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Abstract— This paper deals with an estimation of the Remaining 
Useful Life of bearings based on the utilization of Mixture of 
Gaussians Hidden Markov Models (MoG-HMMs). The raw 
signals provided by the sensors are first processed to extract 
features, which permit to model the physical component and its 
degradation. The prognostic process is done in two phases: a 
learning phase and an evaluation phase. During the first phase, 
the sensors’ data are processed in order to extract appropriate 
and useful features, which are then used as inputs of dedicated 
learning algorithms in order to estimate the parameters of a 
MoG-HMM. The obtained model represents the behavior of the 
component including its degradation. In addition, the model 
contains the number of health states and the stay durations in 
each state. Once the learning phase is done, the generated model 
is exploited during the second phase, where the extracted features 
are continuously injected to the learned model to assess the 
current health state of the physical component and to estimate its 
remaining useful life and the associated confidence. 
The proposed method is tested on a benchmark data taken from 
the “NASA prognostic data repository” related to bearings used 
under several operating conditions. Moreover, the developed 
method is compared to two methods: the first using traditional 
HMMs with exponential time durations and the second using 
regular Hidden Semi Markov Model (HSMM). Finally, 
simulation results are given and discussed at the end of the paper. 

Keywords- Monitoring, Diagnostic, Prognostic, Remaining 
Useful Life, Hidden Markov Models 

I.  INTRODUCTION 
Maintaining the equipment in operating conditions is an 

industrial, economical and societal requirement. The 
maintenance can be curative or preventive. In the first case, the 
maintenance interventions are done only after a fault has been 
observed or undergone. Thus, this may lead to non desired 
situations; especially for sensitive industrial systems (one can 
cite the recent petrochemical explosion in the Gulf of Mexico). 
To avoid such cases, a systematic maintenance can be 
implemented. Moreover, the implementation of a condition 
Based Maintenance (CBM) [1] can lead to significant benefits. 
Indeed, contrary to a systematic maintenance, a CBM is done 
according to the real equipment’s health condition, estimated or 
measured through the sensors present on the industrial 
equipment. In addition, by using appropriate mathematical or 
modeling tools, the estimated or measured equipment’s state 

can be projected in order to predict its future health condition 
and thus take appropriate decisions.  

In the framework of CBM, failure prognostic is considered 
as one of the main processes, as it permits to estimate what is 
called Remaining Useful Life (RUL) before failure of a given 
industrial system [2]. Numerous methods and tools can be used 
to predict the RUL’s value. These methods can be classified 
into three main groups [1]: model-based prognostic, data-
driven prognostic and experience-based prognostic. Model-
based prognostic [3] deals with the prediction of the RUL of 
critical physical components by using mathematical or physical 
models of the degradation phenomenon (crack by fatigue, 
wear, corrosion, etc.). The data-driven prognostic [3] aims at 
transforming the data provided by the sensors into relevant 
models of the degradation’s behavior. Finally, the experience-
based prognostic [3] exploits the data gathered from the 
machine during a long period of time to estimate the 
parameters of traditional reliability laws. Finally, they are used 
to do extrapolations and projections to compute the RUL. 

In this paper, a failure prognostic method based on the use 
of the data provided by the sensors is presented. This method 
belongs then to the category of data-driven approach, and uses 
mainly Mixture of Gaussians Hidden Markov Models (MoG-
HMMs) to model the degradation and to estimate the value of 
RUL before a potential failure. This tool is chosen for its 
capability to transform the features extracted from the raw 
signals to relevant behavioral models representing the physical 
component and its degradation. The proposed failure 
prognostic method is done in two phases: a learning phase and 
an evaluation phase. During the first phase, the raw signals 
coming from the sensors are processed to extract appropriate 
and useful features. These features are then used to learn the 
parameters of the MoG-HMMs. In the second phase, the 
learned models are exploited in order to assess the current 
condition of the component and to predict its future one. In 
addition to this latter, a confidence value can be calculated. The 
RUL and the confidence are important information that may be 
used in the decision process. For example, they can be used to 
delay the maintenance interventions or to stop a machine 
before its future maintenance due to early fault. The developed 
prognostic method based on the use of MoG-HMMs is finally 
compared to two other methods: the first uses simple HMMs 
and the second is based on Hidden Semi-Markov Models 
(HSMMs).  
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The paper is organized as follows: after the introduction, 
some definitions and the existing prognostic approaches are 
given in section 2. Section 3 presents the proposed method 
followed by its comparison with two other methods cited 
previously, with simulation results are given for each method. 
Finally, section 4 presents the conclusion and some future 
works. 

II. FAILURE PROGNOSTIC: DEFINITION AND TAXONOMY 
Contrary to fault diagnostic, which consists in detecting and 

isolating the probable cause of the fault [2], [4] and which is 
done a posteriori, i.e. after the occurrence of the fault, failure 
prognostic aims at anticipating the time of the failure and thus 
is done a priori, as shown in Fig. 1.  

 
Figure 1.  Diagnostic vs prognostic. 

Several definitions about failure prognostic have been 
reported in the recent literature [1], [5], [6]. However, in this 
paper only that one proposed by the International Standard 
Organization [7] is considered and where prognostic is defined 
as “the estimation of the Time To Failure (ETTF) and the risk 
of existence or later appearance of one or more failure modes”. 
Note that, most of the definitions reported in the literature use 
the terminology “Remaining Useful Life (RUL)” instead of 
“ETTF”. An illustration of a RUL estimation is given in Fig. 2.  

In addition to the absolute value of the RUL, a confidence 
can be associated, which may be useful during the decision 
process. A method for calculating the confidence value 
associated to a RUL prediction is proposed in the standard [7]. 
A list of the factors and the corresponding weights, which may 
influence the computation of the confidence are suggested. 

Numerous methods and tools regarding failure prognostic 
have been proposed and reported in the literature. This material 
can be grouped in three main categories [2], [3], [8] (Fig. 3): 
experience - based prognostic, data - driven prognostic and 
model - based prognostic.  

 
Figure 2.  Illustration of a RUL. 

1) Model-based prognostic: in this approach, the physical 
component or system and its degradation phenomenon are 
represented by a set of mathematical laws. The obtained 
behavioral model is then used to predict the future evolution 
of the degradation [9], [10]. In this case, the prognostic 
consists in evolving the degradation model till a determined 

future instant, from the actual deterioration state and by 
considering the future use conditions of the corresponding 
component.  

  
Figure 3.  Main prognostic approaches. 

The main advantage of this approach dwells in the 
precision of the obtained results, as the predictions are 
achieved based on a mathematical model of the degradation. 
However, the derived degradation model remains specific to a 
particular kind of component or material, and thus, can not be 
generalized to all the system components. In addition, getting a 
mathematical model of the degradation is not an easy task and 
needs well instrumented test-benches.  

2) Data-driven prognostic: this approach consists in 
transforming the monitoring data provided by the sensors 
installed on the system into reliable behavioral models of the 
degradations [3], [11]. The collected data are first processed in 
order to extract relevant features. These latter are then 
exploited to learn the parameters of behavioral models. The 
formalization tools used in this approach are mainly those 
used by the artificial intelligence community, namely: 
temporal prediction series, trend analysis techniques, neuronal 
networks under all their facets, neuro-fuzzy systems, hidden 
Markov models and also dynamic Bayesian networks. 
 

The advantage of this approach is that, for a well monitored 
system, it is possible to predict the future evolution of the 
degradation without any need of prior mathematical model of 
the degradation. However, the results obtained by this approach 
can be less precise than those of model-based prognostic, and 
are sometimes considered as local ones (for the case of neural 
networks and neuro-fuzzy methods). 

 

3) Experience-based prognostic: the methods belonging to 
this approach use probabilistic or stochastic models of the 
degradation phenomenon, or of the life cycle of the 
components, by taking into account the data and the 
knowledge accumulated by experience during the whole 
exploitation period of the industrial system (experience 
feedback, maintenance data, etc.). This data  is then used to 
adjust the parameters of some reliability models (Weibull law, 
exponential law, etc.) [12], [13]. 

 
The advantage of this prognostic approach is that it is not 

necessary to build complex mathematical models. It is also 
easy to apply on systems for which significant data are 
available. However, the main drawback of the approach dwells 
in the amount of data needed to estimate the parameters of the 
used laws. 
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III. HIDDEN MARKOV MODELS 
This section gives a brief introduction to the Hidden 

Markov Models (HMMs) and their variants that will be used in 
the next section to present the different ways to do failure 
diagnostic and prognostic in an integrated manner. 

An HMM is defined as a statistical model used to represent 
stochastic processes, where the states are not directly observed 
[14] (Fig. 4). 

 
Figure 4.  A three state left-to-right HMM. 

An HMM is completely defined by the following 
parameters: 

• N: number of states in the model. 

• M: the number of distinct observations for each state. 

• A: the state transition probability distribution. 

• B: the observation probability distribution of each 
state. 

• π: the initial state distribution π. 

For simplicity and clarity of presentation, a compact notation (λ 
= π, A, B) is used for each HMM. In practice, HMMs are used 
to solve three typical problems [14]: a detection problem, a 
decoding problem and a learning problem. 

Usually, discrete HMMs consider the observations as 
discrete symbols and use discrete probability densities to model 
the transition and the observation probabilities. The problem 
with this approach is that in condition monitoring the 
observations are typically continuous signals. In order to use a 
continuous observation density, some restrictions are placed to 
insure that the parameters of the probability density function 
can be re-estimated [14]. 

( ) ( )
1

, , ,1
M

i jm jm jm
m

b O C O U j Nξ μ
=

= ≤∑ ≤  (1) 

In Equation (1), O is the observation vector, Cjm is the 
mixture coefficient for the mth mixture in state i and ξ is any 
log concave or elliptically symmetric density with mean vector 
μjm and covariance matrix Ujm for the mth mixture component in 
state j. Usually, a Gaussian density is used for ξ and the 
corresponding model is called a MoG-HMM, which is 
completely defined by: the A matrix, the B matrix and the 
initial probability π. For a MoG-HMM the observation matrix 
B is modeled by a Gaussian density with a mean μ, a standard 
deviation σ and a mixture matrix M. 

IV. FAILURE PROGNOSTIC AND DIAGNOSTIC METHODS 
BASED ON HMMS 

Previous research works related to failure diagnostic and 
prognostic methods based on HMMs and their variants [11], 
[15] have been developed. The proposed methods are done in 
two phases: a learning phase and an exploitation phase. In the 

following of the paper, an explanation and comparison between 
three prognostic methods is proposed. The first method is 
based on traditional HMMs, the second relies on Hidden Semi-
Markov Models (HSMM) and the third uses MoG-HMMs. 

A. The HMMs case 
The learning phase and the exploitation phase for use 

traditional HMMs to perform diagnostic and prognostic are 
presented below. 

 1) Learning phase: the extracted features from complete 
monitoring histories (from the normal condition to the failure 
state) are transformed into HMMs by using the well known 
Baum-Welch algorithm [16]. Thus, an HMM model is created 
for each failure, the model is then stored in a model base 
containing all the HMMs with a diagnostic label associated to 
each learned histories. 

 
2) Exploitation phase: the on-line data are used as inputs 

to the learned models in order to diagnostic and prognostic the 
health state. Indeed, the online extracted features are used in a 
first step to find the model that best fits the actual observation 
sequence by computing the probability P(O|λ) (similarly to the 
process in Fig. 5). 

In a second step the parameters of the selected model are 
used to assess the current health state and to estimate the RUL. 
The Viterbi Algorithm [17] is used to find the state sequence, 
then the most persistent state in the last observations is retained 
as the current health state, as shown in (2). 

( )
( )

1 2

2 1

State sequence  , , , ,

Last states , , , , ,

with  past observations factor and  current time

t

t l t t t

s s s

s s s s

l t
− − −

=

=

= =

…

… (2) 

By knowing the actual health state the Chapman-
Kolmogorov equation (3) is used to re-estimate the health state 
after n iterations [18]. When the predicted probability of being 
in the last state reaches a predefined limit ε, the RUL can be 
calculated (4). 

l( ) n
tP n Aπ=    (3) 

l ( )  NRUL n P s s n ε= ⇔ = =  (4) 

B. The HSMMs case 
The problem with traditional HMMs is that the durational 

behavior is usually characterized by a geometrically decaying 
function. This assumption is a source of inaccurate duration 
modeling because most of real-life applications do not obey 
this function. Thus, to solve this problem a model with explicit 
time durations, called Hidden semi Markov Model, has been 
proposed [11]. The learning and exploitation phase using this 
model are performed as follows. 

1) Learning phase: similarly to a traditional HMM, the 
parameters of the HSMM are defined by using the history data 
and the Baum-Welch algorithm. For an HSMM the shape is 
constrained to a left-to-rigth model. In addition, for each state 
the stay durations D(si) are learned by using the Viterbi 
algorithm. The idea is to use the learned parameters (π, A, B) 
and the history data to obtain the whole observation sequence. 
Then, by taking into account the transition instant between the 
states, the duration D can be defined. 
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Figure 5.  Competitive model selection. 

 

Finally, by assuming that the sojourn time follows a 
Gaussian distribution, the mean time duration µ(D(si)) and the 
standard deviation σ(D(si)) of the same state concerning 
different histories of the same fault can be estimated ((5) and 
(6)). 

( )( ) ( )
1

1 H

i h
h

D s D s
H

μ
=

= ∑ i   (5) 

( )( ) ( ) ( )( )
2

1

1 H

i i h
h

D s D s D s
H

σ μ
=

⎡ ⎤= −⎣ ⎦∑ i  (6) 

In Equations (5) and (6), D(·) stands for the stay duration, i 
is the state index, h is the history index and H is the total 
number of histories from a particular fault state. 

2) Exploitation phase: in this step the learned models and 
their associated stay duration are used. First a competitive 
model selection is performed by using the raw data and the 
forward-backward algorithm [16] to compute the probability 
P(O|λ) over all the learned models (Fig. 5). The label of the 
winner model is used to diagnose the monitored system and 
the actual health state is defined in the same way as in 
traditional HMMs using (2). In addition, the selected model is 
used to estimate the RUL. 
 

The HSMMs permits to estimate the RUL in two ways: 

a) By using the expression proposed in [11] where the 
stay durations are merged with the state probability 
transitions: 

[ ], 1 1l lc l l lRUL t a RUL+ += +   (7) 

where l is the actual state index, tlc is the state changing 
point and al,l+1 is the probability transition to the next state. 

b) By using a more intuitive expression adding the state 
duration from the current state until the last state and 
subtracting the time spent in the actual state (8). 

( )( )
N

l i
i l

lRUL D s tμ
=

= −∑   (8) 

Furthermore, a confidence interval with different 
recovering values can be easily estimated by using the 
Bonferroni method (9). 

( )( ) ( )( )

( )

limits

1
2

N

i i
i l

lRUL D s cf D s t

cf

μ σ

α
=

⎡ ⎤
= ± ⋅ −⎢ ⎥⎣ ⎦

+
Φ =

∑
(9) 

In Equations (8) and (9), l is the actual state, i is the state 
index, N the total number of states, µ(D(si)) is the mean time 
duration in the state i, σ(D(si)) the standard deviation, tl is the 
time spent in the actual state, α is the confidence interval 
between [0,1] and cf is the confidence factor that are defined by 
using Φ that is the cumulative distribution function of a 
Gaussian probability distribution. 

C. The MoG-HMM based method 
The originality of the proposed method dwells in the fact 

that raw signals are processed using the Wavelet Packet 
Decomposition (WPD) to extract the relevant information to 
learn the behavior models.  Also in the generated MoG-HMM, 
the states' stay durations are not assumed to be a geometrically 
decaying function as in the HSMMs case, but are learned from 
the monitoring data (note that multiple continuous signals are 
considered as observation for both learning and simulation 
phases, instead of the traditional mono observation approach). 
Moreover, in the proposed method there is no limitation for the 
type of the generated MoG-HMM (the model can be an 
ergodic, a left-right or a parallel left-right). 

1) Learning phase: in this first phase, which is executed 
off-line, the raw data recorded by the sensors are processed in 
order to extract the energy of each node at the last 
decomposition level by using the WPD technique [19]. These 
features are then used to learn several behavior models (in the 
form of MoG-HMMs) corresponding to different histories 
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related to several initial states and/or operating conditions of 
the component. Also one global left-to-right MoG-HMM is 
learned for each type of fault. It has X states meaning the 
different asset health states. Indeed, each raw data history 
corresponding to a given component's condition is transformed 
to a feature matrix F, by using the WPD. In this matrix, each 
column vector (of C features at time t) corresponds to a 
snapshot on the raw signal, and each cell fct represents the 
node c of the last WPD level at time t. 

11 1
WPD

1

Raw signal

with 1  and 1

t

c ct

f f
F

f f
t T c C

⎛ ⎞
⎜ ⎟⎯⎯⎯→ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

≤ ≤ ≤ ≤

…
# % #

"
 (10) 

The nodal energy (features) are then used to estimate the 
parameters (π, A, B) and the temporal parameters (stay 
duration in each state) of the MoG-HMMs. 

The parameters of each MoG-HMM are learned using the 
Baum-Welch algorithm [16], whereas the temporal ones are 
estimated by using the Viterbi algorithm [17]. This algorithm 
permits to obtain the state sequence and to compute the time 
duration for which the component has been in each state of the 
corresponding MoG-HMM (Fig. 6). Thus, by assuming that the 
state duration in each state follows a normal law, it is possible 
to estimate the mean duration (11) and the corresponding 
standard deviation (12) by computing the duration and the 
number of visits in each state. Moreover, the Viterbi algorithm 
permits to identify the final state which represents the physical 
component's failure state.  

 
Figure 6.  Example of Viterbi decoding state. 

( )( ) ( )
1

1
i iD s D s ω

ω

μ
Ω

=

=
Ω∑   (11) 

( )( ) ( ) ( )( )
2

1

1
i iD s D s D sω

ω

σ
Ω

=

⎡= −⎣Ω∑ iμ ⎤⎦

final

)

)

 (12) 

In equations (11) and (12), D(·) stands for the visit duration, 
i is the state index, ω is the visit index and Ω corresponds to the 
total of visits. A compact representation of each learned MoG-
HMM used to perform diagnostic and prognostic is given by 
the following expression: 

( )( ) ( )( )( ), , , , ,i iA B D s D s Sλ π μ σ=  (13) 

Where λ is the fully defined model and Sfinal is the final 
state (corresponding to the end of the considered condition 
monitoring history). 

2) Exploitation phase: this phase, which is performed on-
line, consists in exploiting the learned models to detect the 
component's current condition (using the Viterbi algorithm) 
and to compute the corresponding RUL. The processed data 
and the extracted nodal energy using the Wavelet toolbox 
from Matlab® are thus continuously fed to the learned models 
in order to find the global MoG-HMM, which best fits to the 
observed sequence, then the diagnostic is made and the current 
health state is defined. The selection process is based on the 
calculation of a likelihood P(O|λ) of the model over the 
observations (HMMs problem 1). Finally, by knowing the 
current type of fault, the nearest model concerning this fault 
can be found (Fig. 5). Using this last and the current model 
state and the stay durations learned in the off-line phase, the 
component's RUL and its associated confidence value can be 
estimated.  

The generated MoG-HMMs are used during the on-line phase 
to estimate the RUL and the associated confidence value of the 
physical component by using a dedicated procedure whose 
steps are the following: 

a) Detection of the appropriate global left-to-right 
general MoG-HMM that best fits and represents the on-line 
observed sequence of nodal energy. The diagnostic label of 
the selected model is used to establish the diagnostic of the 
current condition. 

b) Choice of the nearest RUL model knowing the active 
failure mode. 

c) Identification of the current state of the selected RUL 
model. 

d) Identification of the critical path, which goes from 
the current state to the end state. The idea is to identify all the 
non-zero probabilities in the transition matrix as potential 
transitions, and then to choose the minimal path among all the 
possible ones (Fig. 7) with only one visit per state. 

 

 

Figure 7.  Path estimation 

e) Estimation of the RUL. This latter is obtained by 
using the temporal parameters of the stay duration in each 
state. In addition, a confidence value over the RUL is 
calculated based on the standard deviation values of the stay 
durations and the Bonferroni confidence interval as in (9). 

( )( ) ( )([ ]
current state

N

upper i i
i

RUL D s cf D sμ σ
=

= + ⋅∑  (14) 

( )(
current state

N

mean i
i

RUL D sμ
=

= ∑   (15) 

( )( ) ( )([ ]
current state

N

lower i i
i

RUL D s cf D sμ σ
=

= − ⋅∑ )  (16) 
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V. APPLICATION AND SIMULATION RESULTS 
The failure prognostic methods presented previously are 

tested on a rich condition monitoring data base taken from [20] 
and containing several bearings tested until the failure. The 
choice of bearings can be explained by the fact that these 
components are considered as the most common mechanical 
elements in industry and are present in almost all industrial 
processes, especially in those using rotating elements and 
machines. Moreover, bearings are the main components which 
most frequently fail in rotating machines [21]. 

The test data correspond to several tests under constant 
conditions. Four bearings were installed on one shaft. The 
angular velocity was kept constant at 2000 rpm and a 6000 lb 
radial load was applied onto the shaft and bearings (Fig. 8). On 
each bearing two accelerometers were installed for a total of 8 
accelerometers (one vertical Y and one horizontal X) to register 
the accelerations generated by the vibrations, were the 
sampling rate was fixed at 20 kHz. 

 
Figure 8.  Test bed 

For simulation purposes (learning and on-line failure 
prognostic), twelve condition monitoring data histories are 
used (eleven for learning and one for test), each bearing was 
considered failed at the end of its associated history, all the 
history were supposed independent. In the following results the 
monitoring history related to the bearing 2 in the test 2 is used 
as test history. The other eleven monitoring histories are used 
exclusively for training. The test data history concerns the 
bearing that fails after 9840 min of operation. Note that for all 
the models the number of states was fixed to three. 

A. The HMMs case 
In traditional HMMs only one discrete observation is used 

[14]. To transform the continuous signal in a discrete one, the 
vibrations from the histories are processed. First the root mean 
square (rms) of the accelerometer placed in the same direction 
of the load is extracted. Then those values are scaled and 
rounded to the nearest integer as shown in Fig. 9. 

 
Figure 9.  RMS discretisation 

The probability transition matrix of the learned model is 
shown below. 

0.9998 0.0002 0
0 0.9995 0.0005
0 0 1

A
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

By using the Chapman-Kolmogorov equation (3) to find 
the RUL one can note that the representation of the stay 
durations by exponential laws in HMMs does not always hold 
in practice. For example, when the bearing is detected to be in 
the first health state and using (3) with the learned matrix A, 
the number of iterations required to get a probability of 95% to 
be in the failure state (state 3) will be equal to 17518. Knowing 
that the time interval between the measures is 10 min, this 
means that the bearing will fail after 175180 min, when the real 
failure is at 9480 min. The exponential behavior of traditional 
HMMs are thus a real drawback of this model and that is why 
other models including the explicit time behavior are wished 
for prognostic applications. 

 
B. The HSMMs case 

In HSMMs discrete or continuous observations can be 
used. In this simulation the nodal energies in the third level of 
the WPD (using the “Daubechies” wavelet family) at each 
instant t have been extracted from the raw signals (vibration 
signals). This choice permits to obtain wide frequency bands of 
2.5 kHz. The extracted features where used to learn one model 
per history and then used to predict the RUL at each instant t 
using (8). The results are presented in Fig. 10, where one can 
appreciate a dominant late prognostic with an erratic behavior 
when the system approaches the transition from the state 2 to 
the state 3, also the model converges late to the real RUL.  

 
Figure 10.  RUL HSMM 

C. The MoG-HMM case  
During the learning phase of the MoG-HMM method, the 

parameters of each model were first randomly initialized and 
then, the continuous extracted features were fed to the learning 
algorithms in order to re-estimate the initialized parameters (π, 
A, B). The number of mixtures in each MoG-HMM was set to 
two, which allows a trade-off between precision and 
computation time. Eleven MoG-HMMs were thus obtained by 
using the Baum-Welch algorithm.  

In order to simulate an on-line failure, the “test” data 
history is used. The selection process shown in Fig. 5 is then 
applied on the data history corresponding to the bearing 2 in 
the test 2 in order to identify the “best MoG-HMM” at each 
instant t and to estimate the RUL. A simulation result of the 
predicted RUL and the corresponding error is shown in Fig. 11. 
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From Fig. 12-(a) and Fig. 12-(b) one can see that the 
precision of the estimated RUL increases as the prediction time 
is approaching the real failure time. Similarly, after 7440 min 
the mean estimation error drops below 16.5 % whereas when 
considering the upper RUL limit the error drops to 7 % and 
continues to decrease as the real failure time approaches. After 
9610 min the mean error stabilizes around the value of 1.08 %. 
The 68 % confidence interval keeps the RUL estimation limits 
near acceptable values, a wide confidence intervals (95 % and 
99.5 %) will give more sparse limits and will increase the 
prediction error. Note that the obtained results are better than 
those obtained by using the temporal features (Root Mean 
Square, mean, skewness and kurtosis) [22]. The RUL and the 
associated prediction error of the same test history using 
temporal features are shown in Fig. 12-(c) and Fig. 12-(d). 

D. Method Comparaison 
The results of the precedent methods are compared using 

the root mean squared error (RMSE) as the model performance 
criterion. This measure is useful to qualify the accuracy of the 
predictions thanks to its sensibility to large errors. The RUL 
estimations of each method were evaluated using the RMSE 
criterion and the results are presented in Table. 1. 

TABLE I.  RMSE OF THE PREDICTION ERROR FOR EACH METHOD  

Method HMM HSMM WPD/MoG-HMM 

RMSE 1.2322∗105 2.8229∗104 4.6679∗103 

The results obtained with traditional HMMs are the less 
performing due to the exponential behavior of the model. The 

time integration in HMMs by using explicit state duration like 
in HSMM improves the prognostic results reducing the error. 
Finally the proposed MoG-HMM model upgrades the HSMM 
thanks to its ability to build the more appropriate model 
unconstraining the model shape and well modeling the 
continuous signals. 

VI. CONCLUSIONS 
A presentation and comparison of three different methods 

to perform failure diagnostic and prognostic in an integrated 
manner has been presented in this paper. Particularly the third 
method is a new proposition to estimate the current health 
condition of physical components, particularly bearings, and a 
prediction of their remaining useful life before their complete 
failure has been proposed in this paper. The method is based on 
the transformation of the data provided by the sensors installed 
to monitor the component into relevant models. These latter are 
represented by MoG-HMMs, which take as input continuous 
observations and permit to model the state of the component at 
each time. The proposed method intends to enhance the 
existent HSMM to unconstraint the form of the model to be 
able to model any system. A WPD technique has been used to 
extract appropriate features from the monitoring signals. These 
features were then used to model the degradation behavior of 
the component by learning the parameters of the corresponding 
MoG-HMMs models. The derived models are finally exploited 
to asses the component's current condition and to estimate its 
RUL and the associated confidence value. 

 

 (d) 

(b) (a) 

(c) 

 

Figure 11.  Simulation results: (a) RUL estimation for the bearing 2 in test N°2 using WPD; (b) prediction error for the bearing 2 in test N°2 using WPD; (c) RUL 
estimation for the bearing 2 in test N°2 using temporal features; and, (d) prediction error for the bearing 2 in test N°2 using temporal features. 
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