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Abstract— Condition-based maintenance (CBM) appears to
be a key element in modern maintenance practice. Research
in diagnosis and prognosis, two important aspects of a CBM
program, is growing rapidly and many studies are conducted
in research laboratories to develop models, algorithms and
technologies for data processing. In this context, we present
a new evolving clustering algorithm developed for prognostics
perspectives. E2GK (Evidential Evolving Gustafson-Kessel) is
an online clustering method in the theoretical framework of
belief functions. The algorithm enables an online partitioning
of data streams based on two existing and efficient algorithms:
Evidantial c-Means (ECM) and Evolving Gustafson-Kessel
(EGK). To validate and illustrate the results of E2GK, we use a
dataset provided by an original platform called PRONOSTIA
dedicated to prognostics applications.

I. INTRODUCTION

Cluster analysis, as a multivariate statistical analysis
method, is a classification approach that aims at grouping
a set of N data into c clusters ω1, ...,ωc whose members
are similar in some way. Clustering refers to a wide variety
of algorithms that aim at discovering groups (also called
clusters or partition) in the data in order to summarize
the data or to emphasize an existing structure. In most
cases, a cluster is defined as a subset of data for which
the similarity is larger than the similarity with other data
in other subsets. A natural way of data grouping is based
on similarity measures such as the Euclidean distance, the
Mahalanobis distance and the Kullback-Leibler divergence.
In the context of prognostics and diagnostics applications,
clustering makes it possible to partition data streams into
different fault categories.

A wide variety of clustering methods have been developed.
Application of cluster analysis in machinery fault diagnosis
was discussed in [1]. The most commonly used methods for
clustering are divided into two main categories: hierarchical
and non-hierarchical methods. We also distinguish hard and
fuzzy partitioning. The former aims at grouping data in an
exclusive way, making a given data unable to belong to sev-
eral clusters, whereas the former allows each data to belong
to more than one cluster with different membership degrees.
The most popular fuzzy partitioning method is Bezdek’s
Fuzzy C-means (FCM) algorithm [2]. One can also mention
the Gustafson-Kessel fuzzy clustering algorithm [3] that is
capable of detecting hyperellipsoidal clusters of different
sizes and orientations by adjusting the covariance matrices.
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A relatively new concept of partition, introduced in [4],
is the credal partition (also called evidential partition) based
on belief functions theory. It extends the existing concepts
of hard, fuzzy, probabilistic, and possibilistic partitions by
allocating, for each data, a mass of belief, not only to single
clusters, but also to any subset of Ω = {ω1, ...,ωc}. This
particular representation makes it possible to code all the
situations, from certainty to total ignorance of membership to
clusters. For instance, doubt is generally encountered in data
transition and can be useful to limit the number of clusters
in the final partition. Moreover, outliers (atypical data) are
well managed using the conflict degree explicitly emphasized
in the belief function framework. These concepts were ex-
ploited in the Evidencial c-Means (ECM) algorithm [5] for
static data.

Numerous techniques have been developed for clustering
data in a static environment [6]. However, in many real-life
applications, non-stationary data (i.e. with time-varying pa-
rameters) are commonly encountered. Online clustering, also
called incremental clustering in machine learning [7], aims
at sequentially grouping data into clusters. It is generally
unsupervised and has to manage recursive training in order
to incorporate new information gradually and to take into
account model evolutions over time.

E2GK (Evidential Evolving Gustafson-Kessel Algorithm),
presented in this paper, is an online clustering technique
that relies on two existing algorithms: the Evolving (fuzzy)
Gustafson-Kessel algorithm (EGK) proposed in [8] used
for the determination of the centers of the clusters, and
the Evidential c-means algorithm (ECM) proposed in [5]
used for obtaining the credal partition. In E2GK, the credal
partition is obtained online by allocating belief masses to the
different subsets of clusters as data arrive. The size of the
partition can evolve according to the novelty of the data.

To illustrate our results, a dataset provided by an experi-
mental platform called PRONOSTIA is used. This platform
is dedicated to bearing prognosis. PRONOSTIA is developed
within the Department of Automatic Control and Micro-
Mechatronic Systems (AS2M) of FEMTO-ST institute1 for
the test and validation of bearing prognostics approaches.
The originality of this experimental platform lies in the
characterization of both the bearing functioning and its
degradation and also in the possibility to make the operating
conditions of the bearing vary during its useful life.

1FEMTO-ST stands for “Franche-Comté Electronics, Mechanics, Ther-
mal Processing, Optics - Science and Technology”. The plateform was
developed in AS2M department (Automatic control and Micro-Mechatronic
Systems).
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Section II describes PRONOSTIA platform. In Section III,
we present the GK algorithm and belief functions giving the
necessary background for Section IV in which we introduce
E2GK. Results are finally presented in Section V.

II. PRONOSTIA PLATFORM

PRONOSTIA is an experimentation platform (Figure 1)
dedicated to the test and validation of the machinery progno-
sis approaches, focusing on bearing prognostics. The main
objective of PRONOSTIA is to provide real experimental
data that characterise the degradation of a ball bearing along
its whole operational life (until fault/failure). The collected
data are vibration and temperature measurements of the
rolling bearing during its functioning mode. As prognosis
algorithms need statistical data, it is necessary to conduct an
experiment in a few hours, and to collect a large amount of
data in a few weeks. To do so, we developed a device that is
able to maintain the bearing into hard operating conditions.

Fig. 1. PRONOSTIA platform.

A. Operating Conditions of the Bearing

The internal bearing ring is put in rotation, while the
external bearing ring is maintained fixed. A radial load is
applied on the external bearing ring in order to simulate
its functioning. To speed up the degradation, the load ex-
ceeds the maximal load recommended by the supplier. The
originality of this experimental platform lies not only in the
conjunction of the characterization of both the bearing func-
tioning (speed, torque and radial force) and its degradation
(vibrations and temperature), but also in the possibilities,
offered by the platform, to make the operating conditions
of the bearing vary during its useful life. Figure 2 depicts a
bearing before and after the experiment.

Fig. 2. Bearing degradation.

B. Measurement of the Bearing’s Behavior

1) Measurement of the parameters imposed to the bear-
ing: The bearing operating conditions are determined by
instantaneous measures of the radial force applied on the
bearing, the rotation speed of the shaft handling the bearing,
and of the torque inflicted on the bearing. Thus, three
sensors are used: a load cell and its transducer amplifier,
an incremental encoder and its analog signal converter, and
a torque transducer with its converter. Each of these analogue
measurements are sampled at 100Hz.

2) Measurement of the degradation’s characteristics:
During a test, the rolling bearing starts from its nominal
mode until the fault state. The bearing behavior is measured
using different types of sensors (Figure 3). Resulting from
the study of heat and vibrations, the characterization of the
degradation lies on data provided by two types of sensors:
• Two miniaturized acceleration sensors for vibrations

study (frequency) are positionned at 90 degrees one
from the other, on the bearing clamping ring.

• A temperature probe of ceramic type PT100 in 1/3 DIN
permits the visualization of the evolution of temperature.

Fig. 3. Sensors for degradation measurement.

C. Data acquisition system

This apparatus permits the integration of three modules: a
first module that is specific to acceleration sensors of type
IEPE, a second specific to PT100 probes, and a last one of
standard tension references. The first module includes the
two acceleration sensors, the second, the PT100 temperature
probe, and the third, the load cell and the torque transducer.
Synchronous measures can also be made on the three mod-
ules. The resulting data are transmitted via a USB 2.0 link
to the computer in charge of the data management. The
dedicated application - developed using Labview - ensures
the visualization of the signals provided by the different
sensors and sampled in a specific manner. Thus, all data
can be monitored in real time on scrolling graphs. They are
also formated, timestamped, and recorded locally in different
files in order to be exploited for bearing fault prognosis.

D. Signal processing toolbox

The raw signals provided by the sensors are processed
in order to extract relevant information concerning bear-
ings states. Several techniques have been implemented and
gathered in a signal processing toolbox with Matlab: time-
domain methods (RMS, skewness and kurtosis, crest factor,
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K-factor, Peak-to-Peak), frequency-domain methods (spectral
and cepstrum analysis, envelope detection), time-frequency
domain (short-time fourier transform) and discrete wavelets.

Fig. 4. (left) Labview VI for raw signal visualization and (right) the
graphical user interface to set the optional parameters (if required) of the
signal processing algorithms.

For example, Figure 5 is the power spectral density of the
vertical acceleration sensor computed during the last half
of the test period. One can visualize the amplitude growing
at the end of the experiment when the bearing is gradually
degrading. Various other data processings are possible to
provide the necessary tools for bearing prognostics.

III. BACKGROUND

A. Belief Functions

Dempster-Shafer theory of evidence, also called belief
functions theory, is a theoretical framework for reasoning
with partial and unreliable information. Ph. Smets proposed
the Transferable Belief Model (TBM) [9] as a general
framework for uncertainty representation and combination
of various pieces of information without additional priors. In
particular, TBM offers the possibility to explicitly emphasize
doubt and conflict. Typically, the former represents ignorance
and the latter emphasizes the contradiction within a fusion
process. We present the basic notions of the theory and refer
the reader to [9] for a thorough description.

Considering a finite set called the frame of discernment Ω

of variables ω , the belief of an agent in subsets of Ω can be
represented by a basic belief assignment (BBA):

m : 2Ω → [0,1]
A 7→ m(A) ,

(1)

with ∑A⊆Ω m(A) = 1. A belief mass can not only be assigned
to a singleton (|A| = 1), but also to a subset (|A| > 1)
of variables without assumption concerning additivity. This
property permits the explicit modelling of doubt and conflict,
and constitutes a fundamental difference with probability
theory. The subsets A of Ω such that m(A) > 0, are called
the focal elements of m. Each focal element A is a set of
possible values of ω . The quantity m(A) represents a fraction
of a unit mass of belief allocated to A. Complete ignorance
corresponds to m(Ω) = 1, whereas perfect knowledge of ω

is represented by a categorical BBA, i.e. the whole mass is
assigned to a ω . In the case where all focal elements are
singletons, m boils down to a probability distribution.

Fig. 5. Power spectral density of the vertical acceleration sensor.

A positive value of m( /0) is considered if one accepts the
open-world assumption [10] stating that the set Ω might not
be complete, and thus ω might take its value outside Ω. The
conflict is then interpreted as a mass of belief given to the
hypothesis that ω might not lie in Ω. This interpretation is
useful in clustering for outliers detection [5].

B. Evidential C-Means

Belief functions theory is largely used in clustering and
classification problems [11], [12]. Recently (2003), the con-
cept of credal partition was introduced as a generaliza-
tion of fuzzy partitioning. It particularly permits a better
interpretation of the data structure and makes it possible
to code all situations, from certainty to total ignorance. A
credal partition is constructed by assigning a BBA to each
possible subset of clusters. Partial knowledge regarding the
membership of a data i to a class j is represented by a BBA
mi j on the set Ω = {ω1, . . . ,ωc}. We introduce the concept
of credal partition as described in (ECM, [5]).

In ECM, the objective function was defined as:

JECM(M,V ) =
N

∑
i=1

∑
{ j/A j 6= /0,A j⊆Ω}

∣∣A j
∣∣α mβ

i jd
2
i j +

N

∑
i=1

δ
2mi( /0)β ,

(2)
subject to

∑
{ j/A j 6= /0,A j⊆Ω}

mi j +mi( /0) = 1 ∀i = 1, . . . ,N , (3)

where:

• α is used to penalize the subsets of Ω with high
cardinality,

• β > 1 is a weighting exponent that controls the fuzziness
of the partition,

• di j denotes the Euclidean distance between data i and
prototype v j,

• δ controls the amount of data considered as outliers.

The N×2c partition matrix M is derived by determining,
for each data i, the BBAs mi j = mi(A j) , A j ⊆ Ω such that
mi j is low (resp. high) when the distance di j between data
i and focal element A j is high (resp. low). The matrix M
is computed by the minimization of criterion (2) and was
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shown to be [5], ∀i = 1 . . .n, ∀ j/A j ⊆Ω, A j 6= /0:

mi j =

∣∣A j
∣∣−α/(β−1) d−2/(β−1)

i j

∑
Ak 6= /0
|Ak|−α/(β−1) d−2/(β−1)

ik +δ
−2/(β−1)

, (4)

and mi( /0) = 1−∑A j 6= /0 mi j. In ECM, centers of clusters are
optimized by minimizing criterion (2). The distance between
a data and any non empty subset A j ⊆Ω is then defined by
computing the center of each subset A j. This latter is the
barycenter v j of the centers of clusters composing A j.

From the credal partition, the classical clustering structures
(possibilistic, fuzzy and hard partitions) can be recovered [5].
One can also summarize the data by assigning each data to
the set of clusters with the highest mass. One then obtains
a partition of the points in at most 2c groups, where each
group corresponds to a set of clusters. This makes it possible
to find the points that unambiguously belong to one cluster,
and the points that lie at the boundary of two or more
clusters. Moreover, points with high mass on the empty set
may optionally be rejected as outliers.

Example 1: Considering N = 4 data and c = 3 classes,
Tab. I gives an example of a credal partition. BBAs for
each data given in Tab. I illustrate various situations: data
2 certainly belongs to class 1, whereas the class of data 4
is completely unknown. Partial knowledge is represented for
data 1. As m3( /0) = 1, data 3 is considered as an outlier, i.e.,
the class of data 3 does not lie in Ω.

IV. E2GK: EVIDENTIAL EVOLVING GUSTAFSON-KESSEL
ALGORITHM

The GK algorithm [3] has the advantage to adapt the
clusters according to their real shape. The obtained clusters
are hyperellipsoids with arbitrary orientation and well suited
for a variety of practical problems. In [8], an online version
of GK clustering algorithm (EGK) that enables online parti-
tioning of data streams was developed. The partition matrix
was updated as in GK but rules were added to decide whether
a new cluster has to be created or existing prototypes adapted.

In this section we propose an adaptation of this algorithm
to the context of belief functions (Alg. 1). The main idea is
to derive, online, a credal partition matrix from the data.

A. Step 1 – Initialization

At least one cluster center should be provided. Otherwise,
the first point is chosen as the first prototype. If more than
one prototype is assumed in the initial data, the GK or
ECM algorithm can be applied to identify an initial partition
matrix. The result of the initialization phase is a set of c
prototypes vi and covariance matrices Fi.

B. Step 2 – Decision making

The boundary of each cluster is defined by the cluster
radius ri, defined as the median distance between the cluster
center vi and the points belonging to this cluster with
membership degree larger or equal to a given threshold uh:

ri = median
∀x j∈ i-th cluster and Pi j>uh

∥∥vi− x j
∥∥

Ai
. (5)

where Pi j is the confidence degree that point j belongs to
ωi ∈ Ω and can be obtained as follows: either by using
the belief mass m j(ωi), or the pignistic transformation [9]
(converting a BBA into a probability distribution), or by
using the plausibility transform [13]. We propose to choose
the belief mass for which the computation is faster.

Compared to EGK, where the maximum rule is used,
we here apply the median value which is less sensitive to
extreme values. Moreover, the minimum membership degree
uh - initially introduced in [8] and required to decide whether
a data point belongs or not to a cluster - can be difficult
to assess. It may depend on the density of the data as
well as on the level of cluster overlapping. We rather set
uh automatically to 1/c in order to reduce the number of
parameters while ensuring a natural choice for its value.

C. Step 3 – Computing the partition matrix:

Starting from the resulting set of clusters at a given
iteration, we need to build the partition matrix M. We here
consider the Mahalanobis-like distance dik assuming that
each cluster volume ρi is one as in standard GK algorithm:

d2
ik = ‖xk− vi‖2

Ai
= (xk− vi)Ai(xk− vi)

T , (6a)

Ai = [ρi ·det(Fi)]
1/n F−1

i , (6b)

Fi =
∑

N
k=1(mik)

β (xk− vi)
T (xk− vi)

∑
N
k=1(mik)β

. (6c)

where Fi is the fuzzy covariance matrix. We then compute
the credal partition using Eq. 4.

Remark 1: Storing the whole partition is however not
efficient. Indeed, we simply need to store the belief masses
on singletons in order to make the decision concerning the
radius. As shown in Eq. 4, values on singletons are easy
to compute but the problem is to estimate the normalization
factor. For that, all values of masses have to be computed but
not stored. This little trick exponentially decreases memory
comsumption.

D. Step 4 – Adapting the structure

Given a new data point xk, two cases are considered.
Case 1: xk belongs to an existing cluster, thus a clusters’

update has to be performed. Data point xk is assigned to
the closest cluster p if the distance dpk is less or equal to
the radius rp. Then, an update of the p-th cluster has to be
performed as follows:

vp,new = vp,old +θ ·∆ , (7)

where ∆ = xk− vp,old and

Fp,new = Fp,old +θ ·
(
∆

T
∆−Fp,old

)
, (8)

where θ is a learning rate, vp,new (resp. vp,old) and Fp,new
(resp. Fp,old) denote the new (resp. old) values of the centers
and covariance matrix.

Case 2: xk is not within the boundary of any existing
cluster (i.e. dpk > rp), thus a new cluster may be defined
and a clusters’ update has to be performed. The number of
clusters is thus incremented. Then, the incoming data xk is
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TABLE I
EXAMPLE OF A CREDAL PARTITION.

A /0 ω1 ω2 {ω1,ω2} ω3 {ω1,ω3} {ω2,ω3} {ω1,ω2,ω3}
m1(A) 0 0 0 0 0.2 0.5 0 0.3
m2(A) 0 1 0 0 0 0 0 0
m3(A) 1 0 0 0 0 0 0 0
m4(A) 0 0 0 0 0 0 0 1

accepted as a center vnew of the new cluster and its covariance
matrix Fnew is initialized with the covariance matrix of the
closest cluster Fp,old . In order to quantify the credibility of
the estimated clusters, the number of points belonging to
the i-th cluster is estimated as in EGK [8] where the authors
suggested a threshold parameter Ptol to guarantee the validity
of the covariance matrices and to improve the robustness.
This parameter corresponds to the desired minimal amount of
points falling within the boundary of each cluster (its value is
context-determined). The new created cluster is then rejected
if it contains less than Ptol data points.

We also propose an additional step in E2GK. After creat-
ing a new cluster, the data structure evolves. However, the
new cluster may contain data points previously assigned to
another cluster. Thus, the number of data points in previous
clusters could change. We propose to verify, after the creation
of a new cluster, that all clusters have at least the required
minimum amount of data points (Ptol or more). If it is
not the case, then remove the cluster with the minimum
number of points. Compared to the initial EGK algorithm, in
which the number of clusters only increases, E2GK is more
flexible because the structure can change by decrementing or
incrementing the number of clusters.

The overall algorithm is presented in Alg. 1 where the
proposed adaptations appear in bold.

V. APPLICATION OF E2GK

A. A benchmark 1-D problem

As a first example of E2GK, we propose to consider the
Mackey-Glass chaotic time series:

x(t) =
0.2 · x(t− τ)

1+ x10(t− τ)
−0.1 · x(t) , (9)

with τ = 17 and x0 = 1.2. A total of 270 samples were
generated. The obtained series is depicted in Figure 6 as
well as the resulting segmentation by E2GK (using [t x(t)] as
inputs). E2GK parameters were set to δ = 20, α = 1, β = 2,
θ = 0.01 and Ptol = 15. Figure 7 shows the number of clusters
evolving along time. The online segmentation generated 10
segments well located on the curve.

B. A multidimensional real problem on PRONOSTIA

As a second application, we considered the PRONOSTIA
plateform. We here applied E2GK in order to automatically
find a partioning (online) of the data streams. We consider
here the power spectral density made of 512 points at each
time slice. This huge dataset is then post-processed by
a principal components analysis in order to automatically

Algorithm 1 E2GK algorithm
1: Initialization: Take the first point as a center or apply

the off-line GK algorithm to get the initial number of
clusters c and the corresponding matrices V and Fi, i =
1 · · ·c

2: Calculate v j, the barycenter of the cluster centers com-
posing A j ⊆Ω

3: Calculate the credal partition M using Eq. 4 (store
only singletons and normalize)

4: for all new data point xk do
5: Find the closest cluster p
6: Calculate the radius rp of the closest cluster (Eq. 5)
7: if dpk ≤ rp then
8: Update the center vp (Eq. 7)
9: Update the covariance matrix Fp (Eq. 8)

10: else
11: Create a new cluster: vc+1 := xk and Fc+1 := Fp
12: Keep it if the number of points is ≥ Ptol
13: end if
14: Recalculate the credal partition M
15: Check the new structure: estimate the number of

points in each cluster and remove the cluster with the
minimum number of points if ≤ Ptol

16: end for

select the 6 most representative frequencies. These 6 features
are used as inputs of E2GK (with 250 points).

E2GK algorithm is initialized ramdomly using 2 centers
and 20 data. Parameters were set as in the previous appli-
cation. The first 20 data correspond roughly to the first 0.5
hour of the experiment where the bearing does not present
any default. Then, data arrives sequentially and make the
clustering structure possible to evolve. E2GK adapted its
structure until obtaining 7 clusters as pictorially described
in Fig. 8. First of all, a third cluster is obtained into the
cloud around the initialisation points. This shows that the
bearing only degrades from about the third hour. Then 4
clusters are gradually added according to the degradation.
Cluster ω4 represents a transition between the normal modes
(ω1, ω2 and ω3) towards the degrading modes (ω5 and ω6).
Finally the fault mode is detected with ω7. Figure 9 shows
the assignments (cluster chosen for each data point w.r.t. the
maximum of belief) along with the first three dimensions.

Some similar segmentation can be obtained by EGK by
precisely tuning its parameters. However, E2GK is able
to provide the real location of transition between clusters.
Moreover, conflict in E2GK can be exploited for outlier
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Fig. 6. The Mackey-Glass time series and its online segmentation.
Prototypes appear in red stars.

Fig. 7. Number of clusters along time for the first application.

detection (this point has not been demonstrated here but in
the static case one can refer to [5]). Finally, one can notice
that the same parameter values were used in both applications
showing that E2GK may be easy to tune. In comparison,
we tested EGK for which different parameters values must
be chosen to obtain a satisfactory result in particular in the
second application with noisy data.

VI. CONCLUSION

E2GK algorithm is an evolving clustering algorithm using
belief function theory, which relies on the credal partition
concept. This type of partition permits a finer representation
of datasets by emphasizing doubt between clusters as well
as outliers. Doubt is important for data streams analysis
from real systems because it offers a suitable representa-
tion of gradual changes in the stream. E2GK also relies
on some parts of EGK algorithm [8], initially based on
a fuzzy partition, to which we bring some modifications.
We treated implementation issues inherent to belief masses
computation. We finally tested E2GK on a real plateform
called PRONOSTIA designed to provide data concerning the
degradation of a ball bearing during its operational life.

A thorough analysis of parameters sensitivity (Ptol and θ )
is now required to properly and automatically set them. The
interpretation of clusters provided by E2GK is also an im-
portant problem for industrial applications [14]. Besides, the
automation of the variation of bearing operating conditions
on PRONOSTIA is under study in order to simulate different
scenarios such as real industrial cycles.

Finally, we are currently developing a prognostic approach
fully based on belief functions and plan to compare it with
the fuzzy evolving systems proposed by Angelov [15].

Fig. 8. Online segmentation into clusters for PRONOSTIA’s data (centers
appear in red cross, arrows represent order of data arrival).

Fig. 9. Belonging cluster for the second application.
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