring various applications, such as environment, military and health-
care, etc. The explosive growth of the data volume generated in these applica-
tions has led to one of the most challenging research issues of the big data era.
To deal with such amounts of data, exploring data correlation and scheduling
strategies have received great attention in WSNs. In this paper, we propose an
efficient mechanism based on the Euclidean distance for searching the spatial-
temporal correlation between sensor nodes in periodic applications. Based on
this correlation, we propose two sleep/active strategies for scheduling sensors
in the network. The first one searches the minimum number of active sensors
based on the set covering problem while the second one takes advantages from
the correlation degree and the residual energy of the sensors for scheduling
them in the network. Our mechanism with the proposed strategies were suc-
cessfully tested on real sensor data. Compared to other existing techniques,
the simulation results show that our mechanism significantly extends the life-
time of the network while conserving the quality of the collected data and the
coverage of the monitored area.
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1 Introduction

Nowadays, wireless sensor networks (WSNs) can be considered as one of the
most important source of big data era. In some applications, such as healthcare
services and atmospheric conditions monitoring [21] and commercial flights
[22], the volume of data generated by sensors nodes reaches the order of
petabytes every day. Moreover, the sensor nodes have a limited energy sup-
ply. Therefore, the problems of energy constraint and data redundancy emerge
inevitably at the core of WSNs challenges.

To deal with big data generated in WSNs, recent studies [23–25] pay a
great attention to inter-nodes data correlation techniques and scheduling nodes
strategies. The aim of such approaches is to schedule sensors that generate high
spatial-temporal correlation into sleep/active mode thus, enhancing the net-
work lifetime. In this paper, we focus on periodic real-time data collection
model in WSNs based on clustering architecture. In one hand, periodic model
has been used over a wide range of areas [26,27] where each sensor periodically
collects local readings of interest then transmitting them toward the sink. On
the other hand, recent works have mainly focused on the clustering architec-
ture as an efficient topology of WSNs that organizes data traffic and improves
scalability of the network [28,29]. Hence, our main goal in this paper is to min-
imize the huge amount of data generated in clustering-based periodic sensor
networks, by searching the spatial and temporal correlation between neigh-
boring nodes. When correlated nodes are detected, we propose two scheduling
strategies in order to switch sensors in each cluster into sleep/active modes.
The first strategy is based on the set cover problem while the second strategy
takes into account the correlation degree and the residual energy of the sensors
when scheduling nodes in the cluster.

The remainder of this paper is organized as follows. Section 2 presents
the related work on data correlation and scheduling techniques in sensor net-
works. Section 3 describes our mechanism, based on the Euclidean distance,
for searching spatially-temporally correlated nodes. In Section 4, we propose
two strategies for scheduling sensors in the network. Simulation results based
on real data readings are exposed in Section 5. Finally, we conclude our paper
and we provide our directions for future work in Section 6.

2 Related Work

In WSNs, a lot of techniques have been proposed in order to explore the
spatial-temporal data correlation between sensors [12–14]. The main objective
of such techniques is to reduce the energy consumption in data collection and
minimize the redundancy existing in the network. Recently, the authors in
[10,11] present a comprehensive overview about different spatial-temporal data
correlation techniques and sleep scheduling methods proposed in the literature
for WSNs.
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Some works, such as [15–18], study the spatial-temporal correlation be-
tween sensor readings as the aggregation process of similar data. In [15], the
authors propose a spatial-temporal correlation based fault-tolerant event de-
tection scheme, called STFTED, which leverages a two-stage decision fusion
and exploiting spatial-temporal correlation of sensor nodes. In [17], the au-
thors propose an architecture for dynamic and distributed data-aware cluster-
ing, and the Dynamic Data-aware Firefly-based Clustering (DDFC) protocol
to handle spatial similarity between node readings. The DDFC operation takes
into account the biological principles of fireflies to ensure distributed synchro-
nization of the clusters similar readings aggregations.

In other works, such as [5,19,2,20], the spatial-temporal correlation be-
tween sensors have been studied in order to schedule sensors in the network.
In [5], the authors propose an Efficient Data Collection Aware of Spatial-
Temporal Correlation (EAST) for energy-aware data forwarding in WSNs. In
EAST, nodes that detected the same event are dynamically grouped in corre-
lated regions and a representative node is selected at each correlation region
for observing the phenomenon. In [2], the authors propose a centralized algo-
rithm design and an optimizing protocol for scheduling the sensors during a
specified network lifetime. The objective is to maximize the spatial-temporal
coverage by scheduling sensors activity after they have been deployed.

Recently, the authors in [9] propose a spatial-temporal model to extend
the network lifetime based on three similarity metrics: Euclidean Distance,
Cosine Similarity and Pearson Product-Moment Coefficient (PPMC). Then,
they propose a scheduling algorithm for switching correlated sensor nodes to
the sleep mode. By performing real experiments, the authors show that PPMC
gives the best results, in terms of conserving network energy, compared to
other similarity metrics. However, PPMC has several disadvantages: 1) it does
not search the similarity at the sensor node level. 2) it does not take into
account the residual energy of the sensors when switching them to the sleep
mode. 3) it assumes that all the correlated sensors have the same degree of
correlation. Hence, aiming to overcome these disadvantages, we propose, in this
paper, a new mechanism based on the Euclidean distance for searching inter-
node data correlation. Once high correlation between inter-node is noticed,
we propose two sleep/active strategies for scheduling sensors in the network.
Through simulation, we will show that our mechanism, with the two proposed
strategies, can significantly outperform PPMC in terms of saving the sensors
energies and extending the network lifetime.

3 Spatial-Temporal Correlation Mechanism

In WSN, sensors are deployed densely in order to monitor some phenomenon
which leads to have high spatial-temporal correlation between sensed data. In
the section, we propose a new mechanism, based on the Euclidean distance,
in order to exploit spatial-temporal correlation bewteen sensed data in WSN.
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3.1 Local Temporal Correlation

In periodic applications, each sensor node collects a vector of readings in each
period then it send it to the CH at the end of the period. Mostly, consecutive
readings collected from the sensor, in each period, are temporally correlated
depending from how the monitored condition varies. We call this correlation
a local temporal correlation. Let us consider a vector of readings Ri collected
by the sensor Si during period p as follows: Ri = [r1, r2, . . . , rT−1, rT ] where
T is the total number of readings captured during p. Thus, our objective is
to explore temporal correlation between readings in Ri in order to reduce
the amount of data readings that need to be transmitted and thus to save
the energy in Si. Hence, we propose “LocTmp” function to identify if two
consecutive readings rt and rt+1, captured by the sensor Si during a period p,
are similar or not. LocTmp function is defined as follows:

Definition 1 (LocTmp function) We define the LocTmp function between
two consecutive readings rt and rt+1 as:

LocTmp(rt, rt+1) =

{
1 if |rt − rt+1| ≤ δ,
0 otherwise.

where the threshold value δ is a user defined and it depends on the appli-
cation. Two consecutive readings captured by a sensor are considered similar
if and only if their LocTmp function is equal to 1.

In order to maintain a desired data accuracy for the transmitted data, we
define the weight of a reading as follows:

Definition 2 (Reading’s weight, wgt(rt)) The weight of a reading rt is
defined as the number of equal or similar (according to LocTmp function)
consecutive readings, rt−1, previously collected in the same period.

Therefore, after searching local temporal correlation, LocTmp allows Si to
transform the initial vector of readings, Ri, to a set of readings, R′i, associated
to their corresponding weights as follows: R′i={(r′1, wgt(r′1)), (r′2, wgt(r

′
2)),

. . . , (r′k, wgt(r
′
k))}, where k ≤ T .

Based on the set R′i, we provide the following definitions:

Definition 3 (Cardinality of the set R′i, |R′i|) The cardinality of the set
R′i is equal to the number of elements in R′i, i.e. |R′i| = k.

Definition 4 (Weighted Cardinality of the set R′i, wgtc(R
′
i)) The weighted

cardinality of the set R′i is equal to the sum of all reading weights in R′i as

follows: wgtc(R
′
i) =

∑|R′
i|

j=1 wgt(r
′
j) = T , where r′j ∈ R′i.

3.2 Spatial Correlation Between Sensors

In WSNs, data sensed by the sensor nodes are spatially correlated due to their
densely deployment. Hence, it is important to exploit the spatial correlation of
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data in sensor network in order to reduce the energy consumption in sensors,
while conserving the integrity of these data.

Mostly, a sensor node Si is represented by its position (xi,yi), its sensing
range (Sr) and its transmission range (Tr). In this paper, we assume that all
sensor nodes has the same sensing and transmission range. Then, we use the
Euclidean distance (Eg) to calculate the geographical distance between two
nodes Si and Sj as follows:

Eg(Si, Sj) =
√

(xi − xj)2 + (yi − yj)2

After that, we define the neighboring nodes of Si:

Definition 5 (neighbor): Sj is a neighbor node of Si if the Euclidean distance
between Si and Sj is less than the twice of sensing range as follows:

Eg(Si, Sj) ≤ 2× Sr

Finally, we assume that Vi is the set of neighbors of Si.
Generally, there are three main categories to search the spatial correla-

tion between neighboring sensors. The first category, such proposed in [1,2],
exploits the overlap area between two sensor nodes (Fig. 1(a)). The second
category, such in [3], calculates the spatial correlation based on the distance
overlap between the sensors (Fig. 1(b)). The last category, such as [4], defines
a number of primary points in the circle disk of the sensing range, then it
calculates the number of points in the common area between the two sensors
(Fig. 1(c)).

Sr

Si

Sr

Sj

Overlap area

(a) Overlap area search-
ing.

Sr

Si

Sr

Sj

Overlap distance

(b) Overlap distance
searching.

Si

Sr

Sj

Sr

Overlap points

(c) Overlap points search-
ing.

Fig. 1 Spatial correlation techniques between two sensors.

In this paper, we focus on the second category of spatial correlation which
is simple and more flexible compared to other categories. However, in order to
make the constraint for the spatial correlation between sensors more difficult
to satisfy, we define a spatial correlation threshold called Csp. Therefore, the
spatial correlation between two sensors is defined as follows:

Definition 6 (Spatial correlation between two sensors): Two given sensors Si

and Sj , where Sj is a neighbor node of Si (i.e. Sj ∈ Vi), are spatially correlated
if and only if:

Eg(Si, Sj) ≤ Csp (1)
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where Csp is a threshold determined by the application and it takes values in
[0, 2×Sr]. Then, we assume that V ′i is the set of all spatially correlated nodes
with Si.

Based on the definition 6, we can dynamically change the threshold Csp de-
pending on the criticality of the monitored environmental; if the phenomenon
is critical, the decision makers can decrease Csp in order to decrease the num-
ber of spatially correlated nodes for each node, i.e. |V ′i | decreases; else, the
decision makers can increase the threshold Csp when the phenomenon is less
critical.

3.3 Temporal Correlation Between Sensors

In addition to the local temporal correlation in each sensor, the readings col-
lected by nearby sensor nodes can be also temporally correlated. The temporal
correlation among sensor nodes is to find out the sensors that collect similar
readings at the same period time. Similarity metrics, such as Euclidean and
Cosine distances, is one of the methods which can be used to identify sensor
nodes that are temporally correlated. These metrics are generally used at the
CHs level. Once high temporal correlation between two sensors is found, the
CH should schedule these sensors in order to remove the redundancy in the
network. In this paper, we focus on the Euclidean distance which is widely
used in various domains.

In mathematics, the Euclidean distance is the straight line distance between
two vectors of data. Let us first consider two data sets R′i and R′j generated
by the two sensor nodes Si and Sj respectively in the same period p. Then,
in order to compute the Euclidean distance between R′i and R′j , we must
retransform the set R′i (resp. R′j) to a vector as follows:

R′i =
[
r′1, . . . , r

′
1︸ ︷︷ ︸

wgt(r′1) times

, r′2, . . . , r
′
2︸ ︷︷ ︸

wgt(r′2) times

, . . . , r′k, . . . , r
′
k︸ ︷︷ ︸

wgt(r′k) times

]
where |R′i| = |R′j | = T .

Finally, we can calculate the Euclidean distance between the two vectors
R′i and R′j based on the following equation:

Ed(R′i, R
′
j) =

√√√√ T∑
k=1

(r′ik − r
′
jk

)2 where r′ik ∈ R
′
i and r′jk ∈ R

′
j

3.3.1 Distance Normalization

The normalization of data is an essential process when using the distance
functions. The objective of the normalization process is to scale all vectors of
data to have the same variation then, to perform an exact comparison among
these vectors. In this paper, we use Gaussian normalization to normalize data
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generated by the sensors. First, we calculate the Euclidean distance for each
pair of data vectors in the network:

Ed = {Ed(R′1, R
′
2), Ed(R′1, R

′
3), . . . , Ed(R′N−1, R

′
N )}

where N is the total number of sensors. Then, we can apply the Gaussian
normalization using the following formula:

E′d(R′i, R
′
j) =

Ed(R′i, R
′
j)− Y

6× σ
+

1

2
(2)

where Y is the mean of all distances and σ is the standard deviation of
pairwise distance over all data.

Thus, R′i and R′j are said to be redundant if E′d(R′i, R
′
j) ≤ Ctp, where Ctp

is a user defined threshold for the temporal correlation.

3.4 Spatial-Temporal Correlation Between Sensors

In PSNs, the spatial-temporal correlation happens when two nodes that are
close geographically take similar readings in a period [5]. In this section, our
objective is to search all pairs of sensors that are spatially-temporally corre-
lated then to switch, in a later time, some sensors to the sleep mode in order
to reduce redundant sensing and communication.

Based on equations 1 and 2, we say that two sensors Si and Sj , collecting
the set of readings R′i and R′j respectively, are spatially-temporally correlated
at the period p if and only if:

Eg(Si, Sj)× E′d(R′i, R
′
j) ≤ Csptp (3)

where Csptp = Csp × Ctp and Eg(Si, Sj) ≤ Csp and E′d(R′i, R
′
j) ≤ Ctp.

Algorithm 1 describes our technique to find pairs of sensors that are spatially-
temporally correlated. The CH searches which neighbors of each sensor Si are
spatially (line 6) and temporally (line 8) correlated with Si.

3.5 Selection of Thresholds

Obviously, the efficiency of our technique is highly related to the selection of
thresholds δ, Csp and Ctp. In a realistic application, these thresholds allow us
to define an appropriate level of service. For instance, increasing the values
of such thresholds leads to decrease the accuracy of the sent information and
reduces more the size of data sent. On the other hand, the lowest the values of
these thresholds are, the better relevant decisions and analysis could be made
but the LocTmp function will not be efficient in reducing the amount of sent
data. Therefore, selecting the appropriate values of thresholds is very essential
in our technique. Indeed, we believe that these values should be determined by
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the decision makers or experts depending on the application requirements. For
instance, in disaster monitoring applications, like volcano or seismic, thresholds
must be lower than weather monitoring applications. Therefore, these param-
eters are based on the application criticality and the studied phenomenon. On
the other hand, these parameters can also be adapted online and using the
context aware sensing.

Algorithm 1 Spatial-Temporal Correlation Algorithm.

Require: Set of sensors: S = {S1, S2...SN}, Set of their readings sets: R =
{R′1, R′2...R′N}, Csp, Ctp.

Ensure: All pairs of sensors (Si,Sj) that are spatially-temporally correlated.
1: L← ∅
2: for each sensor Si ∈ S do
3: for each sensor Sj ∈ S such that Sj 6= Si do
4: compute Eg(Si, Sj)
5: if (Eg(Si, Sj) ≤ 2× Sr) then
6: if (Eg(Si, Sj) ≤ Csp) then
7: compute E′d(R′i, R

′
j)

8: if (E′d(R′i, R
′
j) ≤ Ctp) then

9: L← L ∪ {(Si, Sj)}
10: end if
11: end if
12: end if
13: end for
14: end for

4 Sleep Scheduling Strategies

After searching all pairs of spatially-temporally correlated sensors into a clus-
ter, we propose, in this section, two scheduling strategies that allow sensors to
work alternatively. The first strategy is based on the set cover problem while
the second takes into account the correlation degree and the residual energy
of sensors when searching the set of active sensors. In each strategy, a set of
sensor nodes is selected, based on some criteria, to collect data in the network
while switching other sensors into sleep mode.

4.1 Set Cover (SC) Strategy

The first strategy for scheduling sensor nodes is based on the Set Cover (SC)
problem. In general, the SC problem consists in organizing sensor nodes into
mutually exclusive subsets that are activated successively, where each subset
ensures the coverage of the area of interest. Some real-world applications of SC
problem include railway and airline crew scheduling, network discovery and
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phasor measurement unit placement [6]. In our case of PSNs, we apply the
SC over the set of correlated sensors in order to divide all sensors into disjoint
sensor subsets while every subset being able to completely cover the whole
area of interest.

The SC problem can be formally defined in this paper as follows:
Given a set of N sensors S = {S1, S2, . . . , SN} and the list L = {(Si, Sj)/

Eg(Si, Sj)×E′d(R′i, R
′
j) ≤ Csptp} of all pairwise spatially-temporally correlated

sensors. The goal of SC is to find the list D which contains all the subsets X ⊆ S,
where each X will cover, in terms of spatial-temporal correlation, all the sensors
in S. In other words, organizing sensor nodes into mutually exclusive subsets X
where X ensures the coverage of the whole area of interest. Then, these subsets
are activated successively.

Theoretically, the SC can be formulated as a binary integer programming
problem as follows:

Minimize

N∑
j=1

Sj

Subject to

N∑
j=1

aijSj ≥ 1, i = {1, . . . , N}

Sj ∈ {0, 1}, j = {1, . . . , N}

Our startegy operates into rounds, where each round is composed of |D|
successive periods where |D| is the number of disjoint subsets found after ap-
plying the set cover technique. At each period only one subset is activated
while the remaining nodes go to sleep mode. After each round, where all the
subsets have been activated for one period and successively, the list of subsets
will be updated based on the new spatio-temporal correlation between nodes.

Illustrative example: we consider a set of 6 sensors: S = {S1, S2, S3, S4, S5,
S6}, with the list of spatially-temporally correlated sensors: L = {(S1, S2), (S1, S3),
(S1, S4), (S1, S5), (S2, S6), (S3, S4), (S3, S6), (S4, S5)}. This leads to the follow-
ing mathematically formulation of SC problem:

Minimize: S1 + S2 + S3 + S4 + S5 + S6

Subject to: S1 + S2 + S3 + S4 + S5 ≥ 1
S1 + S2 + S6 ≥ 1
S1 + S3 + S4 + S6 ≥ 1
S1 + S3 + S4 + S5 ≥ 1
S1 + S4 + S5 ≥ 1

S2 + S3 + S6 ≥ 1

By applying the SC problem [7], we can find two feasible scheduling where
evey sensor Si equals to 1 (in active mode) in at most one scheduling 1:

– Scheduling 1 : S1 = S6 = 1 and S2 = S3 = S4 = S5 = 0.

1 The values 0 and 1 of the sensor mean that it can be on sleep or active mode respectively.
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– Scheduling 2 : S2 = S4 = 1 and S1 = S3 = S5 = S6 = 0.

Therefore, we can divide S into two disjoint subsets of sensors as follows:
L = {L1 = {S1, S6}, L2 = {S2, S4}}. Consequently, the current round will
consist, by applying our SC strategy, in three periods where in each period
the sensors in one subset Li wil be active. Otherwise, all the sensors are active
in the first period. Fig. 2 shows the active sensors in each period in the Round1.

Period 1 Period 2 Period 3 Period 4

Round 1

S1, S2, S3, S4, S5, S6 S1, S6 S2, S4 S1, S2, S3, S4, S5, S6

Round 2

Fig. 2 Active sensors during periods in the round.

At the begining of each perio the CH is reponsible to send notifications to
activate or switch off the nodes. Finally, we note that the number of periods
during a round can be fixed based on the temporal variations and observations.

4.2 Correlation Degree and Residual Energy (CDRE) Strategy

In this section, we propose a second strategy for scheduling in sensor networks
based on spatio-temporal correlation while taking into account the residual
energy. We call this strategy Correlation Degree and Residual Energy (CDRE)
strategy.

The CDRE strategy also operates into rounds where each round is fixed
to two periods. In the first period of each round, the CH searches the set of
sensors to be active in the second period, based on the CDRE strategy. For
this we consider the following notations:

– The list of spatially-temporally correlated sensors with their correlation
degrees: L = {

(
(Si, Sj), Cij(Si, Sj)

)
such that Cij(Si, Sj) = Eg(Si, Sj) ×

E′d(R′i, R
′
j) and Cij(Si, Sj) < Csptp}.

– Eri , the residual energy of the sensor Si.

The CDRE strategy can be expressed using the Algorithm 2. First, we order
the pairs of sensors according to the increasing order of their spatial-temporal
correlation degree. Therefore, we start with the pair of sensors having the high-
est correlation degree (line 2). Then for the first period of each round, for each
pair of nodes (Si,Sj), we selct the sensor which has the higher residual energy
to be an active sensor in the second period, and the second one will go to sleep
mode (lines 4-14). The objective of this part of the algorithm is to select from
correlated nodes the nodes to be activated in the next period and having the
highest remaining energy. In a second step, for the nodes that do not have any
correlation with other sensors, they must be in active mode for next rounds
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(lines 15-19). After that, all the nodes in set E will send their readings of the
first period to the sink and be activated for the next period, while the others
do not sen d their readings and go to sleep node for the next period. The
objective here is to remove the redundancy among the data sent to the sink in
the first period, contrarily to the SC strategy which sends all the readings sets.

Algorithm 2 CDRE Strategy Algorithm.

Require: Set of sensors: S = {S1, S2...SN}, Set of their readings sets: R =
{R′1, R′2...R′N}, List of correlated sensors: L, round.

Ensure: void.
1: E← ∅
2: L ← sort(L); // L is sorted in increasing order of the sensors correlation

degree
3: if First round then
4: while L is not empty do
5: ((Si,Sj), Cij(Si,Sj)) is the first element in L
6: consider Eri > Erj

2

7: if Sj /∈ E then
8: if Si /∈ E then
9: E← E ∪ {Si}

10: end if
11: remove all elements (Sy,Sj) and (Sj ,Sy) from L such that Sy 6= Si

12: end if
13: remove ((Si,Sj), Cij(Si,Sj)) from L
14: end while
15: for each Si ∈ S do
16: if Si has no correlated Sj in E then
17: E← E ∪ {Si}
18: end if
19: end for
20: for each Sk ∈ E do
21: Send to Sink(R′k)
22: end for
23: for each Sk ∈ S such that Sk 6∈ E do
24: Sleep message to(Sk)
25: end for
26: else
27: for each Sk ∈ S do
28: if Sleep message to(Sk) then
29: Sk enter in sleep mode
30: else
31: Active mode
32: end if

2 We consider that Si has more energy than Sj . In the opposite case, we do the same
thing by inverting the indices.
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33: end for
34: end if

Illustrative example: Recall the sensors S1 to S6 in the set S in the
example above with the ordered list of correlated pairs degree as follows: L ={(

(S1, S3), C1,3 = 0.5
)
,
(
(S4, S5), C4,5 = 0.9

)
,
(
(S3, S4), C3,4 = 1.8

)
,
(
(S3, S6),

C3,6 = 2.1
)
,
(
(S1, S5), C1,5 = 2.5

)
,
(
(S1, S2), C1,2 = 2.9

)
,
(
(S1, S4), C1,4 =

3.3
)
,
(
(S2, S6), C2,6 = 3.5

)}
. Then, we consider that the sensors have the

following residual energies at the beginning of the round i: Er1 = 8.1mJ ,
Er2 = 8.3mJ , Er3 = 7.6mJ , Er4 = 6.9mJ , Er5 = 7.8mJ , Er6 = 7.9mJ .

– Step 1 : We start by the correlated pair (S1,S3). Since S1 has more en-
ergy than S3, S3 will be switched to the sleep mode in the next period
while S1 will be added to the list of active sensors: E = {S1}. Then,
we remove the pairs of sensors that contains S3, i.e. (S3,S4) and (S3,S6).
The remaining elements in L =

{(
(S4, S5), C4,5 = 0.9

)
,
(
(S1, S5), C1,5 =

2.5
)
,
(
(S1, S2), C2,6 = 2.9

)
,
(
(S1, S4), C1,4 = 3.3

)
,
(
(S2, S6), C1,2 = 3.5

)}
.

– Step 2 : The first element in L, i.e. (S4,S5), is treated similarly to (S1,S3): we
add S5 to the list of active sensors and we switch S4 to the sleep mode then,
we remove all elements that contains S4 from L. Therefore, E = {S1, S5}
and L =

{(
(S1, S5), C1,5 = 2.5

)
,
(
(S1, S2), C2,6 = 2.9

)
,
(
(S2, S6), C1,2 =

3.5
)}

.
– Step 3 : Since S1 and S5 are both in E, we remove the pair (S1,S5) from L

because they will be both in active mode. Therefore, L =
{(

(S1, S2), C2,6 =

2.9
)
,
(
(S2, S6), C1,2 = 3.5

)}
.

– Step 4 : Independent from residual energies of the sensors S1 and S2, S2

should be switched to the sleep mode because S1 will be considered as
active sensor in the next period. Hence, we remove elements from L that
contains S2: L = {}.

– Step 5 : We add the sensor S6 to the set E since it does not have any
correlated sensor in E.

Finally, the set of active sensors and the readings sets sent from the CH to
the sink, at each period in the round i, are shown in Fig. 3(a) and Fig. 3(b)
respectively. In the first period, all the sensors are active while the CH only
sends the sets which are not redundant, i.e. sensors ∈ E. On the other hand,
all readings sets coming from the active sensors will be send to the sink in the
second period in the round.

5 Simulation Results

In this section, we look at the performance of our spatial-temporal correlation
mechanism under the two proposed scheduling strategies. In our simulations,
we implemented both strategies based on a Java based simulator. We ran the
simulator based on real sensor readings of temperature collected by 46 sensors
and provided by the Intel Berkeley Research lab [8]. Fig. 4 shows a map of
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Period p Period p+1

Round i

S1, S2, S3, S4, S5, S6 S1, S5, S6

(a) The active sensors at each period in the round.

Period p Period p+1

Round i

S1, S5, S6 S1, S5, S6

(b) The readings sets sent from the CH to the sink at each period
in the round.

Fig. 3 Illustrative example of the actives sensors and their readings sets during a round.

the placement of sensors in the lab. The sensors are Mica2Dot with weather
boards that collect temperature values once every 31 seconds. We assume
that the network is divided into two clusters, which have CH1 and CH2 as
cluster-heads respectively, where the sensors send their data periodically to
their appropriate cluster-head. We compared our results to those of PPMC
proposed in [9]. Table 1 shows the parameters used in our simulations.
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5.1 Performance Evaluation at Sensor Node

In this section, we evaluate the performance of our mechanism with SC and
CDRE strategies at the sensor nodes level, compared to the PPMC [9] and
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Parameter Description Value

T Number of readings per period 200, 500, 1000
Sr Sensor sensing range 5, 10, 15, 20 meters
δ LocTmp similarity threshold 0.03, 0.05, 0.07, 0.1

Csp Spatial correlation threshold 2× Sr, 5×Sr
3

, 4×Sr
3

, Sr

Ctp Temporal correlation threshold 0.35, 0.4, 0.45, 0.5
n Number of sensors in each cluster 23
tPPMC Similarity threshold used for PPMC 0.9
Ei Initial energy for each sensor 10 mJ

Table 1 Simulation environment.

the näıve method (i.e. the classic method where all readings collected by the
sensors are sent to the sink without any processing). Indeed, we present only
the results for one cluster, i.e. the second cluster with CH2, in the case when
the performance metric gives similar results for the two clusters. In addition,
the results for each metric shown in the next figures represent the average of
all sensors in each cluster. At this level, we have considered three performance
metrics.

5.1.1 Percentage of Data Readings Sent from Each Sensor to its CH

In this section, our objective is to show how our mechanism can decrease the
data readings collected by each sensor node and then sent to the CH2. Fig. 5
shows the percentage of data collected, then sent, by each sensor node when
varying one parameter each time and fixing the others as shown in Fig. 5 (a
to e). The obtained results show that PPMC can reduce from 25% to 33% the
data sent to the CH2, while, our mechanism with SC and CDRE strategies
can reduce, respectively, up to 93% and 90% the data sent, compared to the
näıve technique which always sends all data collected (i.e. 100%) . This means
that our approach can effectively eliminate the redundancy in data collection
while searching all sensors that generate spatially-temporally correlated data.
Furthermore, we can also notice that the SC strategy gives better results, in
terms of reducing the data sent by each sensor, than CDRE strategy in all
cases.

Several observations can be made based on the results in Fig. 5:

– By increasing the threshold δ in Fig. 5(a), each sensor can reduce, using
the SC and CDRE strategies, up to 90% and 87% respectively the readings
sent to the CH2 compared to PPMC. These results are obtained due to
the fact that LocTmp will find more similar readings when δ increases.

– By increasing its sensing range as shown in Fig. 5(b), each sensor sends
less readings to the CH2 using the two proposed strategies. For instance,
when Sr increases from 5 to 20, a sensor node decreases its readings sent
from 11.4% to 8.4% using SC strategy. This happens because, when Sr

increases, each sensor will have more neighboring, thus correlated, sen-
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(a) T = 500, Sr = 15, Csp = 2 × Sr,
Ctp = 0.45.

(b) T = 500, δ = 0.07, Csp = 2 × Sr,
Ctp = 0.45.

(c) Sr = 15, δ = 0.07, Csp = 2 × Sr,
Ctp = 0.45.

(d) T = 500, Sr = 15, δ = 0.07, Ctp =
0.45.

(e) T = 500, Sr = 15, δ = 0.07, Csp =
2× Sr.

Fig. 5 Percentage of data readings sent from each sensor to the CH2.

sors. Consequently, more sensors will be switched to the sleep mode, thus,
decreasing the percentage of the collected and sent readings.

– By increasing T from 200 to 1000 in Fig. 5(c), the percentage of read-
ings sent decreases using SC and CDRE strategies while it increases using
PPMC. The reason for this is that the δ threshold used in LocTmp in the
two strategies which finds, then eliminates, more redundancy when T in-
creases. Contrarily, PPMC does not apply any processing on the collected
data which increases the readings sent to the CH2 when T increases.

– By decreasing the spatial correlation threshold (Csp) in Fig. 5(d), the per-
centage of readings sent to the CH2 increases in the three approach, i.e.
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SC, CDRE and PPMC. This result is logical since we make the constraint
for the neighboring sensors more difficult to satisfy (see definition 6). Con-
sequently, the number of active sensors in each period will tend to increase.
It is also important to notice that our strategies reduce, in all cases, the
readings sent to CH2 as compared to those sent using PPMC.

– By increasing the temporal correlation threshold (Ctp) in Fig. 5(e), SC and
CDRE strategies allow each sensor node to decrease its data readings sent
to the CH2. This is because, the Euclidean distance between sets of readings
will be more easily satisfied therefore, more sensors will be switched to the
sleep mode.

5.1.2 Lifetime of the Sensor Node

In this section, our objective is to study the energy consumption at the sensor
nodes level. Therefore, we fixed the initial energy for all sensor nodes to Ei.
Then, we applied our strategies, PPMC and Näıve approaches while varying,
each times, one parameter and fixing the others as done in Fig. 5. Fig. 6 shows
the lifetime of each sensor in terms of number of periods in which the sensor
is operational, i.e. its residual energy is positive. The obtained results show
clearly that our mechanism, with the proposed strategies, can efficiently reduce
the energy consumption of the sensor and extend its lifetime. This is because,
our mechanism eliminates the redundancy among collected data and reduces
the readings sent to the CH (see Fig. 5). Although the PPMC can extend,
in the best case, the lifetime of a sensor by two times compared to the Näıve
approach, our strategies significantly outperform the results of PPMC. We can
also notice that, the SC strategy gives better results in terms of keeping the
sensor node operating for long time compared to CDRE strategy.

In WSNs, the energy consumption in the sensor node is proportionally to
the amount of data sent by the sensor. Consequently, when the sensor sends
more data the CH, its energy will be more consumed and vice versa. Hence,
the observations made based on the results of Fig. 5 can be similarly made
for the energy consumption in the sensor in the Fig. 6. Table 2 shows how
many times the sensor node can extend, using our strategies, its lifetime in
the worst and the best cases by fixing one parameter as shown in Fig. 6(a to
e), compared to PPMC and Näıve approaches.

Our
Strategy

Compared
Strategy

δ Sr T Csp Ctp

SC
PPMC 4→ 9 6→ 7 7→ 8 6→ 7 5→ 8
Näıve 8→ 18 11→ 14 12→ 16 12→ 14 11→ 16

CDRE
PPMC 3→ 7 5→ 6 5→ 6 5→ 6 4→ 6
Näıve 6→ 14 10→ 11 9→ 11 10→ 11 10→ 11

Table 2 Lifetime comparisons between our strategies, PPMC and Näıve approaches. (Worst
case → Best case).
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(a) T = 500, Sr = 15, Csp = 2 × Sr,
Ctp = 0.45.

(b) T = 500, δ = 0.07, Csp = 2 × Sr,
Ctp = 0.45.

(c) Sr = 15, δ = 0.07, Csp = 2 × Sr,
Ctp = 0.45.

(d) T = 500, Sr = 15, δ = 0.07, Ctp =
0.45.

(e) T = 500, Sr = 15, δ = 0.07, Csp =
2× Sr.

Fig. 6 Lifetime of each sensor in the second cluster (CH2).

5.1.3 Variation of the State and the Energy of the Sensor during Periods

In this section, we show an example of a sensor activitiy variation during
periods by applying our strategies, PPMC and Näıve approaches. We take the
sensor that has an id equals to 35 located in the second cluster, then we study
the variation of its state, i.e. active or sleep, and its residual energy during
the periods, for some fixed parameters shown in Fig. 7. Based on the results
of Fig. 7(a), we can see that the state of the sensor varies, when applying
our strategies, from 1 (i.e. active mode) to 0 (i.e. sleep mode) during the
periods more dynamically than with other techniques. Our strategies confirm
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also the efficient reduction of the redundancy between the sensors correlated
to the sensor ‘35’ by switching it to the sleep mode more often than with the
other techniques. On the other hand, Fig. 7(b) shows how the residual energy
of the sensor varies depending on the state of the sensor; if the sensor is in
active mode, its residual energy decreases in order to collect the data and
send it to the CH; else, it remains fixed until the next period. We can also
observe that the residual energy of the sensor can remain fixed using the SC
strategy in many successive periods, i.e. from periods 18 to 22 in Fig. 7(b) for
example. This happens because the number of periods in each round changes
dynamically using the SC strategy where the sensor can be active at most in
two periods in a round.

(a) Variation of sensor state’s. (b) Variation of sensor energy.

Fig. 7 Variation of sensor activity during periods, Sensor id = 35, T = 500, Sr = 15,
δ = 0.07, Csp = 2× Sr, Ctp = 0.45.

5.2 Performance Evaluation at CH Nodes

In this section, we evaluate the performance of our approach at the CHs level.
We have taken four performance metrics.

5.2.1 Data Accuracy

Scheduling sensor nodes in the network without losing the integrity of the
information is an important challenge for the WSN. Data accuracy usually
represents the “data loss rate” measure. It is an evaluation of the readings
taken by the sensor nodes whose values (or similar values) do not reach the
sink. Fig. 8 shows the results of data accuracy for SC, CDRE and PPMC for
different values of parameters considered in our simulation. We can observe
that our strategies always give better results for data accuracy compared to
PPMC. This is because, the Pearson coefficient used in PPMC calculates the
distance between two data sets based on the summation of readings while
the Euclidean distance, used in our strategies, calculates the distance between
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every two readings in the data sets. This makes the loss of data in our strategies
less than that in PPMC. We can also notice that the results of data accuracy
using CDRE strategy is better, in the most cases, than those obtained using
SC strategy. The reason for that is the sensor sends, using the two strategies,
at most two data sets in a round while the round in SC contains more periods
than that in CDRE (see illustrative examples for SC and CDRE strategies).

(a) T = 500, Sr = 15, Csp = 2 × Sr,
Ctp = 0.45.

(b) T = 500, δ = 0.07, Csp = 2 × Sr,
Ctp = 0.45.

(c) Sr = 15, δ = 0.07, Csp = 2 × Sr,
Ctp = 0.45.

(d) T = 500, Sr = 15, δ = 0.07, Ctp =
0.45.

(e) T = 500, Sr = 15, δ = 0.07, Csp =
2× Sr.

Fig. 8 Data accuracy at the CH2.
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In general, the data accuracy dependent on the percentage of data sent by
the sensors (see results in Fig. 5) and on the number of active sensors during
the periods; when the data sent to the sink or the number of active sensors
increase, the data accuracy increases. Therefore, the following observations can
be made based on the results of Fig. 8: (1) data loss measure increases when
the sensing range of the sensor (Sr) or the temporal correlation threshold (Ctp)
increase (Fig. 8(b and e)). (2) the data accuracy increases when the number
of collected readings during a period (T ) increases or the spatial correlation
threshold (Csp) decreases (Fig. 8(c and d)).

5.2.2 Variation of Periods Number during Rounds

In this section, we show how the number of periods changes, using our proposed
strategies, after each round for the two clusters in the network, for some fixed
parameters. Using SC strategy, the CH calculates, at the beginning of each
round, the maximum number of periods for the current round based on the
set covering problem. Otherwise, the number of periods is always equal to 2
for each round using CDRE strategy. The obtained results of the two clusters,
represented by their cluster-heads CH1 and CH2 respectively, are shown in
Fig. 9(a) and Fig. 9(b) respectively. While each round always consists of two
periods using CDRE, the number of periods dynamically varies in each round
using SC as shown in the figures. We can also observe that: (1) the round can
up to 7 periods using SC strategy. This reflect the high level of redundancy
existing in the network where SC can efficiently eliminate this redundancy.
(2) the sensors in the first cluster are more spatially-temporally correlated
compared to those in the second cluster. This leads to extend, using the two
strategies, the lifetime of the first cluster more than that of the second cluster.

(a) CH1 (b) CH2

Fig. 9 Variation of periods number in each round, T = 500, Sr = 15, δ = 0.07, Csp = 2×Sr,
Ctp = 0.45.
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5.2.3 Variation of Active Sensors Number during Periods

In this section, our main goal is to show how our strategies are able to schedule
the activities of the sensor nodes for the two clusters. Fig. 10 shows the number
of active sensors in each cluster and in each period using SC and CDRE
strategies, for the fixed parameters shown in the figure. The number of active
sensors can affect the lifetime of the network, the data latency and the coverage
of the monitored area. As we can see, each strategy successfully schedules the
sensor nodes in each cluster dynamically after each period according to its
own scheduling mechanism. We can notice that, the SC strategy reduces the
number of active sensors, in each cluster, at each period to the minimum while
the CDRE strategy selects the set of active sensors that balance the energy
distribution in each cluster. Consequently, the obtained results confirm the
proper behavior of our strategies.

(a) CH1 (b) CH2

Fig. 10 Variation of active sensors number during each period, T = 500, Sr = 15, δ = 0.07,
Csp = 2× Sr, Ctp = 0.45.

5.2.4 Coverage Variation during Periods

Conserving the network energy while preserving the maximal coverage of the
region of interest is an important challenge in WSNs. In Fig. 11, we show
how much of the area of each cluster is covered after each period by applying
our strategies. The sensing range of a sensor is varied from 10 in Fig. 11(a
and b) to 15 in Fig. 11(c and d), while the other parameters remain fixed.
The obtained results show that the two proposed strategies provide sufficient
coverage for the clusters during each period. Therefore, we can consider that
our mechanism with the two proposed strategies can efficiently extend the
network lifetime while preserving the integrity of data and the coverage of the
observed area.

Based on the results in Fig. 11, several observations can be made:
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(a) CH1, Sr = 10. (b) CH2, Sr = 10.

(c) CH1, Sr = 15. (d) CH2, Sr = 15.

Fig. 11 Coverage ratio for each cluster, T = 500, δ = 0.07, Csp = 2× Sr, Ctp = 0.45.

– the CDRE strategy provide more coverage for the two clusters compared
to SC strategy. This is because, the number of active sensors in each period
using CDRE strategy is greater than that using SC strategy.

– the coverage ratio for each cluster increases when the sensor sensing range
increases.

5.3 Further Discussions

In this section, we give further consideration to our proposed mechanism.
We compare the obtained results for both strategies SC and CDRE. We give
some directions to which strategy to choose and under which conditions and
circumstances of the application.

From the sensor lifetime point of view, both strategies SC and CDRE
significantly improve the lifetime of the sensor (Fig. 6). However, SC allows
sensor to extend more its lifetime, from 7% to 45%, compared to CDRE.
Therefore, if the application needs to conserve the energy and extend the
network lifetime as long as possible, SC strategy is more suitable.

From the data accuracy point of view, CDRE can save, in the most cases,
the integrity of the collected data more than SC. This is because the number
of active sensors in each period using CDRE is greater than that in SC, which
increases the accuracy of the data sent to the sink. Consequently, when the
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priority of the application is to ensure a high level of data accuracy, CDRE is
more suitable.

From the coverage of the interest area point of view, CDRE can practically
cover the whole monitored area during all periods of the network lifetime, while
SC can ensure a satisfactory coverage, i.e. more than 70% in the most cases, of
the network area. Hence, if the application does not permit flexibility regarding
coverage of the network, CDRE is more suitable.

6 Conclusion & Future Work

In this paper, we proposed an efficient mechanism in order to search the
spatial and temporal correlation between data collected by the sensors in a
periodic sensor network. Then, in order to schedule sensors to work alterna-
tively, we proposed two scheduling strategies in order to switch the sensors into
sleep/active mode during the periods. The first strategy, called SC, is based
on the set cover problem while the second strategy, called CDRE, takes into
account the correlation degree and the residual energy of the sensors when
scheduling the network. We demonstrated through simulation on real data
readings the efficiency of our mechanism, under the two proposed strategies,
in sensor networks in terms of extending network lifetime while conserving the
quality of the collected data and the coverage of the monitored area.

As future work, we will adapt our proposed mechanism to take into con-
sideration reactive periodic sensor network, where sensor nodes operate with
different sampling rates. In periodic applications the dynamics of the moni-
tored condition or process can slow down or speed up; the sensor node can
further save energy by adapting its sampling rates to the changing dynamics
of the condition or process.
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