
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Complementary Test Selection Criteria for Model-Based
Testing of Security Components?

Julien Botella1, Jean-François Capuron2, Frédéric Dadeau3, Elizabeta Fourneret1, Bruno Legeard1,3,
Florence Schadle2

1Smartesting Solutions and Services, 18 rue Alain Savary, 25000 Besançon, France
2DGA Information Superiority, France
3FEMTO-ST Institute (UMR CNRS 6174) - University of Bourgogne Franche-Comté, Besançon, France

Received: date / Revised version: date

Abstract. This article presents a successful industrial
application of a model-based testing approach to the val-
idation of security components. We present a smart com-
bination of three test selection criteria applied to testing
security requirements of components such as Hardware
Security Modules (HSM). This combination relies on the
use of static test selection criteria, namely structural
model coverage, complemented by dynamic test selec-
tion criteria, based on abstract test scenarios or tempo-
ral properties, designed to target corner cases of security
functional requirements. Our approach is implemented
in an industrial and scalable MBT tool. We evaluated
and successfully applied it on three real-world security
components. The outcome of these experiences showed
that the three test selection criteria target distinct kinds
of errors in the software and are able to reveal inconsis-
tencies in the specification. Moreover, a 5-year experi-
ence of working with both manufacturers and evaluators
of security components, along with other industial col-
laborations, showed that the approach is easy to adopt in
the industry and the time spent to learn the methodol-
ogy is negligible with respect to its benefits. Finally, the
approach can be completely applied in a more general
context on systems that underlay thorough validation of
compliance to specifications or audits.
Keywords: Model-Based Testing; structural coverage;
test scenarios; temporal properties; security components

1 Introduction

Testing security components should be a rigorous and,
thus, expensive task due to their specific nature, which

? This research was supported by the French ANR ASTRID
Maturation MBT Sec project (ANR-13-ASMA-0003)

requires increased efforts to be validated against secu-
rity standards such as Common Criteria [16]. Security
components, such as Hardware Security Modules (HSM),
store cryptographic keys and perform cryptographic op-
erations, for example signing data (messages, authenti-
cation information, documents, etc.). Security compo-
nents validation has to address two features of these
modules. On the one hand, a security component im-
plements security functions, such as cryptographic algo-
rithms, including symmetric and public-key cyphers. On
the other hand, the interaction with the component is al-
lowed through an Application Program Interface (API).
This kind of APIs allow the exchange of information and
access to critical data in a secure way. Such APIs are
commonly defined by specifications, e.g. PKCS#11 [37]
or GlobalPlatform [19]. Due to this specific and critical
nature of the security components, they may contain ex-
ploitable weaknesses and vulnerabilities that can appear
at various levels (cryptographic algorithms, protocol or
API level).

Even if cryptography can be considered as perfect,
it has been shown that security flaws can arise from an
unexpected usage of the API provided by the compo-
nent [20]. Though many techniques are proposed for test-
ing cryptographic protocols [21,56], very few techniques
exist in the literature for testing the applicative parts of
the components, which are the main source of errors in
these systems (around 83% [38]). More generally, most
errors in an implementation are related to an incorrect
implementation of specifications [31]. Moreover, the ex-
isting approaches dedicated to API analysis and testing
are manual or specific to key and key-sensitive informa-
tion extraction from cryptographic devices [11].

Model-Based Testing (MBT) approaches have shown
their usefulness for systematic compliance testing of sys-
tems that undergo specific standards [6,52,7] describing
the functional requirements (FR) of the system. Indeed,
MBT relies on the use of a formal model to describe

2 J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components

the functional behavior of the system under test (SUT).
The model is then exploited to produce abstract test
cases that are concretized and executed on the SUT.
Moreover, as the model predicts the expected behavior
of the SUT, it provides a test oracle, based on which
a test verdict is established. MBT is thus well-suited to
conformance testing, when one wants to ensure the com-
pliance of the SUT to a given standard.

In addition to functional aspects, standards of secu-
rity component define also security functional require-
ments (SFR). The system’s security depends on the us-
age of the security-related functions (such as hashing,
signing, signature verification etc), which create strong
interconnection between the security and the functional-
ity. Consequently, specific sequences of commands have
to be respected to successfully perform security func-
tions. Thus, in this context, security functional testing
aims to ensure that the system correctly implements
these sequencing aspects. From our experience, static
test selection criteria (for example behavioral coverage)
are insufficient to properly address this issue of validat-
ing specific sequences of commands [41,12]. This rep-
resents a challenging task in the validation of security
components, that we propose to address by using com-
plementary model-based test selection criteria.

In this article, we propose a tailored MBT approach,
depicted in Figure 1, that combines and proposes a guid-
ing methodology for the use of existing static and dy-
namic test selection criteria to perform functional secu-
rity testing of cryptographic components [12,15]. This
approach relies on a model made of UML diagrams aug-
mented with Object Constraint Language (OCL) pre-
and postconditions to formalize the SUT and its behav-
ior. Functional tests are obtained by applying a struc-
tural coverage of the OCL code describing the opera-
tions of the SUT (functional requirements). This ap-
proach is complemented by two dynamic test selection
criteria that make it possible to generate additional tests
that would not be produced by a structural test selection
criterion. The first dynamic selection criterion is based
on temporal logic expressed in a dedicated temporal lan-
guage called TOCL (for Temporal OCL) [15]. Such prop-
erties make it possible to cover the security functional
requirements (SFR) by formalizing the sequencing prop-
erties of commands (for instance ”a money transfer oper-
ation should never be authorized unless a user is success-
fully logged in”), to systematize the generation of test
cases that illustrate or exercise such sequencing proper-
ties or to simply validate an existing test suite by evalu-
ating its coverage. Although TOCL properties can easily
and naturally express such temporal aspects, this formal-
ism is not suitable for expressing specific and complex
chains of command calls with meaningful combinations
of input parameters that a security expert may want to
exercise on the system to cover an SFR, due to his or her
knowledge on the system and background experience.
For this reason, we propose a second and complemen-

Test	

repository	

MBT
model

Security	

Component	

Execution

Publication

Component	

Specifica2on	

Coverage	

monitoring	

TOCL	
 TP	

Structural test selection Dynamic test selection

Evaluation

MBT tool

Security
Functional

Requirements

Fig. 1: The MBT Process for Security Components

tary dynamic test selection criterion, called Test Pur-
poses (TP) [12]. A TP is an abstract test scenario close
to textual representation, that allows the test engineer
to describe specific sequences of operations that exer-
cise the system’s behavior (for instance ”before perform-
ing a money transfer, log in and log out several times
several users”). TP can capture the expressiveness of
TOCL properties, however their expressivity allows to
write test scenarios that are more generic than TOCL
properties. As illustrated in Figure 1 TOCL properties
and Test Purposes can be used to capture the security
functional requirements. However, these artifacts relate
to the MBT model, as they rely on the model operations
and data to respectively express the properties and the
test scenarios. While the test model itself describes the
behavior of the system, these additional artifacts provide
a means to drive the test generation without adding test
directives in the behavioral model.

For clarity reasons, we define the terminology used
in this paper as defined by ISTQB (International Soft-
ware Testing Qualifications Board) [10] and the MBT
Taxonomy [53]:

– test selection criteria: the criteria used to guide
the generation of test cases or to select test cases in
order to limit the size of a test suite.

– static test selection: these criteria determine the
tests to be generated based on the structural cover-
age of the OCL code of an operation. These crite-
ria aim to exercise a given behavior of an operation
which represents a test target that only focuses on
this operation.

– dynamic test selection: these criteria determine
the tests to be generated based on test case specifi-
cations in some formal notation, and provided in ad-
dition to the model. Contrary to static test selection
criteria, they aim to exercise the dynamics of the sys-
tem by considering several operations in a test. Thus,

J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components 3

for simplicity reasons, in this article, we refer to these
criteria as dynamic test selection criteria.

The difference between static and dynamic test selection
criteria resides in the underlying test intention: static
test selection criteria aims to validate a given operation
of the system, by focusing the test on this operation
that represents the test objective (i.e., the coverage of a
given behavior). On the contrary, dynamic test selection
criteria aim to exercise the dynamics of the system, by
considering the specific use of several operations in a
test.

This approach has been experimented on 3 real-life
security components: PKCS#11, a platform-independent
API for cryptographic tokens such as hardware secu-
rity modules or smart cards, SCM, a software crypto-
graphic module, and GlobalPlatform, a last-generation
smart card operating system. Our experiments have shown
the usefulness, accuracy, and relevance of this combina-
tion of test selection criteria for functional security test-
ing, in terms of: test generation, error detection capabil-
ities, test suite evaluation and reporting for security au-
dits or Common Criteria evaluations. This approach has
notably been experienced during a 5-year partnership
with the DGA (Direction Générale de l’Armement) In-
formation Superiority, part of the French Ministry of De-
fence, which showed that the Test Purposes and TOCL
properties could be adopted with relatively low effort,
and resulted in a benefit for the validation team. Notice
that, in addition, other industrial usages of the approach
have been made with various national or international
industrials which are the clients of the Smartesting com-
pany.

The contributions of this article address the following
three research questions.

RQ1 To what extent do dynamic test selection criteria com-
plement static test selection criteria to cover security
functional requirements of security components?
We propose a combination of the three complemen-
tary test selection criteria for functional security test-
ing, that are well-suited to validate the sequencing of
API command calls, which is the main challenge in
the validation of security components.

RQ2 What are the benefits of introducing dynamic test se-
lection criteria to the model-based testing of security
components?
We report three real-world experiments of this ap-
proach that illustrate the efficiency of each test se-
lection criteria to target specific errors, and the ben-
efits that can be provided to the targeted users (both
manufacturers and evaluators of security components).

RQ3 What is the additional cost of handling dynamic test
selection criteria to the MBT process of security com-
ponents?
During several research projects, we had the oppor-
tunity to experiment the use of these complemen-
tary test selection criteria by our industrial partners

(both product manufacturers, such as Gemalto for
smart cards, and security evaluators such as evalua-
tors from the DGA). Their feedback indicated that
the Test Purpose language and the TOCL proper-
ties formalisms were easy to learn and put into prac-
tice. As a consequence, these two extensions have
been transferred and integrated into an industrial
and commercial tool, Smartesting CertifyIt 1, and
is now available to the users of this technology.

To summarize, the contributions of the article are the
following:

– Methodology for complementing a set of model-based
test selection criteria to validate security functional
requirements (applied to security components) ;

– Full integration of the complementary set of test se-
lection criteria into an industrial MBT tool suite.
The test selection criteria of TP and TOCL within
this work have been pushed at a software technology
readiness level TRL 6 2 [30].

We have experimented and evaluated our contribu-
tions on 3 real life industrial case studies during 5-year
industrial experience.

The rest of the article is organized as follows. Sec-
tion 2 presents the context of this work, namely the se-
curity components and the existing static test selection
criterion, historically implemented in the Smartesting
CertifyIt test generator. Section 3 introduces the two ad-
ditional dynamic test selection criteria. Then, Section 4
reports and discusses three experiments that we ran dur-
ing various research projects, in collaboration with in-
dustrial partners. Section 5 presents and compares the
related works. Finally, Section 6 concludes and presents
the future directions that arise from this 5-year industry
experience.

2 Context

To ensure safe and secure communication with the se-
curity components and their API, their interfaces un-
dergo well-defined standards. Example of such standard
is GlobalPlatform (GP) [19]. Figure 2 illustrates on a
high-level the link between the security component of-
fering cryptographic services, the defined API and the
third-party applications. In addition, other security lay-
ers might regulate the communication between the API
and the third-party applications. Although it is often as-
sumed that the cryptographic algorithms are correctly

1 http://www.smartesting.com/en/certifyit
2 TRL levels are commonly used for evaluation of software in

many research projects. TRL 6: Representative model or prototype
system, which is well beyond that of TRL 5, is tested in a relevant
environment. Represents a major step up in software demonstrated
readiness. Examples include testing a prototype in a live/virtual
experiment or in a simulated operational environment. Algorithms
run on processor of the operational environment are integrated
with actual external entities.

http://www.smartesting.com/en/certifyit

4 J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components

Fig. 2: General high-level environment of security com-
ponents

implemented, misuses of the cryptographic algorithms
in the API and non-conformances to the standard may
lead to a number of vulnerability issues. To ensure secu-
rity and safety, the cryptographic components should be
thoroughly tested to assess their conformance to these
standards.

Our work was conducted in the context of the evalua-
tion process of cryptographic products performed by the
DGA. This process, among others, includes black-box
testing techniques in order to validate the conformance
of the tested component to its requirements and to verify
security properties such as confidentiality, integrity and
availability.

The communication with these tokens is commonly
regulated by specifications, for example PKCS#11 [37].
Our approach ensures the API’s compliance to such spec-
ifications.

Although the application domain of our work is more
general and concerns any standard, PKCS#11 fits per-
fectly to illustrate our approach. For this reason, the
remaining part of the paper presents the approach using
examples based on PKCS#11, which is one RSA Public
Key Cryptography Standard.

2.1 Cryptoki API

RSA Public Key Cryptography Standards (PKCS) pro-
pose various standards to promote interoperability and
security. Our study focuses on the PKCS#11 V2.20 spec-
ification (the official version published in 2004), which
defines the interface Cryptoki, an API for cryptographic
hardware, such as HSM or smartcards. The adoption of
this standard for communicating with cryptographic to-
kens in the industry is nearly omnipresent, even though

other complementary interfaces are offered by the secu-
rity tokens.

Shortly, an API based on the PKCS#11 specification
initiates the communication with the token before any
other function call. Then, in order to perform crypto-
graphic functions, such as signing a message, it opens a
session and logs the user. When a function is called in
the token’s API with a reference to a specific object (for
instance a key used for signing a message), the token
first checks the permissions of the object in order to al-
low the usage of the function. Permissions are attributes
that might be represented as boolean flags representing
the properties of an object (for example CKA SIGN flag
of a cryptographic key indicates whether a key can be
used for signing a message). Further, accesses to opera-
tions and objects are controlled through the interface. In
general, to perform cryptographic operations, the user
must log in to the application. To guarantee security,
Cryptoki implicitly or explicitly defines security require-
ments that must hold. Most of these requirements can
be assimilated to sequencing properties (e.g. “a signature
verification operation must have been initialized”).

2.2 An MBT Model for Cryptoki

Our approach relies on the use of an MBT model, writ-
ten using a subset of UML/OCL, called UML4MBT [12]
that is considered by the CertifyIt tool on which our
approach relies. More precisely, class diagrams describe
the points of control and observation and the elements
that model the system under test (SUT), and an object
diagram represents its instantiation at the initial state.
OCL constraints, applied on the operations of the class
diagram express the dynamics of the system.

We designed a full MBT model for PKCS#11, cov-
ering a set of 24 functions. Figure 3 depicts a simplified
class diagram of the PKCS#11 model, which contains
six classes: Cryptoki, User, Token, Slot, Session, Mech-
anism. We represent the API Cryptoki that offers to a
User an interface for communicating with cryptographic
tokens, modeled by the class Token. Each token is con-
nected to the system through a Slot. Finally, once the
user has been connected to a Session, Cryptoki offers
cryptographic operations, such as signing a message (e.g.
function “C Sign”) or verifying a message signature (e.g.
function “C Verify”), with different cryptographic algo-
rithms, represented by the class Mechanism.

The behavioral view of the Cryptoki API is modeled
using OCL. To be able to execute operation postcondi-
tions, UML4MBT uses OCL as an action language. For
example, the OCL expression self.attribute=value

can be used in two different contexts: a passive and an
active context. The passive context (defined by precon-
ditions, and conditions in if structures) is used to ex-
press constraints on the model state. Thus, in a passive
context the expression self.attribute=value is inter-
preted and evaluated as a boolean expression (equality

J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components 5

Fig. 3: PKCS#11 MBT model

check). The active context (by opposition to the passive
context) is used to express model state changes. Thus,
the expression is considered as an assignment of value
to state variable attribute. Notice that the context of an
expression is deterministic and comprehensive in the two
cases. This non-ambiguous interpretation of OCL makes
it possible to use OCL as an action language for UML
test generation models [14].

We illustrate the modeling of the expected function
behavior in Figure 4, which shows an OCL sample of
the “C SignInit” function, which initializes the data sig-
nature function. The OCL postcondition captures the
model behaviors for the function. Further, using tags
@REQ and @AIM, we annotate each behavior in this
postcondition. We consider two types of tags: @REQ, a
high-level requirement, and @AIM, the behavior itself,
seen as a refinement of the high-level requirement. Both
tags are followed by an identifier. For instance, func-
tion ”C SignInit” has one high-level requirement identi-
fier @REQ, which is the name of the function, and three
model behaviors, identified by the tag @AIM: (1) the
Cryptoki API has not been initialized – CRYPTOKI -
NOT INITIALIZED, (2) the normal user has not been

—@REQ:C SignInit
if self.initialized = false then

—@AIM:CRYPTOKI NOT INITIALIZED
result = CKR CRYPTOKI NOT INITIALIZED

else
if session.loggedUser.oclIsUndefined() then

—@AIM:USER NOT LOGGED IN
result = CKR USER NOT LOGGED IN

else
—@AIM:OK
result = CKR OK

end

end
return result

Fig. 4: OCL postcondition sample of C SignInit

logged in – USER NOT LOGGED IN and (3) successful
execution of the signing initialization function – OK.

The PKCS#11 model is directly designed from the
specification. It shares a common API with an actual
implementation of the standard (operation names and
parameters, return values, etc.). This model has been
validated using the Smartesting Certify simulator that

6 J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components

input: Test Model M
output: Test Cases TC
begin

TT ← compute test targets(M)
TC ← ∅
for each tt ∈ TT do

tc ← compute test case(M ,tt)
merge(tc, TC)

done
end

Fig. 5: Algorithm for the test generator

Guard:
self.initialized=true and
session.loggedUser.oclIsUndefined()
Assignment:
result = CKR USER NOT LOGGED IN
Tags:
—@REQ:C SignInit
—@AIM:USER NOT LOGGED IN

Fig. 6: Test target of the C SignInit function

makes it possible manually test the model by invoking
the different operations, and checking the current model
state at each step.

2.3 Structural test selection criteria with Smartesting
CertifyIt

We present in this section the static/structural test selec-
tion criterion based on behavioral coverage that is imple-
mented within the Smartesting CertifyIt test generator.

The basic algorithm of the test generator is described
in Figure 5. It takes as an input a test model M and
computes a set of test cases. The following paragraphs
describe the differents steps that are thus performed.

Test Target Computation. The test generator starts by
computing, from the MBT model, the test targets to
cover, by considering structural decision coverage crite-
rion. Thus, each control path of the control flow graph
of the operation represents a behavior of the operation.
As OCL does not contain any iterative structure, the
number of paths (only introduced by if-then-else struc-
tures) is finite. A control-flow graph is built based on
the conjunction of the pre- and postcondition described
by the OCL code. Finally, each test target is identified
by a set of tags (labelling the considered control path),
which refer to a requirement covered by the behavior.

Figure 6 describes a behavior of the “C SignInit”
function, identifying its guard, the assignments (both
extracted from the OCL constraints) and the tags iden-
tifying the behavior. From there, the test generation en-
gine will compute a test case, as a sequence of operations
that, from the initial state, make it possible to reach a

state satisfying the guard of the behavior. The test ver-
dict can be established by using the return values of the
operations. In addition, the model may contain a spe-
cific kind of operations, called observations, that can be
used to observe internal model state variables, to be com-
pared to an actual value of the SUT, in order to refine
the verdict.

The precondition of the behavior (also called guard)
in Figure 6) describes the test target, namely, a predicate
that characterizes a state from which the operation can
be invoked to result in the activation of the considered
behavior.

Test Case Computation The test generator applies the
structural criterion to decompose the potential disjunc-
tions in the decisions, and, thus, to produce test targets.
Then, the tool generates a test case by computing a se-
quence of steps, from the initial state, that reaches a
model state in which the test target is satisfiable. To
achieve that, CertifyIt uses a custom solver with sym-
bolic animation. This technique consists in simulating
the execution of the model using symbolic parameters.
Each operation activation gathers constraints (the path
conditions in the operation) that are evaluated by the
solver to check if there exists an instantiation of the
symbolic variables that satisfies these constraints. If a
solution is found, the considered sequence of operations
can be kept to reach the target state. The invocation
of the operation from which the test target originates
is then concatened to the sequence, so as to create the
test case. This process makes it possible to compute test
cases, as sequences of operation calls that reach a specific
test target.

A test case, such as given in Figure 7, is defined as
a sequence of steps, each step being defined as a tuple
(op, parameters, tags) in which op designates the oper-
ation that is invoked, param is the instantiation of the
parameters, and tags is the set of tags that are covered
by this invocation. The set of tests based on a given test
selection criteria and a model is called a test suite.

On the PKCS#11 example, given in Figure 4, the
tool generates three tests to cover each test target and
thus requirement of the “C SignInit” function. The test
cases presented in Figure 7 cover the behaviors USER -
NOT LOGGED IN and OK.

Test t1 initializes the communication with the to-
ken (function “C Initialize”), opens a session (function
“C OpenSession”), and calls the signature initialization
function “C SignInit” expecting the error code CKR -
USER NOT LOGGED IN.

Test t2 initializes the communication with the to-
ken (function “C Initialize”), opens a session (function
“C OpenSession”), logs in (function “C Login”), and calls
successfully the signature initialization function “C SignInit”
with an existing key for signing messages.

J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components 7

Test Operation(Params) Tags (REQ/AIM)

t1 C Initialize() C Initialize / OK
C OpenSession(s rw) C OpenSession / OK
C SignInit(s rw, mechanism, key) C SignInit / USER NOT LOGGED IN

t2 C Initialize() C Initialize / OK
C OpenSession(s rw) C OpenSession / OK
C Login(s rw , user, user pwd) C Login / OK
C SignInit(s rw, mechanism, key) C SignInit / OK

Fig. 7: Functional test cases for “C SignInit” (a subset)

Test Cases Merging. As a final step of the test genera-
tion algorithm, the computed test case is added to the
set of computed test cases, in a merging step. During
this step, the set of test cases is updated to add the
new test case, and, if possible, remove existing test cases
whose covered behaviors are also covered by the new
test. This step aims to reduce the final number of test
cases. Thus, a test case may cover several test targets
at once: the considered test target, covered by the last
operation of the test case, but also additional test tar-
gets, that are covered by the previous operations of the
test case. As a consequence, the number of test cases is
generally smaller than the number of test targets.

2.4 Limitations of Structural Coverage Criteria

During our various collaborations on different case stud-
ies, security expert’s from the industry analysed the tests
generated using structural criteria (behavioral or based
on state machines). The analysis showed that although
these tests cover entirely the functional requirements,
they barely cover half of the security functional require-
ments.

Indeed, the test generator based on structural criteria
computes the shortest path to activate a given behavior,
which is not enough for covering the specificities of se-
curity functional requirements. For instance, as shown
in Figure 7, when testing the log in for a signing opera-
tion, one might be more interested in creating longer se-
quence of steps crossing various states in the system; for
instance, initialize the communication with the token,
open a valid session, login, then logout and finally try to
activate the signing operation, expecting this function to
return again the CKR USER NOT LOGGED IN error.

This kind of test cannot be automatically generated
using static coverage criteria, unless additional infor-
mation is added to the model to drive the test gen-
erator (e.g. by encoding an automaton with additional
model/ghost variables as done in [34]). As a consequence,
the useful information is drown in additional noise that
pollutes the MBT model, making it really harder to
maintain, and restricting the model usage to the test
generation process.

To overcome this issue, we propose to use two dy-
namic test selection criteria: TOCL properties and Test

Purposes, which add a certain degree of dynamics to
guide the test generator and produce tests covering the
security functional requirements (discussed in the next
section). Further, our work resulted in fruitful real-life
experiments that made evolving the approach towards a
mature technology.

3 Complementary Test Selection Criteria for
Testing Security Components

In this section, to tackle security components testing,
we present the two dynamic test selection criteria that
complement the structural coverage criterion presented
previously:

– TOCL: to express security functional requirements
using temporal properties formalized in a language
called Temporal OCL (TOCL).

– Test Purposes: abstract test scenarios that capture
the procedural aspects and the combination of var-
ious function parameters in a test scenario in order
to cover security functional requirements.

Finally, we present their integration into the MBT
industrial tool CertifyIt.

3.1 Temporal OCL coverage criterion

In a previous work [15], we have introduced the TOCL
language that allows one to express security functional
requirements by means of property patterns. These pat-
terns are based on Dwyer’s seminal paper [23] that have
been adapted to our model-based testing approach. In
his paper Dwyer showed that a large majority (92%) of
common temporal properties on a system could be ex-
pressed using a simple set of patterns. We decided to
extend these patterns as they represent an easy means
for a test engineer to express a requirement, as it is a
textual representation with predefined constructs. It re-
places a more complex language (such as LTL) or a for-
malism (such as an automaton) the test engineer may
not be familiar with. TOCL properties can be used for
two purposes. First, it is possible to evaluate the rele-
vance of an existing test suite w.r.t. a given property.
Second, it is possible to generate test cases to cover the
uncovered parts of the property.

8 J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components

3.1.1 TOCL

The property description language is a temporal exten-
sion of OCL. It relies on the idea that a temporal prop-
erty is composed by a temporal pattern that is applied in
a scope. Thus, the user can define a temporal property
choosing a pattern and a scope among a list of predefined
schemas. The scopes are defined from events and delimit
the impact of the pattern. The patterns are defined from
events and state properties to characterize execution se-
quences that are correct. The state properties and the
event are described from OCL expressions.

An event is denoted by isCalled(op, pre, post,

{tags}) and represents operation calls. In this expres-
sion, op designates an operation; pre and post are OCL
predicates respectively representing a precondition and
a postcondition. Finally, tags represents a set of tags
that can be activated by the operation call. Such an
event is satisfied on a transition when the operation op

is called from a source state satisfying the precondition
pre and leading to a target state satisfying the post-
condition post and executing a path of the control flow
graph of the operation op which is marked by at least
one tag of the set of tags denoted {tags}.
There are 5 temporal patterns: (i) always oclExpr means
that a state property oclExpr is satisfied by any state.
(ii) never E means that event E never occurs. (iii) even-
tually E means that event E eventually occurs in a
state in the future. This pattern can be suffixed by a
bound which specifies how many occurrences are ex-
pected (at least/at most/exactly k times). (iv) E1

(directly) precedes E2 means that event E1 (directly)
precedes event E2. (v) E1 (directly) follows E2 means
that event E2 is (directly) followed by event E1.

There are 5 scopes that can apply to a temporal pat-
tern P : (a) P globally means that P must be satisfied
on any state. (b) P before E means that P must be
satisfied before the first occurrence of E. (c) P after E
means that P must be satisfied after the first occurrence
of E. (d) P between E1 and E2 means that P must be
satisfied between any occurrence of E1 followed by an oc-
currence of E2. (e) P after E1 unless E2 means that P
must be satisfied between any occurrence of E1 followed
by an occurrence of E2 and even after an occurrence of
E1 that is not followed by an occurrence of E2.

To illustrate the test selection using TOCL and the
tool, let us consider the specification of PKCS#11 defin-
ing the API Cryptoki offering an interface for manag-
ing the security and inter-operability of security compo-
nents. The specification defines various security require-
ments for which we are able to generate test cases, for
example:

Security Requirement:
“a user cannot sign a message using the C Sign
operation without login to Cryptoki (using the op-
eration C Login)”.

Fig. 8: Automaton of the TOCL property 1

This requirement is interpreted as the user must call
successfully a “C Login” operation before calling suc-
cessfully “C SignInit”, which initiates the signature op-
eration. This requirement is expressed by the following
two TOCL properties.

The first property defines the nominal case, when-
ever a signature operation is successfully done (model
behavior @AIM:OK), it must be preceded by a login
operation, performed also with a success. We can distin-
guish the temporal pattern (before the first occurrence
of an event) and the scope (eventually an event that pre-
cedes the previous one). The events in this context are
calls of functions for which a specific behavior is required
(denoted by the tag @AIM:OK).

TOCL Property 1:
eventually isCalled(C Login, @AIM:OK)
before isCalled(C SignInit, @AIM:OK)

The second property complements the previous one.
This property expresses the mandatory event of logging
in a (previously logged-out) user before performing suc-
cessfully the message signing function.

TOCL Property 2:
eventually isCalled(C Login,@AIM:OK)
between isCalled(C Logout, @AIM:OK)
and isCalled(C SignInit, @AIM:OK)

Each TOCL property is transformed into an automa-
ton. Based on these automata, it is possible, first, to mea-
sure the coverage of the property by the existing tests,
and, second, to generate tests to complete the coverage
of the TOCL properties.

3.1.2 Monitoring the Coverage of TOCL Properties

The first possibility that the TOCL test selection crite-
rion offers is to monitor the coverage of the TOCL prop-
erty by measuring the coverage of the automata transi-
tions by each existing test, as usual in certification for
audits for instance [3]. Consider the two TOCL prop-
erties we described and the structural tests generated,
given in Fig. 7.

Figure 8 illustrates the automaton produced for the
first property. The automaton displays an error state,
which is represented by a crossed state. When measur-
ing the coverage of the automaton, we evaluate which
transition is covered, and which state is reached, at each
step of the test, by matching the event on the transition
and the operation call that is performed during the step.
If the error state is reached by any set of the test suite, it

J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components 9

Fig. 9: Automaton of the TOCL property 2

means that the property is violated. In this case, either
the property is written in a too restrictive manner, or
the model operations are too lax.

The static/structural tests created previously cover
entirely this property automaton (as shown in the fig-
ure by a thick line). The first test does not reach any
terminal state of the automata (state with a double cir-
cle). However, the second test reaches the terminal state,
and does cover the transitions of the automaton that
are labelled by the events in the property (the reflex-
ive transitions, labelled by Σ events do not need to be
covered [15]).

Figure 9 depicts the automaton of the second TOCL
property, which expresses another point of view of the
security requirement. Contrary to the previous TOCL
property, the second one is not covered. As shown in the
figure, the structural tests cover only one transition of
the automaton and do not reach the terminal state. In
the following, we discuss the test generation based on
TOCL.

3.1.3 Test Generation from TOCL Properties

Once the coverage is evaluated, if any transition of a
property automaton is not covered, CertifyIt produces
test targets based on the coverage of these transitions
and then generates additional abstract test cases.

We have seen that the second property is not fully
covered by the existing test cases. Based on TOCL cri-
teria coverage, the generator creates 4 new test targets,
which will guide the test generator to create new test
cases. For example, the test given in Figure 10 will be
generated.

This test case, in complement to the previous tests,
logs in, then logs out and logs in again the user before
creating the key used for signature and initializing the
signature operation. It covers all valid states (from 0 to
3) and 5 transitions of the TOCL automaton, illustrated
by thick line in Figure 11.

TOCL coverage is interesting as it systematizes the
coverage of test properties that can be expressed easily
with predefined patterns. However, it is sometimes nec-
essary provide a means to drive the test generator by a
direct user input. This technique is now described.

3.2 Test Purpose coverage criterion

The Test Purpose criterion relies on defining additional
dynamic selection criteria in the shape of test scenar-
ios close to textual representations in order to express
particular sequences of steps in a test case.

The key idea is to allow the test engineer to drive the
test generation engine without having to introduce any
additional information in the model, notably to restrict
its execution. Thus, the Test Purpose language makes
it possible to combine sequences of operations and val-
ues for the input parameters for the operations, along
with the description by means of state predicates to be
reached by these sequences of calls. The language is de-
signed in a textual manner, with constructions close to
usual programming languages [41,34,12]. Finally, it is
possible to relate each test purpose to a test require-
ment, providing a traceability means.

For better comprehension of the subsequent parts of
the paper, we describe shortly the syntax of the Test
Purposes language and associated test generation pro-
cess.

3.2.1 Test Purpose Language

A Test Purpose is based on regular expressions and al-
lows the test engineer to conceive its scenario in terms
of states to be reached and operations to be called, by
making possible to select meaningful parameters for the
operations.

Figure 12 shows an example of a Test Purpose ad-
dressing the following security requirement :
”C SignInit cannot be correctly executed unless a user
has been logged into the token”
with the following (informal) test scenario: first, the com-
munication is initiated with the token, a valid session
is opened, the agent logs in, then logs out and then
tries to activate the signing function, with return code
CKR USER NOT LOGGED IN. Then it log in again
and successfully initializes he signing function. This test
sequence can be performed for several combinations of
sessions and keys.

As shown in the example, the syntax describes quan-
tifiers, followed by blocks, each block being composed of
a set of operations (possibly iterated at least once, or
many times) and aiming at activating a given objective
(a specific state, the activation of a behavior in an op-
eration, etc.). The quantifiers section defines the quan-
tified variables (preceded by keyword for each) on sets
of literals (such as $SESSION shown on line 1 in Fig-
ure 12), but it can also be defined on a set of operations
or model behaviors. The quantifiers specify various con-
texts in which an objective must be activated within a
block (identified by the key word use e.g., line 4 in Figure
12), thus, making possible to formalize several test sce-
narios from one test purpose. The test targets are result
of the quantifiers combination.

10 J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components

Operation Tags (REQ/AIM) Transition

C Initialize() C Initialize / OK 0→ 0

C OpenSession(s rw) C OpenSession / OK 0→ 0

C Login (s rw, user, user pwd) C Login / OK 0→ 0

C Logout(s rw) C Logout / OK 0→ 1

C Login(s rw, user, user pwd) C Login / OK 1→ 2

C CreateObject(key1) C Login / OK 2→ 2

C SignInit(s rw, mechanism, key1) C SignInit / OK 2→ 3

Fig. 10: Generated test case covering the TOCL property 2

Fig. 11: Coverage of Property 2 by the test of Fig. 10

1 for each litteral $SESSION from s rw or s other or null
2 for each litteral $KEY from key1 or key2 or key3
3 use any operation any number of times then
4 use sut.C Login($SESSION, ,)
5 to activate behavior with tags {AIM:OK} then
6 use sut.C Logout($SESSION) then
7 use sut.C SignInit($SESSION, ,$KEY) then
8 use any operation any number of times then
9 use sut.C SignInit($SESSION, ,$KEY)
10 to activate behavior with tags {AIM:OK}

Fig. 12: Test Purpose for the “C SignInit” security func-
tional requirement

In more details, the quantified variables in the Test
Purpose, given in Figure 12, are: $SESSION and $KEY,
on a list of 3 literals representing abstract values for
sessions and cryptographic keys, respectively shown in
lines 1 and 2. The next block, calls successfully the “C Login”
function (line 4). In addition, by using the special char-
acter (underscore), the test generator automatically
chooses the parameters that will activate the desired
behavior, in this case successful log in. The procedure
needed to reach the successful log in state is also cal-
culated by the generator. The following blocks (lines 6
and 7) activate the states of successful log out and then
successful initialization of the signing function. The last
block at line 9, activates a successful initialization of
the signing function, while the intermediate objectives
to reach are abstracted away using the block with the
key words any operation any number of times at line 8.

3.2.2 Test Generation from Test Purposes

The generation process makes usage of the behavioral
model written in UML4MBT and the written Test Pur-
poses. Each Test Purpose produces a sequence of inter-
mediate goals given to the test generation engine. We
can informally define the test generation process as fol-
lows:

1. pick an assignment to the quantified variables,
2. extract the test targets from the test purpose, by

means of test case specifications (TCS), which rep-
resent a sequence of intermediate goals for the test
generation engine.

3. symbolically animate the model to cover the TCS in
order to produce a test,

4. return to step 1, and pick the next combination of
values for the set of assigned variables

Consider for instance the previous Test Purpose, in
Figure 12, it iterates over several sessions and key han-
dles to activate successfully log out and initialization of
the signature, immediately one after another. The un-
folding of this Test Purpose, by combining the 3 sessions
with 3 different keys, produces 9 test targets. Then, for
each test target the generator creates one test case, if
the test case specification is reachable 3.

The test in Figure 13 illustrates one of the 9 gener-
ated tests, it combines a read/write session and one of
the listed keys. The comparison of this test case to the
test case in Figure 10, generated by the TOCL property
2, shows that their sequence is the same and the test
generated from the Test Purposet does not increase the
coverage of the property. Nonetheless, it exercises the
same sequence for different types of sessions and keys
and observes the security component’s expected behav-
ior. This kind of combinations of different values for func-
tion parameters is important because one specific com-
bination may reveal errors that another one can miss.
Thus, in a complement to the TOCL criterion, which in
a systematic way and automatically produces meaning-
ful tests, the Test Purpose criterion will allow the cre-
ation of tests that will exercise a given procedure with
meaningful combinations of sets of input parameters.

3 A test target is said to be reachable if the test generator is
able to compute a sequence of operation calls in the model state
space to reach it.

J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components 11

Operation Tags (REQ/AIM)

C Initialize C Initialize / OK

C OpenSession(s rw) C OpenSession / OK

C Login(s rw, user, user pwd) C Login / OK

C Logout(s rw) C Logout / OK

C Login(s rw, user, user pwd) C Login / OK

C CreateObject(key2) C Login / OK

C SignInit(s rw, mechanism, key2) C SignInit / OK

Fig. 13: Test case extracted from the Test Purpose

Fig. 14: TOCL Plugin

3.3 Tool suite

We implemented the three test selection criteria: struc-
tural, TOCL and Test Purpose in the core of the Smartest-
ing CertifyIt tool suite. It integrates the test selection
criteria in the form of plugins for IBM Rational Soft-
ware Architect (RSA). Each plugin contains a panel for
editing and managing the corresponding test selection
criterion.

The CertifyIt plugin exports the test targets based
on the structural coverage of the model in a format com-
prehensible by the CertifyIt test generator, as detailed
in Section 2.3. Next, the panel dedicated for TOCL al-
lows the user to formalize the security functional re-
quirements in the form of TOCL properties using syntax
highlighting and auto-completion features. If any TOCL

properties are written, it calculates and exports the test
targets based on the defined TOCL properties. If any
tests are available, for instance manually written as test
scenarios, it further offers property coverage monitoring
(see Section 3.1). Figure 14 depicts the TOCL plugin in-
tegrated with CertifyIt. The plugin allows to generate a
web report providing evidence for traceability between
the tests and the (functional) security requirements (an
HTML export button on the right up part at the figure).
If the coverage is not satisfying, the tool generates the
missing tests to fulfil the coverage criteria.

Finally, the Test Purpose panel allows writing the
test requirements also using syntax highlighting and auto-
completion features. If any Test Purposes are written,
the tool calculates and exports the test targets, as de-

12 J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components

Fig. 15: Test Purpose Plugin

tailed in Section 3.2. The plugin is illustrated in Fig-
ure 15.

This work along with the industral experiments, on
virtual and on simulated operational systems, discussed
in the next section, allowed to improve the efficiency and
scalability of the integrated tool chain by reaching high
maturity level estimated to TRL 6.

4 Experimentation

In this section we summarize the research questions we
addressed by our approach and the results on three stud-
ies: the PKCS#11 case study (Section 4.2), a crypto-
graphic component at the DGA (Section 4.3) and a Glob-
alPlatform smart-card (Section 4.4).

4.1 Research questions

We chose three case studies to answer the following re-
search questions:

RQ1 To what extent do dynamic test selection criteria com-
plement static test selection criteria to cover security
functional requirements of security components?
We assess this question in terms of the ability to
cover security functional requirements that cannot
be covered by structural coverage criteria, without
supplementary information added to the model. One
of the main challenges on the testing security com-
ponents is to validate especially security functional

requirements, such as the sequencing of API com-
mand calls. We expect that the combination of test
selection criteria will cover these test requirements.

RQ2 What are the benefits of introducing dynamic test se-
lection criteria to the model-based testing of security
components?
The dynamic test selection criteria allow generation
of tests dedicated to the security functional require-
ments and maintain their traceability. We expect that
the systematic use of dynamic criteria will increase
the distinct fault detection. In addition, the model,
as the code, may contain errors, we expect that the
introduction of dynamic criteria helps in debugging
the model. We assess it further in terms of the abil-
ity to simplify the MBT model by removing the ad-
ditional information added to the model that pol-
lutes the functional aspect of the model and makes
its maintenance harder.

RQ3 What is the additional cost of handling dynamic test
selection criteria to the MBT process of security com-
ponents?
This question investigates the cost-benefit relation-
ship of applying our MBT approach for testing secu-
rity components. We assess this research question in
the light of our large experience in MBT with indus-
try partners. During funded projects, we had the op-
portunity to experiment the use of these complemen-
tary test selection criteria by our industrial partners
(both product manufacturers, such as Gemalto for
smart cards, and security evaluators such as evalua-
tors from the DGA). Furthermore, if RQ1 and RQ2

J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components 13

Table 1: PKCS#11 case study perimeter

Test Requirement category #FR #SFR

general purpose 7 4

slot and token management 22 5

session management 32 9

object management 6 2

digesting 28 9

signing 32 10

verifying signatures 31 10

total 158 49

demonstrate that the test suite quality is increased
by using additional criteria, we expect this cost effort
to be largely acceptable when using dynamic criteria
additionally to the structural criterion.

4.2 PKCS#11 experiment

The PKCS#11 case study responds to RQ1, RQ2 and
RQ3. We draw our conclusions on RQ1 based on the
model-coverage and test generation results of applying
the three test selection criteria (structural, TOCL and
Test Purpose) on the MBT model of PKCS#11, and
compare their coverage further to the model-coverage of
the manual tests (delivered with the PKCS#11-based
token under test). The analysis of the test execution on
the token draws the conclusion on RQ2. Finally, we an-
alyze metrics on time spent in MBT activities to draw
conclusions on RQ3.

4.2.1 PKCS#11 Case Study

In an MBT approach, test requirements (functional and
security functional ones) are commonly identified from
a defined testing perimeter, on the basis of the specifi-
cations and available documents. Thus, our case study
relies on a subset of the PKCS#11 specification, which,
based on industry experts opinion, was qualified as self-
contained, realistic and sufficient to illustrate the main
aspects of the specification and as well to illustrate the
use of model-based testing for such security components.
Classically, in the industry, security tokens support only
sub-parts of PKCS#11. Thus, the considered perimeter
of the study are 24 functions most commonly present in
the tokens: general purpose, session, token, key and user
management functions, as well as cryptographic func-
tions for digesting, signing messages and verifying sig-
natures.

Table 1 summarizes the functional and security func-
tional requirements of the PKCS#11 case study, accord-
ing to the groups of functions defined by the PKCS#11
specification. The total number of functional require-
ments (FR) for the considered subset of PKCS#11 is
158. In addition to these requirements we have identi-
fied 49 security functional requirements (SFR).

Table 2: Metrics related to PKCS#11 model

PKCS#11 model elements

#classes 9

#enumerations 20

#enum. literals 123

#associations 17

#class attributes 34

#operations 24

#observations 1

#behaviors 206

#tocl properties 50

#test purposes 5

#LOC 1308

Fig. 16: SoftHSM 2.0.0b2 Test Environment

The MBT model for the PKCS#11 perimeter con-
tains a class diagram, to represent the API and the token
environment and the signature of functions (name, input
parameters, error codes) and it contains OCL expres-
sions, added as postconditions to the functions to model
their behavior. The MBT model covers one part of the
test requirements, thus, their full coverage is ensured by
the TOCL and Test Purpose coverage criteria. Table 2
provides some metrics about the model elements (for in-
stance classes, attributes, enumerations, operations) and
the behaviors, TOCL properties and Test Purposes ex-
pressing the requirements. It represents a total of 1308
lines of OCL code (LOC).

The PKCS#11 specification is widely used by the
security component providers. In our case, we have ap-
plied our approach on an open-source virtual component
- SoftHSM (our SUT) - a software implementation of
a cryptographic store accessible through the PKCS#11
interface. We chose this token because of its representa-
tiveness of an HSM and implementation of most PKCS#11
functions. We also selected this open source virtual se-
curity component, because it avoids the use of a physical
device, which simplifies the test environment.

Test environmentThe test environment is a Virtual Ma-
chine (VM), which contains: the generated tests in C++,
the test adaptation layer and test execution scripts. Af-

14 J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components

ter test execution the pass/fail test results are collected
in an XML format. We depict the SoftHSM test environ-
ment in Fig. 16. More specifically, we created a Virtual
Machine (VM) with Ubuntu 32bits and 2GB of RAM on
which we installed the SoftHSM v2.

4.2.2 Evaluation

For each test selection criteria, we report the number of
covered FR and SFR. The FR are completely covered by
the behavioral model, thus we use the static/structural
test selection criteria to generate test cases. The SFR,
depending on the requirements, are either already cov-
ered by the behaviors, or by creating a TOCL property
or a Test Purpose. Table 3 summerizes the information
about requirements coverage.

Further during the experiment, for each test selection
criterion (structural, TOCL properties and Test Pur-
poses) we created a separate test suite, for which we
generated tests using the chosen criterion and executed
them on the SUT. We evaluated the tests cases gener-
ation by the 3 combined test selection criteria. In addi-
tion, we evaluated the existing manually-designed test
suite of SoftHSM. We selected tests that are part of the
PKCS#11 perimeter, and imported them as test scenar-
ios in CertifyIt. Each imported test scenario produced
one test target. However, we discarded 3 manual tests,
because they were non-conform to the specification i.e.
the test verdict of the test case is different from the one
computed by the specification. In this table, for each
test selection criterion (structural, TOCL and Test Pur-
pose), we report the test targets and the corresponding
generated tests. Finally, we report the test requirements
coverage by the test suites. The model is a representa-
tion of the specification defining the testing perimeter,
thus we can measure the coverage of the functional and
security functional requirements (FR and SFR) by each
test suite.

Table 4 summarizes the results of this evaluation.
As given in the table, the manual tests cover barely
45% of the functional requirements, showing thus the
incompleteness of the manual test suite, compared to
the automatically-generated tests, with respect to the
specification.

In addition, the dynamic test selection criteria (TOCL
and Test Purpose) on their own are not sufficient to cover
the FR, as the structural criteria are not sufficient to
cover the security functional requirements (SFR). The
coverage measure notified that the manual test suite cov-
ers 14 TOCL properties, which represent about 16% of
the SFR. The analysis of Tables 3 and 4 shows that the
structural coverage criterion covers only part of the SFR,
and they are complementary covered by all 3 test selec-
tion criteria. Each test suite (structural, TOCL, Test
Purpose and manual) on SoftHSM was executed on the
system under test and the results were collected in log
files. Based on these results, we evaluated the number

of distinct faults revealed by the failed tests. As sev-
eral tests can reveal one same fault, we were specifi-
cally interested in the diversity of the detected faults by
each test selection criterion, that we refer to as distinct
faults. Note, that the failed tests report discrepancies
with respect to the specification, but we did not evalu-
ated whether they represent exploitable vulnerabilities.
We report these results in Table 5, showing that all three
test selection criteria detected a panel of faults, while the
manual test suite did not reveal any fault.

In addition, Table 6 details the SoftHSM discrepan-
cies with respect to the specification detected by the
failed tests. Each discrepancy is identified by the func-
tion, the expected and returned error code by the func-
tion. Results from Tables 5 and 6 show that each test
suite reveals different discrepancies complementary to
the other test suites, thus increasing the detection of dis-
tinct faults. We see that there is no intersection between
the different faults detected by each test suite.

An MBT model may also contain errors. This pro-
cess can thus also be used to detect such errors and cor-
rect them at the earliest. Indeed, the TOCL coverage
measure may possibly result in reaching an error state,
which indicates that the property has been violated (as
shown in Fig. 8). If the property is correctly written, this
identifies an error in the model behaviors that can to be
corrected immediately. On the case study, this helped us
to correctly implement the sequences of cryptographic
operations (digest, sign and verify).

Answer to RQ1: Based on the experimental results
in tables 3 and 4, we see that structural test selection
criteria are not enough to ensure the security func-
tional requirements. The TOCL and the Test Pur-
pose test selection criteria act as dynamic test selec-
tion criteria by orchestrating the calls of functions in
the model, and thus increase the coverage of the test
requirements, by increasing the number of test steps
in the test cases and diversifying them.
Results in Tables 5 and 6 show that each test selec-
tion criterion detects a panel of distinct faults, missed
by the other criteria. Thus, it confirms their comple-
mentarity in detecting additional distinct faults.

Answer to RQ2: As for RQ1, results in Tables 5
and 6 show that the three selection criteria augment
the fault detection capabilities and shows the accu-
racy of our dynamic test selection criteria w.r.t. struc-
tural coverage. In addition, this process can be used
to validate the model, and increase the confidence in
its correctness, w.r.t. the (security) functional require-
ments that it is supposed to ensure.

The last part of the experience on the case study con-
cerned the effort involved for creating the MBT model
(static and dynamic view separately) and formalizing the
security functional requirements in the form of TOCL
and Test Purpose, debugging the model by using the

J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components 15

Table 3: Coverage of PKCS#11 test requirements by each test selection criterion

Test Requirement #Test requirements covered by:
Category Structural TOCL Test Purpose

FR 158

SFR
- general purpose 4

- slot and token management 4 1

- session management 7 1 1

- object management 1 1

- digesting 2 7

- signing 2 8

- verifying signatures 3 7

- total of covered SFR 19 28 2

Table 4: PKCS#11 test suites metrics

Test Selection #Test #Test Cov. in %
Criterion targets cases FR SFR

Structural 206 184 100 40

TOCL 311 90 31 58

Test Purpose 24 24 9 2

Manual 24 24 45 16

Table 5: PKCS#11 test suites execution

Test Selection #Test Test execution
Criterion cases #Failures #Distinct Faults

Structural 184 6 5

TOCL 90 12 3

Test Purpose 24 6 3

Manual 24 0 0

test selection criteria and creating the test environment.
The time spent in creating the MBT model includes also
the time spent to understand the specification. The time
spent on the test environment includes the development
of the publisher of unit tests in C++, the adaptation
layer and understanding the existing SoftHSM test en-
vironment.

Table 7 summarizes these results. It took approxi-
mately 16 person-days to create the MBT model within
the scope defined earlier in this section. It is important
to note that for the test selection criteria based on TOCL
and Test Purpose, all artefacts were re-used, since they
were created when applying the structural criterion. The
considered time is evaluated to less than one and half a
day for understanding the SFRs and creating the TOCL
properties and the Test Purposes, respectively.

Answer to RQ3: If the model artefacts already ex-
ist, in terms of cost-effectiveness, results show that
creating the artefacts for the TOCL and Test Pur-
pose criteria for the PKCS#11 is largely acceptable
with respect to the benefices. As given in Table 7, the
cost of applying TOCL and Test Purpose coverage
criteria is about 2 person-days.

4.3 Experiment at the DGA

The DGA experiment responds to RQ1, RQ2 and RQ3.
We draw our conclusions on RQ1 based on the security
functional requirements coverage and test generation re-
sults of applying the three test selection criteria (struc-
tural, TOCL and Test Purpose) on the MBT model.
This draws the conclusion on RQ2 in terms of benefits
of applying the three test selection criteria, for instance
scalability and model simplification. Finally, based on
experts opinion we draw conclusions on RQ3.

4.3.1 SCM case study

The experimentation was performed in the context of an
evaluation process of cryptographic products. The DGA
requires that these products have a qualification issued
by a national authority, the French Network and Infor-
mation Security Agency (ANSSI). This qualification en-
sures the robustness of the security product against at-
tackers of a defined skill: it indicates that the product
can protect information of a given sensibility level (po-
tentially classified information), under specified condi-
tions of use. In this context, the evaluation of crypto-
graphic software supplies to the authority in charge of
the qualification all the technical elements needed for
this assurance. This evaluation focuses in particular on
the ability of the product to ensure information avail-
ability, confidentiality and integrity.

Our experimentation focused on a cryptographic li-
brary we call SCM for Software Cryptographic Module.
This library offers classical cryptographic services like

16 J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components

Table 6: SoftHSM discrepancies with PKCS#11 specification

Function Expected output Actual output
Test suite

Structural TOCL TP

C Logout CKR USER NOT LOGGED IN CKR OK X
C DigestInit CKR USER NOT LOGGED IN CKR OK X
C DigestInit CKR OK CKR OPERATION ACTIVE X
C SignInit CKR OK CKR OPERATION ACTIVE X
C SignInit CKR OBJECT HANDLE INVALID CKR OK X
C SignInit CKR OBJECT HANDLE INVALID CKR OPERATION ACTIVE X
C SignUpdate CKR USER NOT LOGGED IN CKR OK X
C Sign CKR USER NOT LOGGED IN CKR OK X
C SignFinal CKR USER NOT LOGGED IN CKR OK X
C VerifyInit CKR OK CKR OPERATION ACTIVE X
C VerifyInit CKR OBJECT HANDLE INVALID CKR OK X

Table 7: Effort involved for each MBT activity in person-
days

MBT Activity #Involved effort
Structural TOCL Test Purpose

MBT model creating
- static view 4
- dynamic view (FR) 12
- SFR 1 0.5

MBT model debugging 10 2 0

Test Environment 20 0 0

symmetrical and asymmetrical encryption, digital signa-
ture, hash computing and random generation. It embeds
an internal sequencing controller which maintains a co-
herent state of the module in any state of the system.
An objective of our work was to address the underly-
ing state-machine which can not be manually validated
due to its complexity (more than a thousand states and
sixteen thousands transitions).

Based on the available documents (specifications, ta-
bles etc), during the project Security Engineers and Test
Experts collaborated to define the security functional re-
quirements, which are fully representative of the testing
requirements commonly defined for such components.

For the SCM case study, we group the security func-
tional requirements in three categories:

– management of return codes: sometimes, when two
or more errors occur simultaneously, a software can
have an unwanted behavior. For instance, consider
the case of a function, having its status of execu-
tion represented as a boolean attribute; the function
switches the boolean to its opposite every time an
error occurs. A side-effect of this function is that the
attribute has a positive status every even number of
errors, which can be misused by third-party users or
applications. Thus, in the case of a simultaneous er-
rors, our goal is to validate every combination of the
possible returned errors.

– command sequencing: this table describes, for each
boolean flag, composing the internal system state,
and for each command of the SCM, if the flag is re-
quired (R) or forbidden (F) in order to execute the

Table 8: Experimentations metrics related to Class Dia-
grams

SCM model elements

classes 12

enumerations 13

enumeration literals 89

associations 28

class attributes 76

operations 38 API

observations 2

behaviors 8073

tocl properties 935

test purposes 1

LOC 3771

command, and, after the command’s execution, if the
flag is set (S) or erased (E). An example of such a
table is given in Fig. 17.

– authorization loss during a stop & start : verify the
authorisation parameters during a starting and shut-
ting down a connection with the token.

The MBT model of the SCM contains a class dia-
gram, to represent the API and the cryptographic com-
ponent environment and the signature of functions (name,
input parameters, error codes) and it contains OCL post-
conditions, to model the function’s behavior. The MBT
model covered one part of the test requirements, thus,
their full coverage was ensured by the TOCL and Test
Purpose coverage criteria, which we discuss more com-
pletely in the next section. Table 8 summarizes the met-
rics related to the UML/OCL class diagram of the SCM
case study.

4.3.2 Evaluation

To cover the three security functional requirement of the
SCM component we combined the three test selection
criteria. The management of multiple return codes was
completely covered using the structural criterion.

Next, to test a command sequencing (for example
as the one given in Fig. 17) it is possible to compute a

J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components 17

fl
a
g
1

fl
a
g
2

fl
a
g
3

Command 1 Before R F
After E S

Command 2 Before R F F
Before R R F
After E E S

Fig. 17: Sample of a table of command sequencing

sequencing automaton of the commands in the applica-
tion.

Initially we represented this automaton using 11 ad-
ditional classes and 38 operations per class. This resulted
in 418 operations and additional 2269 lines of OCL to
guide the test generation engine. This resulted in very
time consuming maintenance of the model. Rather than
exploiting this hardly maintainable model structure, the
TOCL mechanism allowed to systematize the approach
by defining 7 templates of TOCL properties that check
the implementation of the sequencing, which are the fol-
lowing:

– there is no erasure of a flag between its last setting
and its subsequent usage (as required).

– once a flag is set, and until it is erased, a command
that requires this flag can be invoked.

– in order to execute a command that requires the flag
to be set, it has to be set first.

– once a flag has been erased, it has to be set in order
to execute a command that requires it.

– there is no setting of a flag between the last erasure
of the flag and its use (as forbidden) to execute a
command.

– once a flag is erased, and until it is re-set, a command
that requests the absence of this flag can be invoked.

– once a flag has been set, it has to be erased in order
to execute a command that forbids it.

By considering the SCM table of 18 flags and 37 com-
mands (describing 44 combinations of before/after flags),
we were able to easily generate an exhaustive set of 935
TOCL properties. We evaluated the existing test suite
on these properties to check if they were covered by the
tests. Notice that each property could be documented by
its informal expression, instantiated for the considered
flag and appropriate commands, providing an interest-
ing and useful feedback for the analysis of the coverage
measure.

In Table 9 we present the chosen coverage criterion
for each category of SFR, the number of created ele-
ments (behaviors, TOCL properties and Test Purposes),
the produced test targets and generated test cases, re-
spectively for each SFR category.

The coverage of the defined test requirements by the
generated tests was evaluated further by the DGA Test
Engineers experts in the domain. Due to confidential-

ity reasons we cannot give details about the test exe-
cution nor evaluation of the TOCL property templates.
The Test Engineers confirmed a complete coverage of
the testing requirements defined for the component. In
addition, they found the TOCL and Test Purpose no-
tations adequate and powerful enough to translate the
requirements into tests. As the complexity of the SCM
is important with more than 8000 atomic behaviors and
the sequencing module has more than thousand states
and sixteen thousands transitions. Initially, the test engi-
neers tested the command sequencing, by instrumenting
the model. Our process has simplified the model by re-
moving more than 2000 lines of OCL, which represents
about 40% of the total OCL. We have generated 935
TOCL properties to validate automatically the module,
which includes and completes the initial test suite pro-
duced with an instrumented model.

Answer to RQ1: The evaluation of our approach
using this case study confirmed that dynamic test se-
lection criteria in addition to structural criteria con-
tribute to the coverage of the defined test require-
ments. The structural criterion covered the manage-
ment of multiple return codes. Moreover, the TOCL
test selection criterion is well-suited to validate the
sequencing of API command calls, which is one of the
main challenges in the validation of security compo-
nents. The Test Purposes were suitable for validating
the authorisation parameters.

Answer to RQ2: This analysis showed that our
approach: (i) has dramatically simplified the model,
since all the control of the test generation was re-
moved, to focus only on the behavioral aspects, (ii)
has systematized the generation of test properties,
and thus, test cases, (iii) sharpened the validation
of commands sequencing by considering not only the
nominal sequences, but also corner cases, that were
not addressed before, and (iv) scaled for large indus-
trial security components.

Furthermore, at the beginning of the project, Test
Engineers involved in the experimentation were new to
MBT, with very few information on the concepts and
on the tools. Similarly, the MBT experts involved in the
project did not have any knowledge on the cryptographic
components and the manner to test them. Therefore,
after a three-days training on the MBT technology for
the Test Engineers, we organized an iterative process,
involving a pair Test Engineer / MBT expert to design
the test generation model, to generate the test cases and
to adapt generated test cases into executable test scripts
for the pre-existing test bench. After practising MBT,
the Test Engineers are now able to manage in autonomy
new MBT projects.

18 J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components

Table 9: Test Selection Criteria Distribution of test cases per SFR on SCM

Security Functional # Elts # Test # Test
Requirements targets cases

Structural coverage for
- Management of return codes 8333 3203 2398

TOCL coverage for
- Command sequencing 935 6251 5620

Test Purpose coverage for
- Authorization loss during a stop & start 1 36 36

Answer to RQ3: This case study showed that the
dynamic test selection criteria are: (i) relatively easily
adopted by the test engineers and (ii) scalable for
handling test generation for large models- more than
8000 atomic behaviors and 935 TOCL properties. It
proves thus its cost-effectiveness:
– capitalization of involved effort in creating the

MBT model,
– improvement of requirements analysis phase,
– acceleration of the entire qualification phase,
– finally, the trained Test Experts in MBT can re-

produce the approach on new projects.

4.4 GlobalPlatform experiment

In this section, we summarize the results of combining
the structural and the TOCL test selection criteria on
the GlobalPlatform case study, in the context of the
TASCCC project4.

4.4.1 GP UICC case study

GlobalPlatform is an industrial standard for managing
resources for multi-application smartcards. It describes
all the functionalities and interfaces for managing the
administrative aspects of a card all along its life cycle. An
important fact related to the GlobalPlatform standard
is that it is designed to allow different actors (phone
companies, banks, transportation operators, etc.) to co-
exist on the same card. Such a possibility is offered by
the notion of a Security Domain (SD) that represents
an application through which all interactions with the
operating system are performed.

During the TASCCC project, we focused on GP UICC
profile, and specifically on the life cycle of the card,
which is expected to comply with a simple state machine
displaying 5 states. The OP READY and INITIALIZED
states both indicate that the card is ready to receive
commands from the issuer, but not from the card holder.
State SECURED means that the card is ready to receive
commands from the card holder. If a security violation
happens, the card goes to the CARD LOCKED state.

4 2009–2012, funded by the French National Research Agency
(ANR)

Finally, when the card is TERMINATED, no command
can be successfully invoked. The life cycle of the card is
controlled by the applications, which use the ”setStatus”
operation to set the life cycle state, accordingly to the
state machine.

We designed three security functional requirements
that express the dynamics of the card life cycle:

1. before going to the SECURED state, the card was in
the INITIALIZED state.

2. the card can not escape the TERMINATED state.
3. to reach the CARD LOCKED state from the INI-

TIALIZED state, it is mandatory to go through the
SECURED state.

The objective was to check if the configurations that
are described in these security functional requirements
were covered by the test suite, generated using the struc-
tural coverage criterion. This test suite contained 60 test
cases aimed at checking the possible changes in the card
life cycle state by the ”setStatus” operation.

4.4.2 Evaluation

Each one of the previous security functional require-
ments was expressed by a TOCL property [15]. To eval-
uate the relevance of the test suite w.r.t these require-
ments we ran the structural test cases on the model and
their associated automaton. Thus, based on this evalua-
tion, we monitored the satisfaction of these requirements
on the MBT model.

While these tests were not generated from the prop-
erties, these latter made it possible to evaluate the qual-
ity of the test suite, by measuring the coverage of the
corresponding automaton. Our industrial partners in the
project (namely the Gemalto company and Serma Tech-
nologies, a Common Criteria evaluator) gave us a pos-
itive feedback on the use of properties for testing. We
further created a publisher that generates a report high-
lighting the traceability between the test cases and the
security requirements.

Property (1) was covered by 13 tests, which per-
formed various actions consisting in reaching the INI-
TIALIZED state and then the SECURED state. Prop-
erty (2) was covered by 4 tests. However, we noticed

J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components 19

that these tests only focused on reaching the TERMI-
NATED state, without performing any additional ac-
tion. We thus completed the test suite with additional
actions, performed in the TERMINATED state, to check
that it was not possible to escape this trap state. Finally,
Property (3) was covered by 8 tests that reproduced the
chain of successive states:

INITIALIZED → SECURED → CARD LOCKED.

Validation engineers from Gemalto reported that (ex-
tract from evaluation report [8]):

The proposed approach [...] makes it possible, us-
ing a high level of abstraction, to get full test
suites that target at best a given perimeter of larger
expected results.

The Common Criteria evaluator of the TASCCC pro-
ject reported that (extract from evaluation report [45]):

It has been validated that the produced tests fully
satisfy the usual evaluation criteria applied for
this kind of product [i.e. smart cards]. One of
the most important criterion is the relevance of
the test cases, especially when automatic tools are
used. The study shows that the test cases of the
TASCCC campaign have the same level of rele-
vance as test cases that would have been manu-
ally produced by a validation engineer. The ad-
vantage of this approach is to produce more tests
and thus exercise the product in additional vari-
ous contexts.

Answer to RQ1: Results on this case study showed
the complementarity of the structural and the TOCL
test selection criteria. Domain experts confirmed that
dynamic test selection criteria, such as TOCL, fit per-
fectly to cover their test requirements.

Answer to RQ2: This case study showed the ben-
efits of using the TOCL coverage in terms of easy
reporting for Common Criteria evaluation, by docu-
menting the traceability between the generated tests
and the security functional requirements. Experts
confirmed that the produced test cases exercise vari-
ous contexts, thus addressing corner cases.

4.5 Summary

The first case study was a proof of concept that our ap-
proach is applicable on a real-life components, increasing
the fault-detection capability. The two case studies on
SCM component at the DGA and GlobalPlatform were
done in an industrial context and they foreground the
scalability of our approach for industry components.

4.6 Threats to validity

The experiments were conducted on three real-life se-
curity components. Thus, we can conclude that the ap-
proach is generalizable to security components underly-
ing specific standards. We discuss below some threats to
validity specific for each experiment:

– PKCS#11: Threats to validity for this case study
concern the subject’s skills. Actual effort for all ele-
ments is largely dependent on skills and experience
and therefore hardly generalisable measure. In an
MBT approach when test fails, one may ask the ques-
tion whether the fault is due to an error in the model,
the code or the test adaptation layer. All failed tests
were examined manually and to the best of our knowl-
edge of the PKCS#11 specification and SoftHSM
implementation, failed tests correspond to faults in
SoftHSM v2, revealing non-conformance to the spec-
ification.
Another threat to validity on the PKCS#11 study
concerns the domain knowledge on cryptography and
the PKCS#11 specification itself, because we only
had basic knowledge on cryptography. However, if
the MBT approach is integrated within the project,
the testing teams have already this knowledge. In ad-
dition, we do not had the knowledge of the SoftHSM
v2 code, thus the time spent to create the adapta-
tion layer is not measurable. This is linked to the
developers/testers experience and we consider it as
negligible.
Finally, a threat to validity is the selection of man-
ual test cases for the considered PKCS#11 perime-
ter. It is possible that some tests are omitted, due to
the use of function not being part of the perimeter.
The omitted tests may augment the coverage of the
specification, however, it will not impact the drawn
conclusions.

– GlobalPlatform: A threat to validity on this case study
is the choice of security functional requirements. Due
to confidentiality reasons we could not work on the
existing security functional requirements at Gemalto,
thus in collaboration with its security experts we
need to define adhoc requirements. This threats to
validity concerns RQ1 and RQ2. However, require-
ments were considered as representative to the type
of security functional requirements they work with,
and the produced reports were seen as a great benefit
for the certification process.

5 Related work

The MBT approach we propose relates to existing work
in the domain of Model-Based Security Testing. In ad-
dition, the dynamic test selection criteria (TOCL and
Test Purpose), relate more specifically to work in the

20 J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components

domains of property-based and scenario-based testing.
Our approach is further related to research addressing
the combination of MBT approaches.

5.1 Model-Based Security Testing

Model-Based Security Testing (MBST) approaches on
the one hand focus on access control policies, security
properties, such as privacy or protocols [50,26]. For in-
stance, Le Traon et al. worked on proposing structural
test selection criteria of access control policies [39] and
test generation based on access control models [42]. Fur-
ther, they have proposed an approach for test genera-
tion using combinatorial testing technique by combin-
ing roles, permissions and contexts [43]. Recently, they
proposed a tool-supported process for building access-
control test models from contracts and access-rules [58].
On the other hand, Anisetti et al. express the privacy
properties of a service (P-ASSERT) and propose to gen-
erate tests cases based on service models, which further
is used in their certification scheme for digital privacy of
services [2,3]. Mallouli et al. provided a formal approach
to integrate timed security rules, expressed according to
Nomad language into a TEFSM functional specification
of a system. Then they use the TestGen-IF tool to gen-
erate test cases, which are later executed on the system
using tclwebtest scripts [40].

On the other hand, MBST approaches aim at discov-
ering vulnerabilities in the systems.

Regarding MBT on cryptographic software, the focus
of previous publications was mainly on cryptographic
protocol. Rosenzweig and al. [44] proposes a Dolev-Yao
intruder model to perform attacks with Spec explorer.
Dadeau and al. [21] proposes 7 mutation operators to
simulate implementation leaks into 50 HLPSL models
of protocol. Our work is more related to the test of the
whole cryptographic component through its APIs, than
on a single protocol. Fuzzing, applied to data, but also
behavioral fuzzing [47], have also been used for secu-
rity testing with success [33]. Our approach differs in
the sense that we rely on external artifacts to drive the
test generation. As a consequence, we especially target
errors in the security functional requirements implemen-
tation. Furthermore, using MBT models for fuzzing can
be seen more as robustness testing, for verifying residual
discrepencies in the system, it is not possible to formal-
ize security properties and provide evidences for the test
strategy (as needed for example in CC evaluations) Smil-
iarly, on electronic purse protocols has been reported by
Jürjens and Wimmel [36], using the AutoFocus tool [48].
This approach relies on the use of various diagrams to
model the SUT, and possibly the attacks that can be
performed. This approach focuses on testing vulnerabil-
ities using attack scenarios. However, our approach goes
a bit further, as it can model attack scenarios to discover
security flaws, but it also allows to write test scenarios
that target functional security requirements.

In addition, Bortolozzo et al. [11] focus on online gen-
erating attacks on PKCS#11 tokens. Hence, in their ap-
proach they focus on exploiting vulnerabilities related to
extracting cryptographic sensitive information. To this
goal, they reverse-engineer a security token to deduce
the functions its supports and constructs a model that
is sent to a model checker, which produces traces that
are directly executed on the token. Contrary to them,
our work is offline (tests are generated and stored be-
fore executing them on the system) and does not focus
explicitly on attacks and extraction of cryptographic in-
formation from PKCS#11 based tokens, we used it to
evaluate the effectiveness and efficiency of our approach.
Our work can be completely applied in a more general
context on systems that underlay thorough validation of
compliance to specifications or for instance audits.

In addition, although our work can be adapted for
vulnerability testing [13], it does not aim to identify
and discover potential vulnerabilities, based on risk and
threat analysis or based on the information given by
databases such as National Vulnerability Database (NVD)
or the Common Vulnerabilities Exposure (CVE) database.

5.2 Property-based testing

The notion of property-based testing is often employed
in the test generation context. Several approaches [29,49,
1] deal with LTL formulae, that are negated and then
given to a model-checker that produces traces leading
to a counter-example of this property, and thus defin-
ing the test sequences. Our work aims at illustrating
the property and checking the system’s robustness with
respect to it. Fraser et al. [28] defines the notion of prop-
erty relevant test cases, introducing new coverage crite-
ria that can be used to determine positive and negative
test cases. Nevertheless, our approach does not rely on
LTL, but on a dedicated language easier to manipulate
than LTL by non-specialists.

Based on Dwyer’s work, jPost [24] uses a property
expressed in a trace logic for monitoring an implementa-
tion. Similarly, in [46] the authors introduce the notion
of observers, as ioSTS, that decide the satisfaction of the
property and guide the test generation within the STG
tool. Our work differs in the sense that the coverage cri-
teria are not only used as monitors for passive testing,
but they can also be employed for active testing.

5.3 Scenario-based testing

The test purpose language we presented in this paper
supports a ”Scenario-Based MBT” approach as proposed
in the classification of [25]. This scenario-based approach
allows to extend MBT based on structural coverage cri-
teria of the model (see [53] for a detailed presentation of
various coverage criteria used in MBT).

There are many approaches in the literature that in-
troduce test purposes in MBT. This concept has been

J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components 21

particularly studied in the MBT approaches based on
Input/Output Labeled Transition Systems or Symbolic
Transition System such as TGV [32], STG [17], TorX
[51] or Agatha [9]. Julliand et al. in [41] propose to gen-
erate test cases based on B-models and dynamic test
selection criteria (also called test purposes) for produc-
ing test objectives, represented as regular expressions.
They have applied their approach on smart-cards. One
particularity of our test purpose language, behind the
link with UML4MBT modeling concepts, is the capabil-
ity to define expressions and constraints mixing states
and actions. Another characteristics is the textual lan-
guage format and the capability to reuse keywords, to
facilitate the use by the Test Engineer, who is already in
charge of the creation and the maintenance of the test
generation model using UML4MBT modeling style.

5.4 Combining MBT approaches

Finally, the necessity to select MBT techniques accord-
ing to project’s specific needs has already been tackled
early in 1991 by Basili and Rombach [5]. In 2005 Basili
and Vegas [54] created a tool Characterization Schema
to suggest a set of technologies that can be used for
testing a specific project. Hence, the combination of the
suggested techniques and guidance on how to combine
them for project remains manual task, which has been
studied by Dias-Neto and Travassos [22]. They proposed
the successor of the Basili’s tool, Porantim, to accom-
pany the user towards selecting one or several suitable
MBT techniques for testing his system based on the
user interaction. Porantim is a decision making tool for
choosing one or more already existing approaches suit-
able for testing a given system. They construct a knowl-
edge database of a set of MBT techniques being selected
through surveys and systematic reviews not compatible
between each other. Wojcicki and Strooper in [57] pro-
pose systematic classification for combining verification
and validation techniques. However, they do not con-
sider providing information based on adequacy criteria
between the project under test and software testing tech-
nology. Other work deal with multi-criteria approach, for
instance based on resources and schedules, for selection
of testing technologies [55]. To the difference of the pre-
vious work they do not offer analysis nor support for the
combination of technologies. However, combining differ-
ent MBT technologies requires skills in several modelling
notations and learning several tools, which poses a chal-
lenge when introducing them into industry. In addition,
most probably each MBT tool requires new conception
of the model, making extremely hard the reuse of model
elements. Contrary to these works we propose a guiding
methodology to combine three test selection criteria in
an integrated tooled environment to cover on a best pos-
sible way (security) functional requirements and avoid
cost on multiple models creation.

Our previous work [27] has focused on the combina-
tion of model-based testing and verification applied in
the context of smart cards. This approach consisted in
using UMLsec stereotypes [35] to annotate the model
for, first, checking the consistency w.r.t. the security an-
notations, and, second, driving the test generation by
producing dedicated test scenarios originating from the
considered stereotypes. This previous work also used the
test generation engine of Smartesting CertifyIt, and was
a proof-of-concept of this kind of combination for vali-
dating smart card security properties. Our work is fruit
of multiple research projects that permitted to evolve the
current MBT methodology and technology. Contrary to
what has been done in [27], in this submitted paper we
do not address the combination of model-based testing
with model-based verification. We further present novel-
ties and evolutions in the formalization language and
methodology. The Test Purpose Langage has evolved
within the past years to capture experts experience and
we combined it in a new methodology including comple-
mentary generation techniques to improve: the coverage
of security requirement, the quality and thus fault de-
tection capabilities of a test suite.

Finally, our approach relates to Model-Driven Test-
ing using UML Testing Profile [4]. This latter presents
dedicated concepts that make it possible to describe test-
ing artifacts using UML. Such an approach shares the
idea of keeping the test generation directives excluded
from the behavioral test model, as for the TOCL proper-
ties and Test Purposes. However, our approach is differ-
ent in the sense that UML has been chosen as a notation
to describe the system, using a model. Our industrial ex-
perience has shown that test engineers are very reluctant
to use various formalisms. Thus, we decided to use a tex-
tual notation (close from a code in the case of the Test
Purposes, and pattern-based for TOCL) which simpli-
fies the definition of the test directives, and does not
require the user to design additional models (sequence
diagrams or statecharts). The feedback from our various
industrial partners showed that it eased the adoption of
the approach.

6 Conclusion and future work

In this article, we have presented the integration of three
test selection criteria (structural, TOCL an Test Pur-
pose) in one industrial tool suite. We have assessed the
process and tool’s effectiveness and scalability through
a real world case study PKCS#11 and two industrial
components. The TOCL and Test Purpose results have
proven their accuracy on covering security functional re-
quirements, test generation and monitoring. This led to
maturity of the tool to TRL 6 and an official transfer of
TOCL in the industry, as a part of the industrial MBT
tool - CertifyIt. The results show further that the three
test selection criteria are complementary and increase

22 J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components

the effectiveness of the generated tests. In terms of scal-
ability, the effort spent in the MBT activities is largely
acceptable with respect to the benefits from applying
systematically our approach. In addition, in order to es-
tablish the methodology in the industry, results on the
effort and time spent to learn the methodology and the
tools is very small.

Within the PKCS#11 context, the created MBT model
is compliant for PKCS#11 v2.20, 2.30 and 2.40 specifi-
cations and can be reused for testing PKCS#11 based
security tokens.

However, introducing MBT in the industry remains
challenging in terms of simplifying the MBT model con-
structions, creating valuable reports for certifications,
such as for Common Criteria certification [15]. This ap-
proach can be generally applied on specifications defin-
ing APIs for security components. We foreground it by
our current activities of applying the approach for test-
ing two new components: a GlobalPlatform smartcard
underlying the TEE (Trusted Execution Environment)
security profile [18] and a security component for digital
rights management.

References

1. P. Amman, W. Ding, and D. Xu. Using a model checker
to test safety properties. In 7th Int. Conf. on Engineering
of Complex Computer Systems (ICECCS’01), page 212.
IEEE, 2001.

2. M. Anisetti, C. A. Ardagna, M. Bezzi, E. Damiani, and
A. Sabetta. Machine-readable privacy certificates for ser-
vices. In R. Meersman, H. Panetto, T. Dillon, J. Eder,
Z. Bellahsene, N. Ritter, P. De Leenheer, and D. Dou,
editors, On the Move to Meaningful Internet Systems:
OTM 2013 Conferences, volume 8185 of Lecture Notes in
Computer Science, pages 434–450. Springer Berlin Hei-
delberg, 2013.

3. M. Anisetti, C. A. Ardagna, E. Damiani, and F. Saonara.
A test-based security certification scheme for web ser-
vices. ACM Trans. Web, 7(2):5:1–5:41, May 2013.

4. P. Baker, Z. R. Dai, J. Grabowski, O. Haugen, I. Schiefer-
decker, and C. Williams. Model-Driven Testing: Using
the UML Testing Profile. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2007.

5. V. R. Basili and H. D. Rombach. Support for compre-
hensive reuse. Softw. Eng. J., 6(5):303–316, September
1991.

6. B. Beizer. Black-Box Testing: Techniques for Functional
Testing of Software and Systems. John Wiley & Sons,
New York, USA, 1995.

7. G. Bernabeu, E. Jaffuel, B. Legeard, and F. Peureux.
MBT for global platform compliance testing: Experience
report and lessons learned. In 25th IEEE International
Symposium on Software Reliability Engineering Work-
shops, ISSRE Workshops, Naples, Italy, November 3-6,
2014, pages 66–70, 2014.

8. J. Bernet. Tasccc project - deliverable 5.5 - report on
the industrial use of the tasccc process. Technical report,
Gemalto, 2012.

9. C. Bigot, A. Faivre, J.-P. Gallois, A. Lapitre, D. Lugato,
J.-Y. Pierron, and N. Rapin. Automatic test generation
with AGATHA. In H. Garavel and J. Hatcliff, editors,
TACAS 2003, Tools and Algorithms for the Construction
and Analysis of Systems, 9th International Conference,
volume 2619 of LNCS, pages 591–596. Springer, 2003.

10. International Software Testing Qualifications Board.
Standard glossary of terms used in software testing,
March 2015.

11. M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel.
Attacking and fixing pkcs#11 security tokens. In Pro-
ceedings of the 17th ACM Conference on Computer and
Communications Security, CCS ’10, pages 260–269, New
York, NY, USA, 2010. ACM.

12. J. Botella, F. Bouquet, J.-F. Capuron, F. Lebeau, B. Leg-
eard, and F. Schadle. Model-based testing of crypto-
graphic components - lessons learned from experience.
In 2013 IEEE Sixth International Conference on Soft-
ware Testing, Verification and Validation, Luxembourg,
Luxembourg, March 18-22, 2013, pages 192–201, 2013.

13. J. Botella, B. Legeard, F. Peureux, and A. Vernotte.
Risk-based vulnerability testing using security test pat-
terns. In Leveraging Applications of Formal Meth-
ods, Verification and Validation. Specialized Techniques
and Applications - 6th International Symposium, ISoLA
2014, Imperial, Corfu, Greece, October 8-11, 2014, Pro-
ceedings, Part II, pages 337–352, 2014.

14. F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux,
N. Vacelet, and M. Utting. A subset of precise UML for
model-based testing. In 3rd int. Workshop on Advances
in Model Based Testing, pages 95–104, 2007.

15. K. Cabrera Castillos, F. Dadeau, and J. Julliand. Cover-
age criteria for model-based testing using property pat-
terns. In Proceedings Ninth Workshop on Model-Based
Testing, MBT 2014, Grenoble, France, 6 April 2014.,
pages 29–43, 2014.

16. Common criteria for information technology security
evaluation, version 3.1, July 2009.

17. D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. STG:
a tool for generating symbolic test programs and oracles
from operational specifications. In ESEC/FSE-9: Proc.
of the 8th European Software Engineering Conference,
pages 301–302, New York, NY, USA, 2001. ACM.

18. Global Platform Device Commitee. Global platform tee
protection profile version 1.0, August 2013.

19. Global Platform Consortium. Global platform uicc con-
figuration version 1.0, October 2008.

20. V. Cortier, S. Delaune, and P. Lafourcade. A survey
of algebraic properties used in cryptographic protocols.
Journal of Computer Security, 14(1):1–43, 2006.

21. F. Dadeau, P.-C. Héam, R. Kheddam, G. Maatoug, and
M. Rusinowitch. Model-based mutation testing from se-
curity protocols in HLPSL. Software Testing, Verifica-
tion and Reliability, 2014.

22. A.C. Dias-Neto and G. Horta Travassos. Support-
ing the combined selection of model-based testing tech-
niques. Software Engineering, IEEE Transactions on,
40(10):1025–1041, Oct 2014.

23. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns
in property specifications for finite-state verification. In
Proceedings of the 21st International Conference on Soft-
ware Engineering, ICSE ’99, pages 411–420, New York,
NY, USA, 1999. ACM.

J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components 23

24. Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L.
Richier. j-POST: a Java Toolchain for Property-Oriented
Software Testing. Electr. Notes Theor. Comput. Sci.,
220(1):29–41, 2008.

25. M. Felderer, B. Agreiter, P. Zech, and R. Breu. A clas-
sification for model-based security testing. In Proceed-
ings of the 3rd International Conference on Advances in
System Testing and Validation Lifecycle(VALID 2011),
pages 109–114, 2011.

26. M. Felderer, P. Zech, R. Breu, M. Bchler, and
A. Pretschner. Model-based security testing: a taxonomy
and systematic classification. Software Testing, Verifica-
tion and Reliability, pages 119–148, 2015.

27. E. Fourneret, M. Ochoa, F. Bouquet, J. Botella,
J. Jürjens, and P. Yousefi. Model-based security veri-
fication and testing for smart-cards. In Sixth Interna-
tional Conference on Availability, Reliability and Secu-
rity, ARES 2011, Vienna, Austria, August 22-26, 2011,
pages 272–279, 2011.

28. G. Fraser and F. Wotawa. Using Model-Checkers to Gen-
erate and Analyze Property Relevant Test-Cases. Soft-
ware Quality Journal, 16:161–183, 2008.

29. A. Gargantini and C Heitmeyer. Using model checking to
generate tests from requirements specifications. In Procs
of the Joint 7th Eur. Software Engineering Conference
and 7th ACM SIGSOFT Int. Symp. on Foundations of
Software Engineering, 1999.

30. C.P. Graettinger, S. Garcia, J. Siviy, R. J. Schenk, and
P.J. VanSyckle. Using the Technology Readiness Levels
Scale to Support Technology Management in the DoDs
ATD/STO Environments. Technical Report CMU/SEI-
2002-SR-027, Carnegie Mellon University and Software
Engineering Institute, September 2002.

31. Hadi Hemmati. How Effective Are Code Coverage Crite-
ria? An Empirical Analysis of 274 Faults. In Proceedings
of the IEEE International Conference on Software Qual-
ity Reliability and Security, 2015.

32. C. Jard and T. Jéron. Tgv: theory, principles and al-
gorithms: A tool for the automatic synthesis of confor-
mance test cases for non-deterministic reactive systems.
Int. J. Softw. Tools Technol. Transf., 7(4):297–315, 2005.

33. W. Johansson, M. Svensson, U. E. Larson, M. Alm-
gren, and V. Gulisano. T-fuzz: Model-based fuzzing for
robustness testing of telecommunication protocols. In
2014 IEEE Seventh International Conference on Soft-
ware Testing, Verification and Validation, pages 323–332,
March 2014.

34. J. Julliand, P.-A. Masson, R. Tissot, and P.-C. Bué. Gen-
erating tests from B specifications and dynamic selection
criteria. FAC, Formal Aspects of Computing, 23:3–19,
2011.

35. J. Jürjens. Secure Systems Development with UML.
Springer-Verlag, Berlin, Heidelberg, 2010.

36. J. Jürjens and G. Wimmel. Formally testing fail-safety
of electronic purse protocols. In Proceedings 16th Annual
International Conference on Automated Software Engi-
neering (ASE 2001), pages 408–411, Nov 2001.

37. RSA Laboratories. Pkcs#11 specification, 2004.
38. D. Lazar, H. Chen, X. Wang, and N. Zeldovich. Why

does cryptographic software fail?: A case study and open
problems. In Proceedings of 5th Asia-Pacific Workshop
on Systems, APSys ’14, pages 7:1–7:7, New York, NY,
USA, 2014. ACM.

39. Y. Le Traon, T. Mouelhi, A. Pretschner, and B. Baudry.
Test-driven assessment of access control in legacy appli-
cations. In Software Testing, Verification, and Valida-
tion, 2008 1st International Conference on, pages 238–
247, April 2008.

40. W. Mallouli, M. Lallali, A. Mammar, G. Morales, and
A. Cavalli. Modeling and testing secureweb applications.
In Web-Based Information Technologies and Distributed
Systems, volume 2 of Atlantis Ambient and Pervasive
Intelligence, pages 207–255. Atlantis Press, 2010.

41. P.-A. Masson, M.-L. Potet, J. Julliand, R. Tissot, G. De-
bois, B. Legeard, B. Chetali, F. Bouquet, E. Jaffuel,
L. Van Aertrick, J. Andronick, and A. Haddad. An ac-
cess control model based testing approach for smart card
applications: Results of the POSÉ project. JIAS, Jour-
nal of Information Assurance and Security, 5(1):335–351,
2010.

42. T. Mouelhi, F. Fleurey, B. Baudry, and Y. Traon. A
model-based framework for security policy specification,
deployment and testing. In Proceedings of the 11th Inter-
national Conference on Model Driven Engineering Lan-
guages and Systems, MoDELS ’08, pages 537–552, Berlin,
Heidelberg, 2008. Springer-Verlag.

43. A. Pretschner, T. Mouelhi, and Y. le Traon. Model-based
tests for access control policies. In Software Testing, Ver-
ification, and Validation, 2008 1st International Confer-
ence on, pages 338–347, April 2008.

44. D. Rosenzweig, D. Runje, and W. Schulte. Model based
testing of cryptographic protocols. In R. De Nicola
and D. Sangiorgi, editors, Trustworthy Global Comput-
ing, volume 3705 of Lecture Notes in Computer Science,
pages 33–60. Springer Berlin / Heidelberg, 2005.

45. D. Rouillard. Tasccc project - deliverable 5.4 - report on
the integration of the ate requirements. Technical report,
Serma Technologies, 2012.

46. V. Rusu, H. Marchand, and T. Jéron. Automatic verifica-
tion and conformance testing for validating safety prop-
erties of reactive systems. In J. Fitzgerald, A. Tarlecki,
and I. Hayes, editors, Formal Methods 2005 (FM05),
LNCS. Springer, July 2005.

47. M. Schneider, J. Grossmann, I. Schieferdecker, and
A. Pietschker. Online model-based behavioral fuzzing. In
2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation Workshops, pages
469–475, March 2013.

48. O. Slotosch, S. Molterer, M. Sihling, A. Rausch, B. Schtz,
and F. Huber. Tool supported specification and simula-
tion of distributed systems. Software Engineering for
Parallel and Distributed Systems, International Sympo-
sium on, 00:155, 1998.

49. L. Tan, O. Sokolsky, and I. Lee. Specification-based test-
ing with linear temporal logic. In IRI’2004, IEEE Int.
Conf. on Information Reuse and Integration, pages 413–
498, nov 2004.

50. G. Tian-yang, S. Yin-sheng, and F. You-yuan. Research
on software security testing. World Academy of Science,
Engineering and Technology, 70, 2010.

51. G. J. Tretmans and H. Brinksma. TorX: Automated
model-based testing. In First European Conference
on Model-Driven Software Engineering, pages 31–43,
Nuremberg, Germany, December 2003.

52. M. Utting and B. Legeard. Practical Model-Based Test-
ing - A tools approach. Elsevier Science, 2006. 550 pages.

24 J. Botella et al.: Complementary Test Selection Criteria for MBT of Security Components

53. M. Utting, A. Pretschner, and B. Legeard. A taxon-
omy of model-based testing approaches. Software Test-
ing, Verification and Reliability, 22(5):297–312, August
2012.

54. S. Vegas and V. Basili. A characterisation schema for
software testing techniques. Empirical Software Engi-
neering, 10(4):437–466, October 2005.

55. M. Victor and N. Upadhyay. Selection of software testing
technique: A multi criteria decision making approach. In
D. Nagamalai, E. Renault, and M. Dhanuskodi, editors,
Trends in Computer Science, Engineering and Informa-
tion Technology: First International Conference on Com-
puter Science, Engineering and Information Technology,
CCSEIT 2011, Tirunelveli, Tamil Nadu, India, Septem-
ber 23-25, 2011. Proceedings, pages 453–462. Springer,
2011.

56. G. Wimmel and J. Jürjens. Specification-Based Test
Generation for Security-Critical Systems Using Muta-
tions. In ICFEM ’02: Proceedings of the 4th International
Conference on Formal Engineering Methods, pages 471–
482, London, UK, 2002. Springer-Verlag.

57. M. A. Wojcicki and P. Strooper. An iterative empirical
strategy for the systematic selection of a combination
of verification and validation technologies. In Software
Quality, 2007. WoSQ’07: ICSE Workshops 2007. Fifth
International Workshop on, pages 9–9, May 2007.

58. D. Xu, L. Thomas, M. Kent, T. Mouelhi, and
Y. Le Traon. A model-based approach to automated test-
ing of access control policies. In Proceedings of the 17th
ACM Symposium on Access Control Models and Tech-
nologies, SACMAT ’12, pages 209–218, New York, NY,
USA, 2012. ACM.

	1 Introduction
	2 Context
	3 Complementary Test Selection Criteria for Testing Security Components
	4 Experimentation
	5 Related work
	6 Conclusion and future work

