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Abstract. A new online clustering method, called E2GK (Evidential
Evolving Gustafson-Kessel) is introduced in the theoretical framework
of belief functions. The algorithm enables an online partitioning of data
streams based on two existing and efficient algorithms: Evidantial c-
Means (ECM) and Evolving Gustafson-Kessel (EGK). E2GK uses the
concept of credal partition of ECM and adapts EGK, offering a better
interpretation of the data structure. Experiments with synthetic data
sets show good performances of the proposed algorithm compared to the
original online procedure.

1 Introduction

Given a set of N data points, clustering refers to a wide variety of algorithms
that aim at discovering c groups (clusters) ω1, ..., ωc whose members are similar
in some way. The purpose is to summarize the data or to verify an existing
structure of the data. In most cases, a cluster is defined as a subset of data for
which the similarity between data within this subset is larger than the similarity
with the data in other subsets. In many cases, the Euclidean distance between
data is used as a dissimilarity measure.

A wide variety of clustering methods has been developed. The most com-
monly used methods are divided into two main categories: hierarchical and non-
hierarchical methods. Among the latter, the K-means algorithm [4] is the most
commonly used. The idea of K-means algorithm is to randomly create K clusters
and to assign each data point to the closest one in an iterative way, reallocating
points until a convergence criterion is satisfied.

Using hard partitioning methods, data are grouped in an exclusive way, i.e.,
data can’t belong to two (or more) different clusters. In fuzzy partitioning, each
data can belong to more than one cluster with different membership degrees.
The most popular fuzzy partitioning method is Bezdek’s Fuzzy C-means (FCM)
algorithm [3]. One can also mention the Gustafson-Kessel fuzzy clustering algo-
rithm [10] that is capable of detecting hyper-ellipsoidal clusters of different sizes
and orientations by adjusting the covariance matrix of data.
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Another concept of partition, introduced in [7], is the credal partition based
on belief functions theory. A credal partition extends the existing concepts of
hard, fuzzy (probabilistic) and possibilistic partition by allocating, for each data,
a mass of belief, not only to single clusters, but also to any subset of Ω =
{ω1, ..., ωc}. This particular representation allows coding all the situations, from
certainty to total ignorance of membership to clusters. In the Evidential c-Means
(ECM) algorithm [13], the credal partition is in particular exploited for outliers
detection.

Online clustering is an important problem that frequently arises in many
fields, such as pattern recognition and machine learning [8]. Numerous techniques
have been developed for clustering data in a static environment [4]. However,
in many real-life applications, non-stationary data (i.e., with time-varying pa-
rameters) are commonly encountered. The task of online clustering is to group
incoming data into clusters in a temporal sequence. Also called incremental clus-
tering in machine learning [11], online clustering, is generally unsupervised and
has to manage recursive training in order to incorporate new information grad-
ually and to take into account model evolutions over time.

In this paper, we propose the Evidential Evolving Gustafson Kessel algorithm
(E2GK) which permits to adapt a credal partition matrix as data gradually ar-
rive. This clustering algorithm is introduced in the theoretical framework of belief
functions, and more precisely of Smets’ Transferable Belief Model (TBM, [14]).
E2GK is composed of two main steps, both performed online:

1. Determination of clusters’ prototypes (also called centers), either by moving
existing prototypes or by creating new ones. To do so, we use some results
from the Evolving Gustafson-Kessel algorithm (EGK) proposed in [9].

2. Allocation of the belief masses to the different subsets of classes. This step
is based on some results of the Evidential c-means algorithm (ECM) [13].

E2GK benefits from two efficient algorithms: EGK and ECM, by dealing with
- in an online manner - doubt between clusters and outliers. Doubt is generally
encountered in data transition and can be useful to limit the number of clusters
in the final partition. Moreover, outliers are well managed using the conflict
degree explicitly emphasized in the TBM framework.

In Section 2, we present GK and ECM algorithms as well as some tools of
the theory of belief functions giving the necessary background for Section 3 in
which we introduce E2GK. Some results are finally presented in Section 4.

2 Background

Let the data be in the form of a collection {x1, . . . , xk, . . . , xN} of feature vectors
xk ∈ <q, and c the number of clusters, each of them characterized by a prototype
(or a center) vi ∈ <q.
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2.1 Gustafson-Kessel Algorithm

Clustering algorithms based on an optimization process aim at minimizing a
suitable fuction J that represents the fitting error of the clusters regarding the
data:

J(V,U) =

c∑
i=1

N∑
k=1

(uik)βd2ik , (1)

where

– uik is the membership degree of point k to the i-th prototype (cluster center),

– U = [uij ] is the resulting partition matrix with dimension c×N ,

– V = [vi] is the c× q matrix of prototypes,

– dik is the distance between the k-th data point xk and the i-th prototype,

– Paramater β > 1 is a weighting exponent that controls the fuzziness of the
partition (it determines how much clusters may overlap).

The distance dik used in the GK algorithm is a squared inner-product distance
norm (Mahalanobis) that depends on a positive definite symmetric matrix Ai
defined by:

d2ik = ‖xk − vi‖2Ai
= (xk − vi)Ai(xk − vi)T . (2)

This adaptive distance norm is unique for each cluster as the norm inducing
matrix Ai, i = 1...c, is calculated by estimates of the data covariance

Ai = [ρidet(Fi)]
1/q

F−1i , (3)

where ρi is the cluster volume of the i-th cluster and Fi is the fuzzy covariance
matrix calculated as follows:

Fi =

∑N
k=1(uik)β(xk − vi)T (xk − vi)∑N

k=1(uik)β
. (4)

The objective function is minimized using an iterative algorithm, which alterna-
tively optimizes the cluster centers and the membership degrees:

vi =

∑N
k=1(uik)βxk∑N
k=1(uik)β

, i = 1 · · · c, k = 1 · · ·N , (5)

and

uik =
1∑c

j=1(dik/djk)2/β−1
, i = 1 · · · c, k = 1 · · ·N . (6)

The GK algorithm has the great advantage to adapt the clusters according to
their real shape.
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2.2 Belief Functions and Credal partition

Dempster-Shafer theory of evidence, also called belief functions theory, is a the-
oretical framework for reasoning with partial and unreliable information. It was
first introduced by A. P. Dempster (1968), then developed by G. Shafer (1976).
Later, Ph. Smets proposed a general framework, the Transferable Belief Model
(TBM) [14], for uncertainty representation and combination of various pieces of
information without additional priors.

Considering a variable ω taking values in a finite set called the frame of
discernment Ω, the belief of an agent in subsets of Ω can be represented by a
basic belief assignment (BBA), also called belief mass assignment :

m : 2Ω → [0, 1]
A 7→ m(A) ,

(7)

with
∑
A⊆Ωm(A) = 1. A belief mass can not only be assigned to a singleton

(|A| = 1), but also to a subset (|A| > 1) of variables without any assumption
concerning additivity. This property permits the explicit modeling of doubt and
conflict, and constitutes a fundamental difference with probability theory. The
subsets A of Ω such that m(A) > 0, are called the focal elements of m. Each
focal element A is a set of possible values of ω. The quantity m(A) represents a
fraction of a unit mass of belief allocated to A. Complete ignorance corresponds
to m(Ω) = 1, whereas perfect knowledge of the value of ω is represented by the
allocation of the whole mass of belief to a unique singleton of Ω, and m is then
said to be certain. In the case of all focal elements being singletons, m boils
down to a probability function and is said to be bayesian.

A positive value of m(∅) is considered if one accepts the open-world assump-
tion stating that the set Ω might not be complete, and thus ω might take its
values outside Ω. This value represents the degree of conflict and is then inter-
preted as a mass of belief given to the hypothesis that ω might not lie in Ω. This
interpretation is useful in clustering for outliers detection [13].

Belief functions theory is largely used in clustering and classification prob-
lems [6, 12]. Recently (2003) was proposed the use of belief functions for cluster
analysis. Similar to the concept of fuzzy partition but more general, the concept
of Credal Partition was introduced. It particularly permits a better interpreta-
tion of the data structure. A credal partition is constructed by assigning a BBA
to each possible subset of clusters. Partial knowledge regarding the membership
of a datum i to a class j is represented by a BBA mij on the set Ω = {ω1, . . . , ωc}.
This particular representation makes it possible to code all situations, from cer-
tainty to total ignorance.

Example 1. Considering N = 4 data and c = 3 classes, Tab. 1 gives an example
of a credal partition. BBAs for each datum in Tab. 1 illustrate various situations:
datum 1 certainly belongs to class 1, whereas the class of datum 2 is completely
unknown. Partial knowledge is represented for datum 3. As m4(∅) = 1, datum
4 is considered as an outlier, i.e., its class does not lie in Ω.
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Table 1. Example of a credal partition.

A ∅ ω1 ω2 {ω1, ω2} ω3 {ω1, ω3} {ω2, ω3} {ω1, ω2, ω3}
m1(A) 0 1 0 0 0 0 0 0
m2(A) 0 0 0 0 0 0 0 1
m3(A) 0 0 0 0 0.2 0.5 0 0.3
m4(A) 1 0 0 0 0 0 0 0

2.3 ECM: Evidential C-Means algorithm

Our approach for developing E2GK (Evidential Evolving GK algorithm) is based
on the concept of credal partition as described in ECM [13] where the objective
function was defined as:

JECM (M,V ) =

N∑
k=1

∑
{i/Ai 6=∅,Ai⊆Ω}

|Ai|αmβ
kid

2
ki +

N∑
k=1

δ2mk(∅)β , (8)

subject to ∑
{i/Ai 6=∅,Ai⊆Ω}

mki +mk(∅) = 1 ∀k = 1, . . . , N , (9)

where:

– α is used to penalize the subsets of Ω with high cardinality,
– β > 1 is a weighting exponent that controls the fuzziness of the partition,
– dki denotes the Euclidean distance between datum k and prototype vi,
– δ controls the amount of data considered as outliers.

The N × 2c partition matrix M is derived by determining, for each datum
k, the BBAs mki = mk(Ai) , Ai ⊆ Ω such that mki is low (resp. high) when
the distance dki between datum k and focal element Ai is high (resp. low). The
matrix M is computed by the minimization of criterion (8) and was shown to
be [13], ∀k = 1 . . . N , ∀i/Ai ⊆ Ω, Ai 6= ∅:

mki =
|Ai|−α/(β−1) d−2/(β−1)ki∑

Al 6=∅

|Al|−α/(β−1) d−2/(β−1)kl + δ−2/(β−1)
, (10)

and mk(∅) = 1−∑Ai 6=∅mki. The distance between a datum and any non empty
subset Ai ⊆ Ω is then defined by computing the center of each subset Ai.
The latter is the barycenter vi of the clusters’ centers (obtained by minimizing
criterion (8)) composing Ai.

3 Deriving E2GK

GK algorithm [10] has the great advantage to adapt the clusters according to
their real shape. The resulting clusters are hyper-ellipsoids with arbitrary orien-
tation and are well suited for a variety of practical problems. However, GK is not
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able to deal with streams of data (relies on an iterative optimization scheme).
Moreover, it assumes that the number of clusters is known in advance.

In [9], an online version of GK clustering algorithm (EGK) was developed
to enable online partitioning of data streams based on a similar principle to the
one used in the initial GK algorithm [10]. In particular, online updating of the
fuzzy partition matrix relies on the same formula (6). Rules were then proposed
to decide whether a new cluster has to be created or existing prototypes should
evolve.

3.1 E2GK: Evidential Evolving Gustafsson-Kessel algorithm

The adaptation of the EGK algorithm to belief functions is introduced in this
section. The E2GK algorithm is presented in Tab. 2. It relies on some parts
developed in [9] and the proposed adaptations are emphasized in bold characters.

Step 1 – Initialization: At least one cluster’s center should be provided.
Otherwise, the first point is chosen as the first prototype. If more than one
prototype is assumed in the initial data, GK or ECM algorithm can be applied
to identify an initial partition matrix. The result of the initialization phase is a
set of c prototypes vi and a covariance matrix1 Fi.

Step 2 – Decision making: The boundary of each cluster is defined by the
cluster radius ri, defined as the medium distance between the cluster center vi
and the points belonging to this cluster with membership degrees larger or equal
to a given threshold uh:

ri = median
∀xj∈ i-th cluster and Pji>uh

‖vi − xj‖Ai
. (11)

where Pij is the confidence degree that point j belongs to ωi ∈ Ω and can be
obtained by three main processes: either by using the belief mass mj(ωi), or the
pignistic transformation [14] that converts a BBA into a probability distribution,
or by using the plausibility transform [5]. We propose here to choose the pignistic
transformation. The median value is used (instead of the maximum rule in EGK)
to reduce the sensitivity to extreme values. Moreover, the minimum membership
degree uh - initially introduced in [9] and requiring to decide whether a data
point belongs or not to a cluster - can be difficult to assess. It may depend on
the density of the data as well as on the level of cluster overlapping. We rather
set uh automatically to 1/c in order to reduce the number of parameters while
ensuring a natural choice for its value.

Step 3 – Computing the partition matrix: Starting from the resulting set
of clusters at a given iteration, we build the partition matrix M (10) using the
Mahalanobis distance (2)(3). We assumed that each cluster volume ρi = 1 as in
standard GK algorithm.

1 To obtain a covariance matrix from ECM, one can also use the Mahalanobis distance
as proposed in [1].
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Step 4 – Adapting the structure: Given a new data point xk, two cases are
considered:

Case 1: xk belongs to an existing cluster, thus a clusters’ update has to be
performed. Data point xk is assigned to the closest cluster p if dpk ≤ rp. Then,
the p-th cluster is updated:

vp,new = vp,old + θ · (xk − vp,old) , (12)

and
Fp,new = Fp,old + θ ·

(
(xk − vp,old)T (xk − vp,old)− Fp,old

)
, (13)

where θ is a learning rate, vp,new and vp,old denote respectively the new and old
values of the center, and Fp,new and Fp,old denote respectively the new and old
values of the covariance matrix.

Case 2: xk is not within the boundary of any existing cluster (i.e. dpk > rp),
thus a new cluster may be defined and a clusters’ update has to be performed.
The number of clusters is thus incremented: c = c+ 1. Then, the incoming data
xk is accepted as the center vnew of the new cluster and its covariance matrix
Fnew is initialized with the covariance matrix of the closest cluster Fp,old.

In the initial EGK algorithm [9], a parameter Pi was introduced to assess
the number of points belonging to the i-th cluster. The authors suggested a
threshold parameter Ptol to guarantee the validity of the covariance matrices and
to improve the robustness. This (context-determined) parameter corresponds to
the desired minimal amount of points falling within the boundary of each cluster.
The new created cluster is then rejected if it contains less than Ptol data points.

After creating a new cluster, the data structure evolves. However, the new
cluster may contain data points previously assigned to another cluster. Thus,
the number of data points in previous clusters could change. We propose an
additional step to verify, after the creation of a new cluster, that all clusters have
at least the required minimum amount of data points (Ptol or more). If not, the
cluster with the lowest number of points is deleted. Therefore, compared to the
initial EGK algorithm, in which the number of clusters only increases, E2GK is
more flexible because the structure can change either by increasing or decreasing
the number of clusters.

The overall algorithm is presented in Tab. 2 where the proposed adaptation
appears in bold.

4 Application of E2GK

To illustrate the ability of the proposed algorithm, let consider the following
synthetic data randomly generated from five different bivariate gaussian distri-
butions with parameters as given in Tab. 3.

Initial clusters (Fig. 1) of N = 15 data points each, of type G1 and G2, were
identified by batch GK procedure with uh = 0.5, Ptol = 20 and θ = 0.1. To test
the updating procedure, we gradually (one point at a time) added the following
data points (in this given order): 1) 15 data points of type G1, 2) 15 data points
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Table 2. E2GK algorithm

Initialization 1. Take the first point as a center or apply the off-line
GK or ECM algorithm to get the initial number of clusters c and
the corresponding centers V and covariances Fi, i = 1 · · · c
2. Calculate vj , the barycenter of the clusters’ centers
composing Aj ⊆ Ω
3. Calculate the credal partition M , using (10)

Updating Repeat for each new data point xk
4. Find the closest cluster p
5. Decision-making: Calculate the radius rp of the closest cluster
using (11) with the median value
If dpk ≤ rp

6. Update the center vp (12)
7. Update the covariance matrix Fp (13)

else
8. Create a new cluster: vc+1 := xk; Fc+1 := Fp

end
9. Recalculate the credal partition M using (10)
10. Check the new structure: remove the cluster with
the minimum number of data points if less than Ptol

Table 3. Parameters of the synthetic data

type µ σ

G1 [0 5] 0.3
G2 [0 0] 0.3
G3 [6 6] 0.6
G4 [6 0] 0.6

noise [2.5 2.5] 2

of type G2, 3) 15 data points of type G3, 4) 30 data points of type G4, 5) 15
data points of type G3, 6) 90 data points of type “noise”, 7) 6 data points at the
following positions: [10.1 3.2], [10.1 −3.2], [−4.1 −3.1], [−2.3 8.3], [8.6 −3.1]
and [6.2 9.2]. E2GK parameters were set to: Ptol = 20, θ = 0.1, δ = 10, α = 1
and β = 2.

Each new incoming data point leads to a new credal partition. Figure 2 shows
the final resulting partition. The center of gravity of each cluster is marked by a
big star (the notation ωij stands for {ωi, ωj}). A data point falling in a subset ωij
means that this point could either belong to ω1 or ω2. The points represented in
circles are those with the highest mass given to the empty set and considered as
outliers. It can be seen that a meaningful partition is recovered and that outliers
are correctly detected.

The online adaptation of the clusters is illustrated in Figure 3. One can see
how E2GK assigns each new data point to the desired cluster or subset. The
figure depicts the evolution of the partition regarding the order of arrival of the
data (like mentionned before). The first 30 points are used to initialize clusters
ω1 and ω2. Then, from t = 31 to 45 points are assigned by E2GK to cluster ω2.
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Fig. 1. Initialization of E2GK algorithm using some data from two clusters. Centers
are represented by stars.
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0
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∅

ω1

ω2

ω12

ω3

ω13

ω23

ω123

ω4

ω14

ω24
ω124

ω34
ω134

ω234

Fig. 2. Credal partition with δ = 10, α = 1, β = 2, θ = 0.1, Ptol = 20. Big stars
represent centers. We also displayed the centers corresponding to subsets, e.g. ω123,
and atypical data (dots) are well detected.

The next 15 points are assigned to ω1 then to ω4, ω3 (30 points) and to ω4. The
next points correspond to noise and are mainly assigned to subsets, for example
point 160 to ω134.

Figure 4 also depicts the structure evolution, that is the number of clusters
at each instant. The scenario given at the begining of this section is recovered:
at t = 76 data from group G3 arrive but still, not enough data are available to
create clustrs while a cluster is created at t = 93 and t = 110 for group G4 and
G3 respectively. “Noise” and atypical points arriving from t = 181 to t = 211
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20 40 60 80 100 120 140 160 180 200

conf.
w1
w2

w12
w3

w13
w23

w123
w4

w14
w24

w124
w34

w134
w234

w1234

Acq. time

Initialization Structure adaptation

Fig. 3. Structure adaptation: a datum arrives at each instant (x-axis) and is assigned
to one of all possible subsets (y-axis). The set of possible subsets also evolves with the
number of clusters.

do not affect the structure. This figure does not illustrate clusters’ removing
because this operation is made within the algorithm.

0 31 46 61 76 106 121 211

2

3

4

5

 

 

EGK

E2GK

Fig. 4. Structure evolution: the number of clusters at each instant varies as data arrive.

Figure 5 describes the dataset partitioning after decision making by applying
the pignistic transformation [14] on the final credal partition matrix. Datatips
provide the center coordinates, which are close to the real parameters (Tab 3). In
comparison, we also provide in Figure 6 the centers obtained by EGK algorithm
with parameters Ptol = 20, uh=1/c and θ = 0.1 (the same as in E2GK).

5 Conclusion

To our knowledge, only one incremental approach to clustering using belief func-
tions has been proposed [2]. However, in this approach the number of clusters

ha
l-0

06
03

95
6,

 v
er

si
on

 1
 - 

27
 J

un
 2

01
1



−4 −2 0 2 4 6 8 10

−2

0

2

4

6

8

X: −0.08107
Y: 4.968

ω2
ω3

ω1

ω4

X: 5.682
Y: 6.249

X: −0.0479
Y: −0.1004

X: 6.355
Y: 0.09396

Fig. 5. Decision on clusters for each point based on the pignistic probabilities obtained
from the credal partition (Fig. 2) using E2GK algorithm. Also are displayed the coor-
dinates of the centers found by E2GK.

−4 −2 0 2 4 6 8 10

−2

0

2

4

6

8

X: 5.48
Y: −0.4116

ω3

ω1

ω2

ω4

ω5

X: 2.798
Y: 0.8647

X: 2.907
Y: 2.826

X: 3.579
Y: 5.841

X: −0.5039
Y: 3.869

Fig. 6. Decision on clusters for each point based on the maximum degree of membership
from the fuzzy partition using GK algorithm. Also are displayed the coordinates of the
centers found by EGK. The parameter uh was set to 1/c and the other parameters are
the same as in E2GK (θ = 0.1 and Ptol = 20).

is known in advance so this is not adapted for online applications. Moreover,
data are described by a given number of attributes, each labeled by a mass of
belief provided by an expert. This prior information is generally not available in
pattern recognition problems.

E2GK algorithm, described in this paper, is an evolving clustering algorithm
using belief functions theory, which relies on the credal partition concept. This
type of partition allows a finer representation of datasets by emphasizing doubt
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between clusters as well as outliers. Doubt is important for data streams analysis
from real systems because it offers a suitable representation of gradual changes
in the stream. E2GK relies on some parts of EGK algorithm [9], initially based
on a fuzzy partition, to which we bring some modifications:

– using the median operator to calculate cluster radius (vs. max. for EGK),
– using the credal partitioning (vs. fuzzy for EGK),
– changing the partitionning structure by adding or removing clusters (vs.

adding only in EGK).

Simulation results show that E2GK discovers relatively well the changes in the
data structure. A thorough analysis of parameters’ sensitivity (Ptol and θ) is
now required to properly and automatically set them.
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