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Abstract—Diagnostics and prognostics of health states are
important activities in the maintenance process strategy of dy-
namical systems. Many approaches have been developed for this
purpose and we particularly focus on data-driven methods which
are increasingly applied due to the availability of various cheap
sensors. Most data-driven methods proposed in the literature rely
on probability density estimation. However, when the training
data are limited, the estimated parameters are no longer reliable.
This is particularly true for data in faulty states which are
generally expensive and difficult to obtain. In order to solve
this problem, we propose to use the theory of belief functions as
described by Dempster, Shafer (Theory of Evidence) and Smets
(Transferable Belief Model). A few methods based on belief
functions have been proposed for diagnostics and prognostics
of dynamical systems. Among these methods, Evidential Hidden
Markov Models (EvHMM) seems promising and extends usual
HMM to belief functions. Inference tools in EvHMM have
already been developed, but parameter training has not fully
been considered until now or only with strong assumptions.
In this paper, we propose to complete the generalization of
HMM to belief functions with a method for automatic parameter
training. The generalization of this training procedure to more
general Time-Sliced Temporal Evidential Network (TSTEN) is
discussed paving the way for a further generalization of Dynamic
Bayesian Network to belief functions with potential applications
to diagnostics and prognostics. An application to time series
classification is proposed.

I. INTRODUCTION

Fault diagnosis and prognosis are two key elements of
effective Condition-Based Maintenance. Today’s concept of
machine diagnosis comprises the automated detection and
classification of faults, whereas machine prognosis is the
automated estimation of how soon and likely a failure will
occur [1]. One approach to prognosis is to use a physics-
based model of the system. Another approach is the expert
system approach. A third approach, on which we focus our
interest, is the data-driven approach, which uses historical
data to automatically learn a model of the system’s behavior.
Algorithms that use the data-driven approach to prognosis
learn models directly from the data, rather than using a model
based on human expertise. Artificial intelligence techniques,
such as expert system, neural network, fuzzy logic and genetic
algorithm, have been employed to assist the diagnostic task to
correctly interpret the fault data. Neural network technique
has gained popularity over other techniques as it is efficient

in discovering similarities among large bodies of data.
Another common solution is to use state sequence repre-

sentation, learning and inference algorithms. A state generally
represents a stationarity or a functioning mode in the data
and describes the dynamical system at a given time, while
transitions represent its dynamics. In practical applications,
states are hidden and only features are observable. An ad-
ditional modelling step is thus required to relate features to
states. To manage imperfections, the modelling should cope
with uncertainty using probability theory, possibility theory or
evidence theory [2], the latter being more general.

Hidden Markov model (HMM) [3] is one commonly used
method for state sequence representation and recognition.
They represent an appropriate model for analyzing event and
condition monitoring data together. An HMM consists of two
stochastic processes: a Markov chain with a finite number of
states describing an underlying mechanism and an observation
process depending on the hidden state. Early applications of
HMM in fault classification and diagnostics treated the real
machine faulty states and the machine normal state as the
hidden states of the HMM. The use of HMM in bearing
fault prognosis was investigated by Zhang et al. [4] where
one HMM was trained to recognise one type of cone-and-
cup bearing faults based on the corresponding vibration data.
The HMMs were also trained to estimate the fault states. The
similarity between current state and failure state was used as
the bearing degradation index, which was then extrapolated
to estimate the time of exceeding a predetermined failure
threshold. Dong and He [5] have proposed a segmental Hidden
Semi-Markov Model (HsMM) which generates a segment of
observations where durations are estimated from training data.

For the problem of state sequence modelling and recogni-
tion, we propose here to use the theory of belief functions as
described by Dempster and Shafer’s Theory of Evidence [6],
[7] and Smets’ Transferable Belief Model [8], [9]. Belief
functions cope with some limitations of usual HMMs [10]:
• The use of belief functions allows the modelling of infor-

mation on states without priors. Vacuous belief functions
are used when no prior knowledge is available.

• HMMs requires probability density estimation, which can
be no longer reliable when the training data are limited.
This is particularly true for data in faulty states which are
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expensive and difficult to obtain. Belief functions takes
this lack of information into account.

• In some cases, observations provided by sensors are
reliable only in some context and for some specific subset
of states. The theory of belief functions allows modelling
of this case easily.

• Emission models used in HMM are based only on proba-
bility. However, there are some cases where some knowl-
edge can be generated using fuzzy or belief functions
formalisms. The use of belief functions provides tools
to combine information in a common framework, using
specific operators for information fusion with non-distinct
sources [11].

Although inference tools in EvHMM have been devel-
oped [12], parameter training has not been considered with-
out the use of strong assumptions [13], [14]. In this paper,
we first propose to complete the generalization of HMM
to belief functions with a method for automatic parameter
training. The generalization of this training procedure to more
general Time-Sliced Temporal Evidential Network (TSTEN)
is discussed, paving the way for a further generalization of
Dynamic Bayesian Network (a generalization of HMM) to
belief functions with potential applications to diagnostics and
prognostics.

The paper is organized as follows: Section II describes
HMM basics and is followed by a brief description of belief
functions in Section III. EvHMM inference mechanisms are
then presented. Compared to [12] where canonical weights are
used, we here present the procedures using the communality
function to fulfill the requirements described in [15], [16] for
belief propagations. Section IV and parameter training are
finally presented in Section V.

II. PROBABILISTIC HMM BACKGROUND

The notations and basic mechanisms of HMMs described
in the tutorial of Rabiner [3] are presented in this section.

A sequence is defined by a set of N states in the set Ωt
called the frame of discernment with:

Ωt = {s1, s2, . . . sN} (1)

and si ∈ Ωt is the i-th state at time t. States are said hidden be-
cause only - continuous - observations Ot = [O1 O2 . . . OF ],
t ∈ {1..T} (F is the dimension) are actually measured on the
dynamical system. Each observation Ot generates a degree
of confidence on each state si that is generally represented
by a likelihood P (Ot|si), denoted by bi(Ot). The latter are
assessed by a modelling technique B such as a mixture of
Gaussians [3]. At each time, the transition from a state si (at
t − 1) to a state sj (at t) has a probability aij = P (sj |si).
The N × N stochastic matrix A = [aij ], i ∈ {1 . . . N}, j ∈
{1 . . . N} such as

∑
j aij = 1 is called the transition matrix.

At time t = 1, the a priori on states is represented by the
initial distribution on states πi, i ∈ {1 . . . N}. An HMM
λ = {A,B,Π} is thus characterized by three elements: the
transition matrix A, the observation models B (generating
likelihoods bi(Ot)) and the initial distributions πi.

The forward and backward propagations are the basic
mechanims of the HMM that ensure the temporal coherence
and compute useful quantities for inference and learning:
• Forward / filtered estimate: αt(sj |λ) = P (O1,O2 . . .

Ot, sj |λ) =
∑
∀si∈Ωt−1

αt−1(si) · aij · bj(Ot), used in
particular for classification since the log-likelihood of a
sequence of observations given a HMM λr is:

Lp(λr) =
1

T

T∑
t=1

log

 ∑
sj∈Ωt

αt(sj |λr)

 (2)

and the best model is λ∗ = argmax r Lp(λr).
• Backward: βt(si) = P (OT ,OT−1 . . . Ot+1|si, λ) =∑

∀sj∈Ωt+1
aij · bj(Ot+1) · βt+1(sj),

• γ-variable / smooth estimate: γt(sj) = P (sj |O1:T , λ) ∝
αt(sj) · βt(sj), used in particular to determine both the
most probable state at t and model’s parameters B,

• ξ-variable: ξt(si, sj) = P (si, sj | O1:T , λ) ∝ αt(si) ·
aij · bj(Ot+1) · βt+1(sj) used to estimate the expected
probabilities of a transition by:

aij ∝
T−1∑
t=1

ξt(si, sj) (3)

• Viterbi metric δ: computed similarly as α but replacing
the sum a maximum (max-product algorithm).

III. TBM BACKGROUND

The Transferable Belief Model (TBM) [9] is a general
framework for uncertainty representation and combination of
various pieces of information without additional priors. In par-
ticular, doubt and conflict are explicitly emphasized. Typically,
the former represents ignorance and the latter emphasizes the
contradiction within a fusion process. This section reviews
some basic notions.

A. Belief mass

The belief of an agent in subsets of the frame of discernment
Ωt can be represented by a basic belief assignment (BBA), also
called belief mass assignment:

mΩt : 2Ωt → [0, 1], A→ mΩt(A)∑
A⊆Ωt

mΩt(A) = 1
(4)

A belief mass can not only be assigned to a single state
(|A| = 1), but also to a subset (|A| > 1) of states without
assumption concerning additivity. This property permits the
explicit modelling of doubt between states (composing A) and
constitutes a fundamental difference with probability theory.
Elements A for which mΩt(A) > 0 are called focal sets.

A normalised BBA is such as the degree of conflict is nil: mΩt
∗ (A) =

mΩt(A)

1−mΩt(∅)
mΩt
∗ (∅) = 0

(5)

This process is called Dempster normalisation. Other sound
redistribution rules for conflict normalisation exist [17].
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B. Other belief functions

Several functions - in one-to-one correspondance [9] - can
be computed from a BBA. Depending on the context of ap-
plication, these functions are used to represent the knowledge
and to make the combination rules easier to compute.

In the following, the communality q will be used and is
defined by:

qΩt(B) =
∑
C⊇B

mΩt(C) (6)

The plausibility is also an important function:

plΩt(B) =
∑

C∩B 6=∅

mΩt(C) (7)

In particular plΩt(Ωt) = 1−mΩt(∅) links the plausibility of
“everything” (considered in the frame Ωt) to the opposite of
the belief mass of “nothing”. This relation is actually a bridge
from likelihood maximization principle to minimum of conflict
principle, also called unlikelihood [18].

C. Combination

The combinations of several sources of belief can be com-
puted by four main rules [11]. In the sequel we will mainly
used the conjunctive rule of combination (CRC, ∩©):

qΩt
1 ∩©2(B) = qΩt

1 (B) · qΩt
2 (B) (8)

The CRC is a simple product in the q-space while it implies
several summations and products in the m-space:

mΩt
1 ∩©2(B) =

∑
C∩D=B

mΩt
1 (C) ·mΩt

2 (D) (9)

If the CRC is used and if the obtained belief mass (using the
inverse transform from q to m) is normalised (Eq. 5) then we
obtain Dempster rule of combination [19].

D. Conditional BBA

A conditional BBA can be used to represent the state of
knowledge. For example mΩt|Ωt−1(·|Si) is a BBA defined on
Ωt conditionally to subset Si ⊆ Ωt−1. Conditioning is also
a process which consists in combining conjunctively (using
the CRC, Eq. 9) a BBA mΩt with a categorical BBA defined
by mΩt

2 (A) = 1, i.e. the latter has the particularity to be nil
except for one single element A ⊂ Ωt (“A” is the condition).

Therefore, after conditioning, the focal sets - elements for
which the mass is greater than zero - have a non-empty
intersection with A which becomes the restricted frame of
discernment. The key point is that the mass on the empty set
increases and is given by the following defintion.

Definition 1: After conditioning of a BBA mΩt by a subset
A, the mass on the empty set is equal to:

1−mΩt(∅|A) = plΩt(A) (10)

and:
• when |A| = 1, only two focal sets remain: ∅ and A,
• when |A| > 1, there may be more than two focal sets,

including ∅.

E. Generalized Bayes theorem

The Generalized Bayesian Theorem (GBT) is an extension
of Bayesian Theorem in the TBM framework [20]. The GBT
alleviates the problem of priors, since belief functions make
the representation of total ignorance possible. Expression of
the GBT varies according to the type of belief functions. For
example, in the sequel we will use the q − pl form:

qΩt|Ωt+1
a (Si|Sj) =

∏
si∈Si

plΩt+1|Ωt
a (Sj |si) (11)

F. Law of total plausibility

The law of total plausibility will be used for projection and
is given by:

plΩt+1(Sj) =
∑
Si⊆Ωt

plΩt+1|Ωt(Sj |Si) ·mΩt(Si) (12)

This equation remains valid with m or q instead of pl [20].

G. Decision making

After combination of multiple sources of belief, a result-
ing BBA mΩt is obtained. Decision making in the TBM
framework consists in the choice of the best hypothesis from
the pignistic probability distribution [9] or the plausibility
transform [21].

IV. EVIDENTIAL HMM
Compared to [12] where canonical weights are used, we

here present the procedures using the communality function
in order to fulfill the required axioms described in [15], [16]
for belief propagations [22]. Canonical weights can be used
but only with the product operator which is equivalent to use
the communalities.

A. Classification in EvHMM

Given an observation sequence O1:T (length T ) and a set
of EvHMMs λ1...R, the goal of the classification process
is to choose the EvHMM that best fits observations. The
classification criterion is given by [12]:

Le(λr) =
1

T

T∑
t=1

log plΩt
α (Ωt|λr) (13a)

λ∗ = argmax
r

Le(λr) (13b)

and is a generalization of HMM criterion to belief functions.
This criterion relies on the opposite of the conflict value
(which is a plausibility) computed in the forward propagation.
Therefore, it has a natural interpretation: the less the conflict,
the more likely is the model λ. The EvHMM classification
process is presented in Algorithm 1.

The computation of the evidential forward variable at t
satisfies a “prediction – update” mechanism. The prediction
of proposition Sj is first computed using the law of total
plausibility (Eq. 12). The prediction is then combined with
observations in order to update belief on states:

qΩt
α (Sj) =

∑
Si⊆Ωt−1

mΩt−1
α (Si) · qΩt

a (Sj |Si) · qΩt

b (Sj) (14)
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The prior on states at t = 1 can be “vacuous” and this state
of knowledge is easily represented by qΩ1

α (Si) = 1,∀Si ⊆
Ω1 meaning total ignorance. This equation generalizes the
probabilistic forward variable when transitions, observations,
and prior are all Bayesian (i.e. the belief mass is nil except
for singleton hypotheses) and with Dempster normalisation
(Section III-C). In the worst case, the evidential version has
a complexity is equal to T · N · 2N , with N the number of
states and T the sequence length (vs T ·N2 in HMM). In this
equation, qΩt

a (·|Si) are the conditional communalities defined
on Ωt conditionally to subsets Si ⊆ Ωt−1 and representing
transitions between subsets at t−1 and t, and qΩt

b ≡ q
Ωt

b (·|Ot)
are communalities obtained from current observations.

Remark 1: The conflict resulting from the conjunctive com-
bination between observations and prediction must be can-
celled out (by normalisation) at each iteration because it
is absorptive by the conjunctive rule (embedded within the
forward propagation). As in probabilistic HMM, where the
normalisation process consists in redistributing uniformly
1 −

∑
j αt(j) to each state at t, belief function framework

also provides a similar process (Eq. 5) [17] called Dempster
normalisation.

Algorithm 1 Algorithm EvHMM Classification
Require: model λ = {Ae,Be,Πe} and s {Evidential transi-

tions, evidential models generating masses from observa-
tions, and evidential prior on the first state. Also s if a
generalized cautious rule is used (Sect. III-C).}

Ensure: Evidential likelihood Le {Used in classification}
Ensure: Evidential α− β − γ − ξ {Filtering/smoothing}

1: for all instants t = 1 to T do
2: α = Forward propagation {Eq. 14}
3: α∗ = Normalise α {Eq. 5}
4: end for
5: Compute Le {Eq. 13}
6: for all instants t = T to 1 do
7: [β γ ξ] = Backward propagation {Eq. 15 and 16. If ξ

is required then use Eq. 22 of [23] or see Section V-B
for an approximation}

8: end for

B. Hidden state sequence recognition using smoothing

As in probabilistic HMM, one can use the γ-variable
(posterior probability of states given observations) for state
recognition. In EvHMM, a similar process can be used. For
that, the evidential backward variable has to be computed:

qΩt

β (Si) =
∑

Sj⊆Ωt+1

m
Ωt+1

β ∩©b (Sj) · qΩt
a (Si|Sj) (15)

which follows also a prediction-fusion scheme. The BBA
m

Ωt+1

β is the backward variable defined on subsets of states
at t + 1, plΩt+1

a (·|Si) is the set of conditional plausibilities
representing transitions from subsets of states at t and t + 1,
and m

Ωt+1

b ≡ m
Ωt+1

b (·|Ot+1) is the observed BBA. The

BBA m
Ωt+1

β ∩©b on Ωt+1 is first computed by the conjunctive
combination of the available BBAs at t + 1 (mΩt+1

β and
m

Ωt+1

b ). Then a projection towards Ωt is carried out. For
this, given transitions in the pl-space, the posterior conditional
communalities qΩt

a (·|Sj) are obtained from these plausibilities
by applying the GBT (Eq. 11). Note that unknown prior at T
is modelled by a vacuous BBA (qΩT

β (Si) = 1,∀Si ⊆ ΩT )
and Eq. 15 reduces to the probabilistic case if all BBAs are
Bayesian and if Dempster rule is used.

The evidential γ variable is then computed by the conjunc-
tive combination of both forward and backward variables:

qΩt
γ (Sj) = qΩt

α (Sj) · qΩt

β (Sj) (16)

The γ-variable is then used for the detection of the best state
s∗t at a given time t. This state can be found by maximizing
the pignistic probability [9] or the plausibility [21]. The γ-
variable is not always well-suited for state recognition because
the decision is too “local”. In [12], a Viterbi-like procedure
was proposed to find the best sequence of hidden states. This
procedure is not optimal but draw benefits of belief functions.
In this paper, we propose an optimal version.

C. Hidden state sequence recognition using a Viterbi proce-
dure

The problem is to find the best sequence of states. A solution
is to maximize the state sequence plausibility. For that, let
consider a sequence of singletons states {s1, s2, . . . sT } with
|st| = 1. At t = 1, the available information are: the prior mΩ1

π

and observations mΩ1

b . They have to be combined by the CRC
rule and then conditioned on s1. Since conditioning is made by
a singleton, the BBA has two focal sets: ∅ and s1. Therefore,
at t = 1, the combination leads to plδ(s1) = plπ(s1) · plb(s1).

Then at time t = 2, one observes that the true state is
s2. Given the transition BBA m

Ω2|Ω1
a [s1], conditioning by

s2 gives mΩ2|Ω1
a [s1, s2](∅) and mΩ2|Ω1

a [s1, s2](s2), where the
latter is equal to plΩ2|Ω1

a [s1](s2) (after conditioning since s2 is
a singleton). Observations are also conditioned by s2 and the
combination of all these information provides: plδ(s1, s2) =

plπ(s1) · plb(s1) · plΩ2|Ω1
a [s1](s2) · plb(s2).

Applying the same reasoning for the whole sequence, we
have the following definition.

Definition 2: In EvHMM, the plausibility of a sequence of
singleton states S = {s1, s2, . . . sT }, |st| = 1 is given by:

plδ(S) = plπ(s1) ·
T∏
t=2

plΩt|Ωt−1
a [st−1](st) ·

T∏
t=1

plb(s
t) (17)

Proposition 1: Eq. 17 remains valid for subsets (which are
not considered in this paragraph). To show this property,
it is sufficient to consider the mass on the empty set after
conditionning which is equal to the opposite of the plausibility
of the conditioning subset.

Given all possible state sequences, one can apply Eq. 17
and then choose the best sequence S∗ by:

S∗ = argmax
S={s1,s2,...sT }

plδ(S) (18)
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which is intractable because the number of possible sequences
is NT , which leads to the following proposition.

Proposition 2: The Viterbi algorithm defined in prob-
abilistic HMM can be applied using as imputs the
plausibilities on singletons: plπ(si), si ∈ Ω1 (prior),
pl

Ωt|Ωt−1
a [st−1](st), st−1 ∈ Ωt−1, st ∈ Ωt (transitions) and

plb(st), st ∈ Ωt (observations). Finding the best sequence is
then performed in N · T .
If no prior information is available at t = 1, then plπ(si) =
1,∀si ∈ Ω1 (i.e. the related BBA is vacuous). The Viterbi
metric is thus a plausibility.

Proposition 3: In the maximization, it is not relevant to
consider all possible sequences of subsets St ⊆ Ωt (even
though Eq. 17 remains valid) because the plausibility increases
as the cardinality of the subsets increases and therefore the
resulting optimal sequence would be S∗ = {Ω1,Ω2, . . .ΩT }
which brings no information.

D. The case of Evidential Markov Chains (EMC)

In Markov chains, the state st ∈ Ωt is observed. In
Evidential Markov Chains (EMC), the originality is that the
state can be a subset St ⊆ Ωt. In signal and image processing,
observations of subsets can be useful in transitions where the
state is naturally imprecise.

Thus, in EMC, we have a sequence S =
{S1, S2, . . . ST }, St ⊆ Ωt, and one is interested in assessing
the plausibility of this sequence. Reasoning similarly as
in the previous Viterbi procedure but conditioning by the
subsets in the sequence S and considering that the true subset
is perfectly known (plb(St) = 1), we have the following
definition.

Definition 3: In an EMC, the plausibility of a sequence S =
{S1, S2, . . . ST }, St ⊆ Ωt is

plδ(S) = plπ(S1) ·
T∏
t=2

plΩt|Ωt−1
a [St−1](St) (19)

EMC were first proposed in [14]. However, the authors pro-
pose to use the BBA (cf. Definition 4.1 in [14]) in order
to assess the support given to a sequence. We here justify
theoretically the use of plausibilities instead. In particular,
if one uses only belief masses on subsets then pieces of
information are lost.

V. TRAINING IN EVHMM

The problem is to learn transitions (ma) and models (B)
in EvHMM. As underlined in [12], applying an iterative
procedure as in EM-based HMM training is not relevant.
Indeed, successive forward and backward propagations imply
conjunctive combinations which has a tendancy to generate
specific BBAs focused on singletons, therefore loosing the
interest of using belief functions. We rather propose two
distinct processes: one for observation models (called RCGI)
and one for transitions (called ITS).

A. RCGI: Observations models training

The proposed training process of observation models can
be decomposed in two steps: Clustering data into M clusters
(called components in the sequel) and Regrouping the M
components into N states. The main features of this algorithm
(Alg. 3) are represented in Figure 1.

Components found in
the Clustering phase
Prototypes
Regrouping of
components into states

Fig. 1. RCGI steps with N = 4 and M = 6. Filled circles are the
components, stars represent the first component called prototypes (obtained
in the initialisation step), dotted circles are the final regrouping.

1) Step 1 - Clustering: The first step consists in paving the
feature space by first finding M ×N components in the data
(see filled circles in Fig. 1):

Ω0 ← find M ×N components using a clusterer (20)

This phase can be performed by any clustering approach.
If there are enough data, an EM algorithm can be used
by estimating, for example, the parameters of a mixture of
M × N Gaussian components. In the presence of imperfect
data, a Gustafson-Kessel Fuzzy-C-Means [24], an Evidential
C-Means (ECM) [25] or an evidential EM algorithm [26] can
be used. One can also use online clustering such as [27].

2) Step 2 - Regrouping: In probabalistic HMM, a set of
states (N ) and a number of components for each state (M )
has to be chosen. Then Baum-Welch algorithm finds the
parameters of each component in each state:

B← Baum-Welch algo. (data, M comp., N states) (21)

Regrouping of components into states is made automatically
by maximizing likelihood, and a relevant regrouping implies
a better recognition of states.

We propose to adapt this algorithm for EvHMM as follows:
let M×N components found by the Clustering phase (Eq. 20),
we then need to find N states, each one composed of M
components. For that, we propose a procedure called RCGI
(Regrouping Components with Geometrial Interaction) de-
scribed in Algorithm 3. Note that the optimal way is intractable
because it requires to consider all possible permutations be-
tween components.

We denote Ω0 the set of M ×N components provided by
the Clustering phase. The N sets of states are denoted Ωi, i =
1 . . . N such as:

∩iΩi = ∅ and ∪i Ωi = Ω0 (22)
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The cardinality |Ωi| can be different for each state but, for
the sake of simplicity, we consider here the same cardinality.
RCGI thus fills a M ×N association matrix A with:

A(i, j) =

{
1 if component j is assigned to state i
0 otherwise (23)

a) Initialisation: RCGI first requires one component for
each state. This step is critical since components will be added
gradually based on this initialisation. We propose the following
procedure (Alg. 2):

1) First, compute distances between all components. The
result Z = [D(i, j)] is a N×M triangular square matrix
where elements are the distances between components i
and j (we here use the Euclidean distance).

D(i, j)← Distance between comp. i and j (24)

2) Then, find the farthest component from all others:

C1 = argmax
j

∑
i

D(i, j) (25)

3) The third step consists in finding the farthest component
from C1:

C2 = argmax
j,j 6=C1

D(comp. C1, j) (26)

4) At this stage, we have two states, each with one com-
ponent. In order to find the first component for the
remaining N−2 states, we consider the distance between
C1 and C2 and divide it into N − 1 segments of equal-
length. Let denote Ĉi the estimated component for state
i = 3 . . . N . Therefore, Ci is given by the closest
component to Ĉi:

Ci = argmin
j,j 6=Ck,k>i

D(comp. Ĉi, j), i = 3 . . . N (27)

Example 1: Let consider the data of Figure 4. It repre-
sents a set of N = 4 states, each one being corrupted
by a M = 3 components additive noise (different for
each state). Ideally, there are 12 components. Assume that
the components are characterized by the following center
means: µ = [4.2 3.2 2.2 1.2 1.6 2.7 0.7 3.4 3.7 0.8
3.6 2.3]. Thus, criterion (24) gives the following values:
D(i, j) = [51.68 22.08 16.48 34.88 24.64 16.28 53.08 26.08
33.88 48.96 31.04 15.96]. Therefore C1 = 7 (µ7 = 0.7)
and C2 = 1 (µ1 = 4.2). Then the segment length is
(4.2 − 0.7)/3 = 1.1667 thus Ĉ3 = 3.033 and Ĉ4 = 1.8667
leading to C3 = 2 (with µ2 = 3.2) and C4 = 5 (with
µ5 = 1.6). Finally, the first components of each state are
7, 1, 2 and 5.

In Fig. 1, the result of the initialisation step is represented
by the stars on the chosen components.

b) Association: A component j in Ω0 is associated to a
state i if the latter is the closest state to j.

A representation of this assignment is depicted by dotted
circles in Fig. 1. Since a state can be composed of several
components, it is necessary to adapt the distance measure

Fig. 2. Signal to be segmented.

D′ in order to compare a single component (j) to a set of
components (composing state i):

j∗ = argmin
j

D
′
(component j, state i)

A(i, j∗) = 1
(28)

For distribution-based clusterers (such as Gaussian mixtures
models), we propose to use the Kullback-Leibler (KL) diver-
gence between both the distribution pj ≡ p(y|j) of data points
y in component j and the distribution pi ≡ p(y|i) of data
points y in the mixture of components composing state i:

D
′
(j, i) = KL

(
pi || pj

)
(29)

For mixtures of continuous densities, the KL divergence does
not have a closed-form but can be estimated by Monte-Carlo
sampling. Samples are thus drawn from the mixture associated
to pi and given a set of i.i.d. sampled points y1 . . . yn . . . yNs

,
we can approximate the KL by its Monte-Carlo estimate:

K̂L =
1

Ns

∑
n

log
( p(yn|i)
p(yn|j)

)
−−−−−→
Ns→∞

KL(pi||pj) (30)

where we used Ns = 1e5 samples.

Algorithm 2 ONE STATE RCGI
Require: Set of components Ω0

Require: Number of states N {assume the same number of
components for each state}

Ensure: Find N prototypes: A(j) = 1, j = 1 . . . |Ω0| if
component j is a prototype

1: Compute distances between all components ([D(i, j)])
2: Find the farthest component: C1 ⇒ A(C1) = 1
3: Find the farthest component from C1: C2 ⇒ A(C2) = 1
4: Find N − 2 components between C1 and C2 as described

in the text: assign A(Ci) = 1, i = 3 . . . N

Example 2: (continue) RCGI is applied on the data de-
scribed in the previous example. It finds a set of N = 4 states,
with M = 3 components each. The resulting association is
[7 10 4] for state 1, [1 9 11] for state 2, [2 8 6] for state 3 and
[5 3 12] for state 4. This association is depicted on Figure 3
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Algorithm 3 RCGI
Require: Set of components Ω0 {characterized by some pa-

rameters}
Require: Number of states N {M = |Ω0|/N since we

assume the same number of components for each state}
Ensure: Association matrix A(i, j) = 1 if component j is

assigned to state i
1: A(:, 1) ← ONE STATE RCGI(Ω0, N) (Alg. 2)
{Initialisation, then remove the prototypes from Ω0.}

2: for states i = 1 To N do
3: while

∑
j A(i, j) < M do

4: for all remaining components j in Ω0 do
5: Compute the distance D′(i, j) between state i and

component j {See comments in text}
6: end for
7: A(i, j∗) = 1 with j∗ = argmin j D

′
(i, j) {Assign a

component to state i}
8: Ω0 ← Ω0 − {j∗} {Update remaining components}
9: end while

10: end for

Fig. 3. Visualisation of regrouping (one line for each state).

and the obtained segmentation is given on Figure 4 after
reordering of states according to their norm over components.

Compared to probabilistic HMM, RCGI is deterministic
(if the number of samples is sufficient to compute the KL)
and thus allows to obtain a stable result while HMM are
sensitive to initialisation. Note that RCGI can also be applied
on clustering results obtained in HMM.

In signal processing, we believe that RCGI can be useful
since the coherence obtained has a real meaning on the signal
(for temporal data).

B. Transition estimation

The problem is to estimate belief concerning transitions
between states. As in Baum-Welch algorithm, we propose
an iterative process described in Algorithm 4 and called ITS
(Iterative Transition Specialization).

ITS algorithm starts after RCGI and requires a first es-
timation of the transition matrix. When there is no prior
information on transitions, we use [23]:

m
Ωt×Ωt+1

â0
∝
T−1∑
t=1

(
m

Ωt↑Ωt×Ωt+1

b ∩©m
Ωt+1↑Ωt×Ωt+1

b

)
(31)

Fig. 4. Segmentation after RCGI.

up to a constant 1
T−1 and where mΩt↑Ωt×Ωt+1

b is the vacuous
extension [9] of the belief mass mΩt

b (·|Ot) (provided by
observations) on the cartesian product defined by:

m
Ωt↑Ωt×Ωt+1

b (B) = mΩt

b (C) if C × Ωt+1 = B (32)

and 0 otherwise.
Eq. 31 is a generalization of HMM transition estimate

to belief functions when there is no prior information on
transitions. It is also a simplification of Eq. 22 in [23].

Once the first estimate mâ0 has been estimated, the eviden-
tial forward algorithm is applied. The resulting α variable is
then used in Eq. 31 (instead of mb) to compute transitions
mâ1 used in the second iteration. In iteration k, the evidential
forward produces the α variable used again in Eq. 31 to
compute transitions mâk . This process iterates and ITS stops
when the conflict (unlikelihood) converged. The final transition
matrix is denoted mâ∗ .

Algorithm 4 Algorithm ITS (Iterative Transition Specializa-
tion)

Require: Belief given observations {mΩt

b ,∀t = 1 . . . T}
Require: The threshold for convergence ε {e.g. 1e-5}
Ensure: Transition estimate mâ∗

1: logplold ← −∞
2: converged ←∞
3: mâ0 ← Estimation of transitions using observations {First

estimate of transitions by Eq. 31}
4: while |converged| > ε do
5: [α logplnew] ← Forward propagation {Eq. 14 and 13,

Inference process}
6: mâ∗ ← Estimation of transitions using filtered belief

estimate {use α in Eq. 31 instead of mb}
7: converged ← logplnew − logplold {Convergence}
8: logplold ← logplnew

9: end while
mâ∗ ← (mâ∗ +mâ0)/2 {Consensus, avoid low belief on
doubt}

As expected [12], consecutive applications of the forward
algorithm provides an evidential transition matrix with high
values on singletons and low values on doubt. This effect is
due to conjunctive operations embedded in propagations and
is increased if we use the smoothed estimate (γ) instead of the
filtered estimate (α). In order to solve this problem, we simply
take the value of (mâ∗+mâ0)/2 as the final transition matrix.
This provides a consensus between the two transitions.
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Figure 5 depicts the value of the likelihood at each iteration
of ITS (given the data of the previous example).

Fig. 5. Evolution of EvHMM’s log-plausibility at each iteration of ITS.

C. Towards RIL in TSTEN

Previous sections introduced Evidential HMMs. We now
consider more complex models that we call TSTEN, standing
for Time-Sliced Temporal Evidential Networks (TSTEN), as a
generalization of Dynamic Bayesian Network to belief func-
tions. TSTEN are graphical models representing conditional
independencies between variables within and across positions
in a sequence. As emphasized in [28], modelling of time-
series data is natural by directed graphical models, which can
capture the fact that time flows forward. Arcs within a time-
slice can be directed or undirected, since they model “instan-
taneous” correlation. We rather use “time-sliced” instead of
“dynamic” because the latter often means the graph parameters
and structure change over time.

Generalizing probabilistic Representation - Inference -
Learning (RIL) is a necessary condition for developing
TSTEN.

1) Inference in TSTEN: The RI-problem (Representation
and Inference) was treated by Shafer, Shenoy [15], [16] and
Smets using Valuation-Based Network and Directed Evidential
Network [20]. To our knowledge, inference and representation
were treated in the static case. Their procedures also applies
in the temporal case and the first application was proposed in
Evidential HMM.

EvHMM is a TSTEN where a time-slice is composed of
two nodes: one discrete (Xt) and one continuous (Yt). The
temporal link is represented by an arc from Xt and Xt+1, i.e.
two discrete nodes across successive slices.

The main particularity of EvHMM is that it considers hidden
states Xt, that means only Yt is observable and we need to
infer Xt. Inference tools were formulated in this paper and
used for classification and state sequence recognition.

Inference in TSTEN is carried out as follows:
• Within a time-slice: Apply a local propagation scheme1 to

update belief masses on all variables within a time-slice.

1Such as Smets algorithm [20] which requires less computations than
Shafer-Shenoy algorithm but that is more restricted than the latter because
limited to directed networks.

• Between time-slices: Apply inference tools proposed in
this paper to project and update belief masses on variables
linked between two time-slices.

• Apply the classification algorithm (Alg. 1) proposed in
this paper to classify a sequence.

2) Training in TSTEN: To our knowledge, the problem of
parameter training in evidential networks was not considered
in the past, and the same holds for TSTEN. There are three
categories of parameters that have to be estimated:
• Transitions between time-slices which are the conditional

BBAs of elements in Xt given elements in Xt−1,
• Conditional BBAs within a time-slice and representing

the link between elements in a variable and elements in
another connected variable,

• Parameters of models for hidden variables.
a) Observable variables in TSTEN: It is the simplest

case because when all variables are observable, one can
compute distribution of observations. For transitions, one can
also use the proposed ITS algorithm.

b) Hidden variables in TSTEN: This case was considered
only in EvHMM. In this paper, we proposed an algorithm
called RCGI that links observations to hidden states. The same
procedure can be applied in more general TSTEN for all
hidden variables. Besides, ITS algorithm can be applied for
transition estimation.

c) Training all parameters jointly: We proposed two
disjoint procedures to estimate the parameters of transitions
(ITS) and of observation models (RCGI). However, it should
be more adapted to use an algorithm that could estimate
transition and models jointly.

These parameters should be chosen such as to minimize the
overall conflict given the data, which is equivalent to maximize
the overall plausibility. For a TSTEN with parameters θ, we
can use the following iterative process:

1) Perform inference (see previous section),
2) Perform classification (Alg. 1),
3) Update parameters θ such as to increase the overall

plausibility (Eq. 17) for the next iteration (equivalent
to decrease conflict).

VI. A SYNTHESIS OF METHODS FOR DYNAMICAL SYSTEMS
ANALYSIS BASED ON BELIEF FUNCTIONS

To our knowledge, the problem of state sequence recogni-
tion based on belief functions was first stated by Rombaut et
al. [29] in 1999. They used a simple singly-connected tree to
represent a sequence of states. The tree is initialised with a
vacuous belief function to reflect total ignorance. The belief
mass then flows down in the tree until the last state according
to transition truthfulness. Sequence classification was done
using the last state’s plausibility. The main problem of this
method is the sensitivity of transitions because they depend
on observations which may be noisy.

In 2000, Fouque et al. [30] proposed the first method
for image analysis mixing Markovian modelling and belief
functions. This is the basis of Pieczynski’s work on evidential
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Markovian models (see [14] and references inside). However,
the author generally makes probabilistic assumptions. This
was also the case in [13] where the authors generalized
HMM to fuzzy measures. Although the final model is very
close to HMM, the generalization capability is decreased by
assumptions which are very similar to HMM’s ones (e.g.
combinations are made using simple product). Moreover, it
is not proved whether belief functions are covered.

In 2003, IDRES system was proposed for driving situation
recognition [31]. The system is dedicated to a physical system
and thus is difficult to generalize. In 2005, the paper of
Smets on conflict analysis [32] is also a good introduction
for Markovian modelling with belief functions.

In 2004, Smets and Ristic proposed to study the Kalman
filter for joint tracking and classification in belief function
framework [33]. They conclude that Kalman equations are
quite similar to the probabilistic ones but they also showed that
belief functions had a better capability to represent implication
rules in the classification phase.

The next work in 2007 includes the development of a
Temporal Evidential Filter (TEF) [18] which is used for
belief functions filtering. This work was then used in [34]
(2010) for deterministic state sequence classification. In 2007
was also proposed the first steps in the generalization of
HMM to belief functions (EvHMM [23]) without probabilistic
assumption. In [12] (2009), a formulation is proposed to
represent imprecise knowledge on states in the training set
used in probabilistic HMM training.

In 2010, an algorithm for Belief State Estimation (BSE) [35]
of continuous state using interval analysis and belief functions
is described.

Finally, a first step towards the generalization of inference
mechanisms in Dynamic Bayesian Network to belief functions
was proposed in [36]. However, their proposition is not general
and is actually a particular case of EvHMM.

VII. EXPERIMENTS

As an example of RCGI algorithm for classification, we
considered the challenge dataset concerning diagnostic and
prognostics of machine faults from the first Int. Conf. on
Prognostics and Health Management [37]. The dataset is a
multiple multivariate time-series (26 variables) with sensor
noise. Each time series was from a different engine of the
same fleet and each engine started with different degrees of
initial wear and manufacturing variation unknown to the user
and considered normal. The engine was operating normally at
the start and developed a fault at some point. The fault grew
in magnitude until system failure.

The first experiment (train FD001.txt) with five prese-
lected features (3, 4, 5, 7, 9) was considered. Each time series
was manually segmented into four functioning states: normal
mode, transition mode, degrading mode and fault mode. The
segmentation is available on demand. For each state a HMM
and an EvHMM were built using 8 time-series. Testing (classi-
fication) was performed on 32 other time series. In RCGI, the
clusterer was a mixture of Gaussians (GMM) with adaptive

HMM 56% 59% 100% 90% GA = 76%
HMM+RCGI 56% 78% 100% 94% GA = 82%
EvHMM 1 81% 81% 100% 91% GA = 88%
EvHMM 2 78% 78% 100% 94% GA = 87%

GMM 53% 66% 84% 81% GA = 71%

TABLE I
EVHMM 1 = GMM+RCGI+ITS, EVHMM 2 = WITH VACUOUS
TRANSITIONS, GMM: CLUSTERING ONLY, GA IS THE GLOBAL

ACCURACY.

number of components [38], [39] where the parameters were
estimated using an EM algorithm.

For normal, transition, degrading and fault modes respec-
tively, the results of state detection are given in table I.

RCGI algorithm greatly improved the detection results.
When used within HMM, an average improvement of +6%
was obtained (lines 1 and 2). The improvement is also
important (+10%) when using EvHMM (lines 1 and 3). In
comparison, classification using only GMM leads to a global
accuracy of 71% (vs. 88%, lines 2 and 5).

Results obtained by EvHMM is explained by RCGI algo-
rithm which was combined with an efficient clustering method
where the number of components was set automatically. This
number was adaptively computed according to the distribution
of the data which depends on the number of data points used
in the training set. Therefore, the proposed algorithm is well
suited for limited training sets.

Line 4, EvHMM was applied with vacuous transitions lead-
ing to a satisfying classification accuracy of 87%. Actually,
during experiments on this dataset, transitions were shown to
have a limited impact on the detection accuracy. This is mainly
due to the evidential transitions matrix generated by ITS which
were composed of too many parameters (N ·2N ) and thus their
influence were limited.

VIII. CONCLUSION

An original review on methods for state sequence recogni-
tion based on belief functions was proposed and emphasized
the need of a general tool for stochastic state sequence
recognition. The generalization to belief functions of inference
mechanisms used in HMM was then presented and illustrated.
They are the basis of Evidential HMM (EvHMM) which rep-
resents a Time-Sliced Temporal Evidential Network (TSTEN).

Training algorithms for EvHMM parameters estimation
were then developed. The first algorithm called RCGI (Re-
grouping Components with Geometrial Interaction) allows to
generate belief functions on states. RCGI first performs a
clustering step to pave the feature space. Then clusters are
gathered into states (using here the Kullback-Leibler diver-
gence). The second algorithm called ITS (Iterative Transition
Specialization) allows to estimate transitions. The first results
are encouraging on a diagnostics task. In particular, results
provided by RCGI are easily interpreted and this algorithm
can also be used in probabilistic HMM. The performance
of EvHMM for classification was shown on an example and
compared with probabilistic HMM.
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The proposed methodology is adapted with poor training
sets and more experiments are under way to thoroughly
validate the approach for general diagnostics and prognostics
tasks.
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