
  

Abstract – The pickup and delivery problem (PDP) is a 

problem of optimization of vehicles routes, in order to satisfy 

the demands for carriage of goods between suppliers (pickup 

locations) and customers (delivery locations) using a set of 

vehicles. In this paper, we discuss a variant of PDP which is 

the SPDPTWPD (Selective PDP with Time Windows and 

Paired Demands). In this type of problems, a set of constraints 

must be respected. Those constraints are related to the 

capacity of the vehicles, the opening and closing times of each 

site (occurrence of time windows), the precedence (paired 

demands), and the choice of sites to be visited (selective 

aspect). We proposed a new metaheuristic to solve the 

SPDPTWPD, then we tested our method on benchmark 

instances, and its efficiency is shown by obtained results.  
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I.  INTRODUCTION 
 

The pickup and delivery problem (PDP) aims at 

constructing a set of routes in order of establishing a 

transportation network to satisfy a set of pickup and 

delivery requests under specified constraints. Each 

constructed route is traveled by a vehicle with limited 

capacity, which is, among other available vehicles, based 

at a starting depot. The vehicles must also return to depot 

at the end of their routes. 

In our problem, each pickup or delivery site has a time 

window to be respected, which means that the site must be 

visited either between its opening time and its closing time 

or before its opening time. In this last case, the vehicle must 

wait until the beginning of service time. In addition, the 

paired demands constraints included in our problem ensure 

that each vehicle route satisfies the precedence constraints, 

so the customer must be served only after its supplier. 

In the urban context, taking into account all the above 

constraints becomes more critical because of the applied 

policies by the public authorities in some cities. For 

example, limiting transportation hours per day to reduce 

the noise, or the regulation of parkings and street access. 

The variant of the classic PDP studied in this paper is the 

selective PDP with time windows and paired demands 

(SPDPTWPD). This variant is a generalization of the 

standard PDP where in addition of constraints related to 

time windows and paired demands, it is not obligatory to 

visit all nodes.  

 

 

In fact, sometimes it is impossible to visit all nodes in the 

transportation network in a given period, so we must 

choose nodes which will be served in this period. Hence, a 

profit is associated to each site to represent its priority and 

the goal of our variant is to maximize the total profit then 

to minimize the distance.   

 
Figure 1. Example of the SPDPTWPD 

Fig. 1 represents an example of our variant with 5 suppliers 

and 5 customers. The fleet is composed of 2 vehicles. Each 

paired demand (between a supplier and its customer) can 

be identified thanks to the same color and the same number. 

The green triangle represents a supplier paired with the 

depot (the goods picked up from this site are delivered to 

the depot). And the green circle represents a customer 

paired with the depot. In the shown solution, the nodes 

numbered 4 were not selected. 

The next sections of this paper are organized as follows: a 

literature review is provided in section II. Then, the section 

III defines the SPDPTWPD with a mathematical 

formulation. In section IV, we explain our new 

metaheuristic to solve the SPDPTWPD. After that, section 

V is dedicated to the experimental results. Finally, section 

VI concludes this paper and gives direction for further 

research. 

 

II. LITERATURE REVIEW 
 

In this section, we provide a state of the art of various 

methods used to solve different variants of the PDP. 

 

The PDP is considered as a variant of the combinatorial 

optimization problem VRP (Vehicle Routing Problem). It 

consists in establishing an optimal set of routes traveled by 

a fleet of vehicles in order to visit a specified set of 

customers. A taxonomic literature review of the VRP was 

made between 2009 and June 2015 and has been published 

in [4]. 
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The PDP involves a collection of suppliers and a collection 

of customers geographically located. Over the few past 

decades, many studies concerning the variants of this 

problem have been achieved. For more details, see book 

[14] and a number of surveys [9][10][13]. 

Many exact methods have been elaborated to solve the 

PDPTWPD. Among those methods, Ropke and Cordeau 

have accomplished a branch-and-cut-and-price algorithm 

in which the column generation algorithm is used to 

calculate the lower bounds [12]. Moreover, another exact 

algorithm based on a branch-and-cut-and-price approach 

has been proposed to solve the m-PDPTW (multi vehicles 

PDPTW) with two different objective functions: 

minimizing the total vehicle fixed costs, and minimizing 

the route costs [3]. Furthermore, researchers have 

elaborated a new formulation to solve the Mu-PDPTWPD 

(Multi-periods PDPTWPD) where each site can be visited 

in one or several periods [5]. The period can be represented 

as one day or any other time slot and their model is solved 

by using CPLEX. 

 

Due to the combinatorial complexity of the PDPs, the 

efficiency of exact solving methods has been proved 

mainly for simple problems, but not for the complex 

problems with great size. For this reason, many studies 

applying metaheuristic algorithms have been carried out in 

the literature. Authors have developed a "Squeaky wheel" 

method which solves the m-PDPTW using a local search 

[8]. Another method to solve this problem has been 

presented in [11]. It is a construction heuristic method 

based on the integration principle. Moreover, a hybrid 

metaheuristic, which combines tabu search and simulated 

annealing, has been developed by researchers in [6]. A 

memetic algorithm has been introduced in [16] to solve the 

biobjective selective PDP (SPDP) where the demands are 

unpaired. 

 

Concerning the selective aspect of the PDPTWPD, 

researchers have proposed a linear programming model, 

based on three-index formulation, to solve this problem [2]. 

Moreover, a lexicographic approach to solve the bi-

objective SPDPTWPD has been presented in [1]. Recently, 

a hybrid genetic algorithm to solve the multi-objective 

SPDPTWPD has been published in [15] where the aim of 

our method was to maximize the profit and minimize the 

distance in the same time.  

In this paper, we propose a new metaheuristic method to 

solve this variant. 

 

III. MATHEMATICAL FORMULATION 

 

A.  Notations 
 

In this part, we introduce a mathematical formulation for 

SPDPTWPD. In this purpose, we define the following 

parameters useful in our problem: 

Data: 

 V: Collection of available vehicles, 

 C: Collection of all customers, 

 B: Collection of all suppliers, 

 Nodes: Collection of all suppliers and customers 

(Nodes = C ∪ B), 

 W: Collection of all depots, 

 N: Collection of all depots, suppliers, and 

customers (N = Nodes ∪ W), 

 M: a great number 

 Supplieri: Collection of all suppliers related to 

customer i, 

 Qk: Capacity of vehicle k, 

 Speedk: Average speed of vehicle k, 

 dij: Distance between site i and site j, 

 Pi: Profit characterizing the site i, 

 [ei, li]: Time window of site i, 

 Si: Service time at site i, 

 qi: Goods quantity requested by site i 

- If i ∈ B then qi > 0, 

- If i ∈ C then qi < 0, 

Variables: 

 Ai
k: Starting service time of vehicle k in site i, 

 Di
k: Departure time of vehicle k from site i, 

 Yi
k: Goods quantity in vehicle k visiting site i, 

 Xij
k:  

- 1 if vehicle k moves from site i to site j, 

- 0 Otherwise, 

 

B.  Mixed Linear Program for the SPDPTWPD 

 

A mathematical formulation for the SPDPTWPD could be 

as follows: 

Minimize/Maximize F         (1) 

 

Subject to: 

 

∑ ∑ 𝑋𝑖𝑗
𝑘

𝑘 ∈ 𝑉𝑗 ∈𝑁  ≤ 1   i ∈ Nodes     (2) 

 

∑ ∑ 𝑋𝑖𝑗
𝑘

𝑘 ∈ 𝑉𝑖 ∈𝑁  ≤ 1   j ∈ Nodes     (3) 

 

∑ 𝑋𝑖𝑢
𝑘

𝑖 ∈𝑁 −  ∑ 𝑋𝑢𝑗
𝑘 = 0𝑗 ∈𝑁    k ∈ V; u ∈ Nodes  (4) 

 

∑ 𝑋𝑗𝑤
𝑘𝑁𝑜𝑑𝑒𝑠

𝑗=1 = 1   k ∈ V; w ∈ W      (5) 

 

∑ 𝑋𝑤𝑖
𝑘𝑁𝑜𝑑𝑒𝑠

𝑖=1 = 1   k ∈ V; w ∈ W      (6) 

 

𝑄𝑘 ≥ 𝑌𝑖
𝑘 ≥ 0  i ∈ N; k ∈ V      (7) 

 

𝑌𝑗
𝑘 ≥ 𝑌𝑖

𝑘 +  𝑞𝑖 − 𝑀(1 −  𝑋𝑖𝑗
𝑘 ) i, j ∈ N; k ∈ V  (8) 

 

𝑌𝑗
𝑘  ≤  𝑌𝑖

𝑘 + 𝑞𝑖 + 𝑀(1 − 𝑋𝑖𝑗
𝑘 ) i, j ∈ N; k ∈ V  (8 bis) 

 

𝑋𝑤
𝑘 =  ∑ (−𝑞𝑖 ∗  ∑ 𝑋𝑗𝑖

𝑘
𝑗∈𝑁 )𝑖 ∈𝐶        

 k ∈ V ; w ∈ W ; j ≠ I; Supplieri = w    (9) 

 

 𝐷𝑤
𝑘 = 0           k ∈ V; w ∈ W (10) 

 



 

𝐷𝑖
𝑘 ≥ 𝐴𝑖

𝑘 +  𝑆𝑖 − 𝑀(1 −  𝑋𝑖𝑗
𝑘 )     i, j ∈ N; k ∈ V (11) 

 

𝐷𝑖
𝑘 ≤ 𝐴𝑖

𝑘 +  𝑆𝑖 + 𝑀(1 −  𝑋𝑖𝑗
𝑘 )    i, j ∈ N; k ∈ V (11 bis) 

 

𝑒𝑖 ∗ ∑ 𝑋𝑖𝑗
𝑘𝑁

𝑗=1 ≤  𝐴𝑖
𝑘 ≤ 𝑙𝑖 ∗ ∑ 𝑋𝑖𝑗

𝑘𝑁
𝑗=1      i ∈ N; k ∈ V (12) 

 

𝐴𝑖
𝑘 ≥ 𝐷𝑖

𝑘 +  
𝑑𝑖𝑗

𝑆𝑝𝑒𝑒𝑑𝑘 − 𝑀(1 − 𝑋𝑖𝑗
𝑘 )      i, j ∈ N; k ∈ V (13) 

 

𝐷𝑓
𝑘 ≤ 𝐴𝑐

𝑘           f ∈ B; c ∈ C such as Supplierc = f (14) 

 

Our objective function is represented by (1). The main 

objectives are expressed by the following functions: 

- Maximizing profit: 𝐹1 = ∑ ∑ ∑ 𝑃𝑖𝑋𝑖𝑗
𝑘

𝑘 ∈ 𝑉𝑗 ∈ 𝑁𝑖 ∈ 𝑁   

- Minimizing distance: 𝐹2 = ∑ ∑ ∑ 𝑑𝑖𝑗𝑋𝑖𝑗
𝑘

𝑘 ∈ 𝑉𝑗 ∈ 𝑁𝑖 ∈ 𝑁  

Constraints (2) and (3) ensure that each site is visited at 

most once by a single vehicle. Constraints (4) ensure the 

routing continuity by a vehicle. Constraints (5) and (6) 

guarantee that each vehicle begins its route and finishes it 

at the depot, even if they do not visit any site. The capacity 

constraints are ensured by (7), (8), (8bis) and (9). 

Moreover, the time windows constraints are guaranteed by 

(10), (11), (11bis), (12) and (13). Constraints (14) ensure 

that the supplier is visited before its customer.  

In the next section, we present our approach to solve the 

considered problem. 

 

IV. PROPOSED METAHEURISTIC 

 

In this section, we introduce our new metaheuristic which 

solves the SPDPTWPD. Our approach could be considered 

as an extension of the tabu-embedded simulated annealing 

algorithm proposed by Li & Lim to solve the PDPTWPD 

[6]. 

 

A.  Approach of Li and Lim 

 

In their study, authors have considered an unlimited 

number of vehicles. The objective of their method is 

defined as follows, respecting the following priority order: 

1- Minimization of number of vehicles  

2- Minimization of total travel cost 

3- Minimization of total schedule duration (the sum 

of waiting time, travel time and service time) 

4- Minimization of total waiting time to start service 

 

The metaheuristic developed by Li and Lim is principally 

based on three permutation operators used for several 

iterations allowing to restructure the routes in the purpose 

of reaching the objective earlier mentioned and obtaining 

the best possible solution. The first routes are obtained 

using the insertion heuristic proposed by Solomon [7]. An 

explanation for those operators is given by the following 

description: 

 

1- PD-Shift Operator 

 

This operator moves a pickup-delivery pair from a route to 

another. In fig. 2, the PD-Shift operator is used to move the 

pair Pi-Di from route Ri to route Rj. Pi and Di are originally 

in route Ri, so first the PD-Shift operator removes Pi and Di 

from the route Ri, and then inserts them at a feasible 

position in route Rj, subject to the constraints imposed on 

PDPTWPD. Infeasible shifts are forbidden. 

 

 
Figure 2. PD-Shift operator 

2- PD-Exchange Operator 

 

 
Figure 3. PD-Exchange operator 

The PD-Exchange operator swaps pickup-delivery pairs of 

two routes. In other words, it moves one pair from each 

route to the other. For example, in fig. 3, the pair Pi-Di is 

originally in route Ri, and Pj-Dj is originally in route Rj. 

The PD-Exchange operator first removes Pi-Di from route 

Ri and Pj-Dj from route Rj, and then inserts Pi-Di at a 

feasible position in route Rj, at the same time of inserting 

the locations Pj and Dj at a feasible position in route Ri. The 

infeasible insertions are not allowed. 

 

3- PD-Rearrange Operator 

 

 
Figure 4. PD-Rearrange operator 

The PD-Rearrange operator repositions the pickup-

delivery pairs within the same route. Its objective is to 

move each pair in a route to the best position that 

maximally ameliorate the route in order to reach the 

objective early mentioned. In fig. 4, the PD-Rearrange 

operator removes the pair Pi-Di which is in the route Ri, 

and then inserts them at another feasible position in the 

same route. Infeasible insertions are also not allowed. 

 



 

B.  New extension 

  

As mentioned above, our study is principally based on the 

approach published in [6]. Due to the difference in 

objectives and criterions between our study and the one in 

[6], we adapted this method to the context of our problem, 

where the objective functions are the following:  

1- Maximization of the total collected profit. 

2- Minimization of the total traveled distance.  

 

First, we added the profit attribute to each site, which 

doesn’t exist in [6]. Then, as early mentioned, in [6] an 

unlimited number of vehicles is used to solve the problem, 

contrary to our case where we use a limited number of 

vehicles. Therefore, we added to the algorithm a new 

function which creates a solution with a limited number of 

vehicles from a solution with unlimited number of vehicles. 

In the purpose of respecting the objective functions, the 

solution generated must be the solution with maximal 

possible profit. To do so, the principle used is to keep 

removing the routes having the minimal profit among the 

set of routes in the solution one by one, until having a 

solution with the considered number of routes which is 

equivalent to the number of available vehicles. 

In addition, we ameliorate the solution by trying to insert 

nodes from removed routes in the remaining routes. For 

each node, if the insertion is not feasible, with regard to the 

problem constraints, we try to exchange it with a node in 

the remaining routes having a lower profit. This 

explanation could be shown in figure 5. 

 
Figure 5. Solution optimization procedure 

 In Fig. 5, S is the current solution, NV is the number of 

vehicles used in S, and real NV is the real number of 

available vehicles that we must have in the solution. 

To compare two solutions into the algorithm, we used a 

comparison method that we called F described as follows: 

 

 
Figure 6. Comparing solutions 

In Fig. 6, we apply the function F on each of the two 

solutions we want to compare, to have two solutions with 

the real number of vehicles. For the obtained solutions, the 

best is the one with the higher profit. If the two solutions 

have the same profit, the best is the one with the lower 

distance. If the two solutions have different number of 

routes after applying F, we decided to consider that the best 

is the one which needs the lower number of vehicles, 

ignoring the profit and the distance. Indeed, we remarked 

that this consideration helped us to get better solutions at 

the end. Finally, we choose among the solutions to compare 

initially, the one which created the best solution when 

applying F.   

In the next section, we present the experimental results 

obtained by this study, comparing to the results of a 

lexicographic approach previously elaborated. 

 

V.  EXPERIMENTAL RESULTS 

 

In this part, we test our new metaheuristic on benchmark 

instances for the SPDPTWPD (accessible via this link: 

https://www.dropbox.com/sh/zpfyjo1l4etfuqe/AAAHUB

MYfTfbKau0Nmc0yAOWa?dl=0).  

 

Each instance is labeled SPDPTWPDxyz, x is the type of 

instance (R: nodes are randomly distributed, C: nodes are 

totally clustered, and RC: nodes are partially clustered and 

partially randomly distributed), y is the number of nodes 

(20, 50 and 100) and i identifies the distribution of profit 

(1: nodes have the same profit and 2: each site have a 

different value of profit).  

The hybrid genetic algorithm, presented in [15] to solve the 

same variant, provides a set of non-dominated solutions 

that maximize the profit and minimize the distance. The 

authors have proved that the gap between the obtained 

solutions and the optimal Pareto front was acceptable. On 

the other hand, our proposed metaheuristic focus on giving 

only one non-dominated solution for each tested instance 

(the one with the maximal profit). In this section, we will 

prove that the gap between the obtained solution and the 

optimal Pareto front is very small. 

For that, we compared the results of our method with the 

results of a previous lexicographic approach solving the 

same variant in which the authors maximize the profit then 

minimize the total traveled distance [1]. The comparison 

also involves the CPU time to find the difference between 

the two approaches at the level of performance. Table 1 

shows the results for each method, as well as the gap 

between them concerning each criterion.  

As shown in table 1, we can find out 3 kinds of results: 

 

Case 1: The results obtained by the new metaheuristic are 

the same as the results of the lexicographic approach, as in      

the case of the instance SPDPTWPD-C20. In this case, the 

metaheuristic gives the best possible solution and we can 

notice that this concerns the majority of tested instances 

with a percentage of 60.87%. 

https://www.dropbox.com/sh/zpfyjo1l4etfuqe/AAAHUBMYfTfbKau0Nmc0yAOWa?dl=0
https://www.dropbox.com/sh/zpfyjo1l4etfuqe/AAAHUBMYfTfbKau0Nmc0yAOWa?dl=0
https://www.dropbox.com/sh/zpfyjo1l4etfuqe/AAAHUBMYfTfbKau0Nmc0yAOWa?dl=0


 

Case 2: For 17.39% of tested instances, the metaheuristic 

cannot give a solution with the same profit as the solution 

given by the lexicographic, but it gives a solution with a 

better travel distance, such as for example the instance 

SPDPTWPD-RC1001. In this case, it could be that the 

metaheuristic solution belongs to the Pareto front. To 

ensure that, we run our MILP to get the minimal distance 

for the obtained profit value. We remarked that 25% of 

obtained solutions in this case belongs to Pareto front. 

Case 3: The solution given by the metaheuristic is worse 

than the one given by the lexicographic approach in terms 

of profit and distance, as for the instance SPDPTW-RC502. 

This case occurred in 21.74% of tested instances. 

In average, the gap between our new metaheuristic and the 

lexicographic approach is 1,14 concerning the profit, and -

0.04 concerning the distance. For the solving time, it could 

be noticed that our proposed metaheuristic is more 

performant for the majority of tested instances compared to 

the lexicographic approach. This time depends on several 

elements for example: the number of nodes, the time 

windows and the number of vehicles used. It can also 

depend on other characteristics like the distribution of the 

time intervals, the geographical distribution of the nodes… 

   

VI. CONCLUSION 

 

 In this paper, we have presented a new metaheuristic 

to solve the SPDPTWPD. The results show that this new 

approach gives us very good solutions in a reasonable 

computational time.  

 In our future works, we will focus on improving our 

approach to achieve better results and we will add more 

constraints to our variant to match more real life cases. 
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Table 1. Experimental results 

Profit Distance CPU Time (s) Profit Distance CPU Time (s) Profit Distance

SPDPTWPD-C201 1 180 275,19 0,3 180 275,19 11 0,00 0,00

SPDPTWPD-C202 1 144 167,99 19,88 144 167,99 7 0,00 0,00

SPDPTWPD-C202 2 217 212,94 52,15 217 212,94 8 0,00 0,00

SPDPTWPD-R201 4 190 398,25 0,35 190 398,25 6 0,00 0,00

SPDPTWPD-R202 6 213 378,95 12,2 213 378,95 6 0,00 0,00

SPDPTWPD-RC201 2 160 233,2 0,33 160 233,2 6 0,00 0,00

SPDPTWPD-RC202 2 180 235,09 0,52 180 235,09 6 0,00 0,00

SPDPTWPD-C501 5 480 363,28 9,67 480 363,28 57 0,00 0,00

SPDPTWPD-C502 1 437 431,25 28,31 436 386,08 433 -0,23 -10,47

SPDPTWPD-C502 2 656 525,87 204,44 656 525,87 401 0,00 0,00

SPDPTWPD-R501 13 490 1075,77 14,86 490 1075,77 21 0,00 0,00

SPDPTWPD-R502 10 576 834,92 17,24 576 834,92 20 0,00 0,00

SPDPTWPD-RC501 4 320 481,37 1629,02 310 489,4 28 -3,13 1,67

SPDPTWPD-RC502 4 420 527,76 151,37 400 518,14 26 -4,76 -1,82

SPDPTWPD-RC502 5 500 686,69 1352,38 480 677,07 27 -4,00 -1,40

SPDPTWPD-RC502 6 562 758 4505,16 547 801,64 28 -2,67 5,76

SPDPTWPD-C1001 6 690 437,04 928,93 680 469,58 290 -1,45 7,45

SPDPTWPD-C1002 7 770 542,15 621,54 760 575,08 233 -1,30 6,07

SPDPTWPD-R1001 7 500 639,64 3540,04 500 639,64 138 0,00 0,00

SPDPTWPD-R1002 6 514 679,44 1391,96 512 687,81 157 -0,39 1,23

SPDPTWPD-RC1001 1 120 140,35 382,23 110 127,22 151 -8,33 -9,36

SPDPTWPD-RC1002 1 138 125,68 103 138 125,68 109 0,00 0,00

SPDPTWPD-RC1002 1 252 274,49 7000 252 274,49 145 0,00 0,00

Instance
GAPs (%)Lexicographic approach

Number of 

vehicles

Proposed metaheuristic


