
Lightweight Model-Based Testing for Enterprise IT
-

Elodie BERNARD∗†, Fabrice AMBERT∗, Bruno LEGEARD∗‡, Arnaud BOUZY‡
∗FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS Besançon, France

† Sogeti, Lyon, France
‡ Smartesting, Besançon, France

[elodie.bernard|fabrice.ambert|bruno.legeard]@femto-st.fr — arnaud.bouzy@smartesting.com

Abstract—Model-Based Testing (MBT) popularity in IT is
growing at a very slow pace. A recent survey stated that no
more than 14% of respondents use MBT in their projects.
Our experience, presented in this paper, demonstrates that the
complexity in use of the current MBT approaches for the average
tester is the main reason for this low dissemination. Then
we introduce a lightweight MBT approach and a tool, called
Yest, dedicated to business process-based testing of enterprise
information systems. This tool uses a workflow-based graphical
representation linked with decision tables to be used by functional
testers without requiring any kind of modeling skill (such as
UML for example). These approach and tool are dedicated to a
particular class of applications (i.e. enterprise IT applications
such as ERP and bespoke business applications). This focus
strongly helps to simplify the approach and to adapt the tooling
to the targeted users (namely IT functional testers). Finally, we
discuss the way MBT may support emerging Acceptance Test
Driven Development practices in agile.

Index Terms—Model-based-testing, Lightweight MBT, MBT
in industry, MBT tool, ATDD, test generation, business process-
based testing

I. INTRODUCTION

The Techwell Community report [1] shows that only 14%
of the respondents (who are test professionals) use Model-
Based-Testing (MBT). This low percentage can be explained
by the current complexity and strong learning curve of the
current MBT approach and tooling for the average functional
tester [2]. By average functional tester, we consider a test
professional, typically ISTQB - International Software Testing
Qualification Board - certified at Foundation level. He/she un-
derstands well the business domain and test design techniques
but without strong technical skill in software coding. He/she
is in charge of test design, implementation, execution and
test result analysis and reporting. Furthermore, such evidence
of the complexity and strong learning curve of current MBT
approaches and tooling are shown in the MBT User Survey
2016-2017 [3]: the average time required to be proficient in
MBT is 185 hours for most of the respondents, and the median
time is 100 hours. This is significant.

An important question for the future of MBT is about the
simplification of the MBT approach and the adaptation of
MBT tools to the targeted users (meaning the professional
testers).

In this context, we propose a lightweight MBT approach
with two clearly identified global objectives to attend.

1) Simplifying the modeling notation by focusing on tar-
geted business domains - In our case, the Business
Process-based testing for enterprise IT applications is
targeted, thus we are using a simple workflow-based
representation linked with decision tables.

2) Increasing the User eXperience of the MBT tool
and adapting it to the user - For our modeling tool,
a two-hour learning curve is the objective, by the
continuous improvement of the tool GUI and features
based on usability study with typical functional testers.

These two objectives are not the only one to increase the use
of MBT. For example, a survey on testing methods used in the
automotive industry [4] shows that MBT is used by more than
30% of the projects that have been analyzed. But, this is a very
specific case where the model-driven development process is
in use and is well established in the domain. Design models
are then reused for testing purposes. In the enterprise IT
applications testing context, models are usually not available
; sometimes even structured requirements are missing. Thus,
testers need to cope with many missing information and
still produce high quality test cases. To attend these global
objectives, our work presented in this paper, is based on a
collaboration between research and industry. In this paper,
we focus on presenting the approach and the tool, and a
first experience that contributed to reach the first level of
these objectives. In section II, we present the workflow-based
graphical representation linked with decision tables, that act as
a DSML - Domain specific modeling language. In section III,
we introduce the running example of the paper while in section
IV, we present the test generation feature and the approach for
test data definition. In section V, we present the support to test
execution automation, before concluding in section VI.

II. WORKFLOWS AND DECISION TABLES

Currently the majority of MBT tools try to capture the
expected behaviour of the SUT in various models [5]. Yest
is a graphical tool for designing and implementing test cases
developed by Smartesting. It has been designed for testing
workflows and business rules. In Yest, the approach is to
represent the workflow to be tested (and only what you want
to test) and to keep it as simple as possible depending on your



test objectives. In figure 1, we illustrate the modeling elements
used for representing the workflow.

Fig. 1. Artefacts of the DSML

There are three different kinds of inner nodes: task, choice
point and subprocess. In the case of external nodes, one of
them is the start point and the others are ending points. All
nodes are linked by connectors to describe the flow. Task nodes
describe actions on the SUT while choice points control the
flow within the workflow. A subprocess is used to introduce a
new process as a node of the current process. The subprocess
has its own flow graph. It may introduce a hierarchical top
down decomposition of the process that permits an easier
manipulation of the workflow graph. Finally, the subsets are
present to clarify the model by defining specific area of the
workflow when necessary.

The following example (Figure 2) presents a model that uses
the modeling elements of our DSML.

Fig. 2. Example of the use of Yest modeling elements

Within a workflow, the tasks and choice points are linked
with decision tables to detail the cases to be tested and
manage the flow for test generation, the abstract test data,
the requirements traceability and the test step documentation
(test actions and expected results).

Fig. 3. Example of decision tables

A decision table is built with 5 types of column. First,
“Test steps” is used to describe the test action (or sequence

of test actions) and related expected results (test step oracle)
for one step. Then we may define ‘Conditions’ on test data
set and ‘Outcome’ to control the flow. ‘Requirements’ and
‘Objective’ are complementary information to respectively
trace the requirements and the related test objectives with a
line in the decision table.
In the figure 3, the decision table’s objective is to check if
the data are correct or not in a context of a connection to an
application. For checking the connection, there are three cases
to verify:

• The connection data are correct
• The connection data are incorrect (correct identifier and

an incorrect password)
• The connection data are incorrect (incorrect identifier and

password)
There are therefore three lines in the decision table, each line
representing a case to verify. It is possible to define several
elements in the columns to guide the test cases generation, and
to verify the requirements. Through the two firsts columns,
we define the condition values for the identifier and the
password. To have a correct connection and a redirection in the
application, the identifier and the password must be correct.
The identifier’s value is therefore “correct” and the password’s
value is “correct”. Thus the outcome of the test (visible in the
Outcome column) will be “Continue to the application”. In
the same way, the error cases are defined through condition
values with a correct identifier and a incorrect password, or an
incorrect identifier and password. In both cases, the outcome
will be “Connection error”. Additional columns can be added,
like the column Objective present in the figure 3, or other,
in order to define some specific data like requirement, risk,
priority etc.

III. RUNNING EXAMPLE

To illustrate this modeling approach, we introduce a small
example related to a train ticketing system: oui.sncf. Oui.sncf
is a French online travel agency (https://www.oui.sncf).

1) Train reservation website under test: To sum it up, this
website is used to book train tickets with the possibility of
creating an account on the website. To book a train ticket
users can choose the departure and arrival cities and the
date. To create an account, users have to enter a first name,
a name, a date of birth, an email, and a confirmation email.
With these information a set of requirements which need to
be tested can be extracted.

2) Requirements: Here is a list of requirements that should
be tested:

• It is possible to search a train between two cities at a
specific date (Booking requirement 010)

• In the train ticket reservation form it is impossi-
ble to choose a date departure in the past (Book-
ing requirement 011)

• In the train ticket reservation form, it is impossible
to choose the same arrival and departure town (Book-
ing requirement 012)

2

https://www.oui.sncf


• In the account creation form, if the information
is valid, the account creation is possible (Ac-
count requirement 010)

• In the account creation form, the format of the first
name and the name have to be correct (no special
characters)(Account requirement 011)

• In the account creation form, the email and email con-
firmation have to be identical to create the account
(Account requirement 012)

• In the account creation form, the email should not
already exist in the database to permit the creation of an
account. (Account requirement 013)

Figure 4 shows the workflow designed with the modeling
tool in order to produce the test set covering these require-
ments.

Fig. 4. Workflow of oui.sncf

The left part of the workflow represents the account creation
and the right part the train booking. Let us consider the
booking part. The process consists of a succession of four
tasks. Starting by accessing to the train ticket reservation
page, then entering the information, validating the research
and finally, after checking the correctness of the information,
selecting a train or dropping off. In the other part, for the
account creation, an iterative process was used. The first step
is the access to the account creation space, and then the
completion of the information. The second step is to check
if the information filled out allows the account creation.
Once the behaviour is represented, the data can be chosen to
verify our requirements and set up the requirements traceabil-
ity.
The management of test data and of the requirements trace-
ability of requirements is made through decision tables linked
to tasks and choice points of the workflow. The figure 5
presents the table associated with the choice point to check
the correctness of the account creation information.

Fig. 5. Decision table at node “verification of the information”

There are five lines, each of these lines represents a be-
haviour that needs to be tested to cover the different require-
ments. Thanks to the column Requirement a link is created
between a test step and the requirement.
Green column headers indicate condition, that implies that the
data sets are defined before (in the task Enter subscription
information). Here the data are chosen according to the
expected result. The account creation inputs are a first name,
a name, a date of birth, an email and an email validation.
With a combination of values associated with the condition
columns, testers can activate one or the other of the SUT
behaviour. So, in the second line of the table, when the first
name has the value “???”, which is an invalid value, the
process continues at Enter account creation information task
and covers requirement Account requirement 011.
You can observe the column Outcome that defines the outcome
of the step, here the field of the account creation data is
restarted. In this way the behaviour where users can redo
the account creation while their data are not correct can be
represented. Once the different tables have been filled, it
is possible to generate automatically all the test scenarios
covering all lines of all the tables (or only the selected lines).
After the generation of test scenarios, several metrics are
accessible, notably the requirements coverage.

3) Control of the requirements traceability: A dashboard
provides a coverage overview (how the control flow and
lines in the decision tables are covered by the generated test
scenarios, and the coverage of added information in the tables:
requirements, risks, test objectives), and traceability between
those added information and the test scenarios. It is possible to
find all the requirements that were defined in the tables, and the
scenario(s) that cover(s) each of them. In this way the validity
of our model can be checked as well as the requirements
coverage.

IV. TEST GENERATION

Test generation facilities are based on two main principles:
• Principle 1 - Let the user keep the control over MBT

test generation. This means that the tool should propose
test scenarios, according to the workflows and decision
tables, but the user may be able to change everything
in these proposed scenarios (meaning the test steps, test
actions and expected results descriptions, and test data).
He/she should also easily create new test scenarios in

3



relation with the workflows and decision tables. The tool
permanently provides information about the compliance
between the test scenarios and the models, but the user
may chose to keep any test scenarios, even if it is not
compliant with the current state of the model. The MBT
tool should never be a blocker or barrier to create required
test scenarios, only a support.

• Principle 2 - Do not provide test selection criteria difficult
to understand by the user. We have seen on previous
experience with MBT tools [6] that classical MBT test
selection criteria such as condition/decision coverage [7]
may be difficult to understand by functional testers.
Moreover, the main test methods in use in enterprise
IT for functional testing is requirements-based testing
(RBT), meaning the coverage of the requirements by
the test cases. The MBT tool should first support this
approach, proposing, thru automated test generation, the
test scenarios that are covering the requirements linked
in the decision tables. This approach should also cover
any other type of information such as risks, priorities and
test objectives, that can be added in the decision tables.

In the next two subsections, we describe how these princi-
ples are implemented in the tool, and supported in two ways:
by automated test generation and by supporting the interactive
creation of a new scenario matching a workflow and linked
decision tables.

A. Automated test generation

Automated test generation is based on covering the lines in
the decision tables. The user may run automated test genera-
tion at the level of the workflow (meaning covering all tasks
and all lines of the decisions tables in the workflow), or at the
level of each decision table (to cover all the lines of a decision
table or the selected lines). During automated test generation,
the various constraints on test data that appears in the lines
of the decisions tables (in the columns ’Conditions’) are
solved (using constraint solving techniques). Each test scenario
resulting for test generation can be visualized graphically on
the workflow (Figure 6).

Fig. 6. Example of generated test

The user can edit each generated test scenario, updating
the test data values, test step description or also the test step.
Each time some change is done on a scenario, the matching

between the updated scenario and the workflow is performed
and displayed to the user. If there is no matching, the user may
keep the scenario as it is, or update it, or update the workflow
and decisions tables.

The name of each test scenario is computed automatically
by concatenation of the test objective reported in covered lines
of the decision tables. But the name may also be changed by
the user.

When some part of the workflow or some lines in decision
table are not covered, the tool provides information about
the possible cause on the missing coverage. This can be for
example because no matching solutions can be found regarding
test data values to satisfy the constraints defined in several
tables. Then the user may adapt / change it in order to cover
the missing part.

The generator can bring to light the uncovered part of the
model. A common mistake, when using the outcome of the
tables, is to forget to specify an issue. So, if a part of the model
is uncovered, some corrections specifying the missing outcome
need to be added, and the generator will cover the model.
Thanks to the different systems of detection of incoherence
in the model, the generator can produce a set of relevant
scenarios to verify the requirements by ensuring the lowest
possible number of scenarios. However, it is possible to easily
produce custom scenarios thanks to the assistance of workflow
compliance.

B. Interactive creation of a scenario

The interactive creation of a scenario is guided by the
assistant of workflow compliance. This allows to produce a
step by step test scenario, compliant with the workflow and
linked decision tables. Auto-completion helps to create each
step of the targeted test scenario. At each step, the tool checks
the conformity of the scenario. Producing the scenario by this
interactive way is also a good technique to validate the model
and help users to focus on test objectives.
In the same way, the assistance can help users to create a
scenario. At each step it is possible to select the line in the
tables of the model that needs to be covered, and with each
new action, multiple scenario completion are proposed.
Thus, progressively, in the creation of the scenario, it is
possible to follow the requirements coverage through the
model. Then, the scenario is progressively created and the
model coverage checked. The assistant is visible in figure 7.

C. Test data

A good practice in MBT (see [7]) and in software testing
in general, consists in separating test design from test imple-
mentation:

• Test design aims to produce abstract test cases - i.e. test
cases without concrete (implementation level) values for
input data and expected results.

• Test implementation aims to produce concrete test cases
(or test scripts in case of test execution automation) from
abstract test cases. Concrete test cases are test cases with
concrete (implementation level) values for input data and

4



Fig. 7. Assistant of workflow compliance

expected results, and with very detailed descriptions of
test steps.

The generation of abstract test cases is supported by our MBT
approach and MBT tool. The implementation of the test cases
for manual test execution is supported by the refinement of
test actions in detailed steps (this is supported by the tool).
In case of test execution automation, test automation artifacts
(test scripts, adaptation layer skeleton) are automatically pro-
duced using publishers adapted to a targeted test automation
framework (see next section).

In the decision tables, test data are generally defined as
abstract test data, representing equivalence partitioning [8]
with some values for each partition on a dedicated line of the
table. If he/she prefers, the user may use some concrete data
in order to simplify the implementation phase. A dictionary
of all data defined in the model is provided to sum-up data
types and values in use in the decision tables - cf. figure 8

Fig. 8. Data dictionary

Once generated, the test cases must be implemented to be
ready for test execution. The MBT tool may convert them into
the test automation scripting language of the automation test
execution tool. The MBT tool may also publish them as doc-
umented test cased, including traceability with requirements
into a test management tool for manual test execution.

V. TEST AUTOMATION

For automated test execution, the test cases must be gener-
ated in a form that is executable. Our approach is based on the
well known Keyword-driven automation best practices [9]:

• The MBT generated test cases are converted into auto-
mated test scripts, where the test actions described in
the model are converted in test automation keywords
with parameters (the test data). The format of the scripts
depends of the test automation framework in use. For
example, for a web application, this may target Java
Selenium and then the scripts are published in Java.

• A test adaptation layer code is written by test automation
engineers to bridge the abstraction gap between the test
actions from the model and the execution interface (i.e.
the keywords) on the SUT. The automated execution may
be GUI-based or API-based (or based on web services).
This code is essentially a wrapper around the system
under test in order to manage test execution.

• In order to variabilize the test scenario at execution time,
a data-driven approach is supported - i.e. “A scripting
technique that stores test input and expected results in a
table or spreadsheet, so that a single control script can
execute all of the tests in the table” cf. [10]

For the running example, the Selenium-Java publisher of the
modeling tool was used. The principle of this add-on is to take
the scenarios produced by the model and convert them into test
scripts. In the same way, the abstract data sets in the scenarios
are transformed into concrete data in the scripts. Each scenario
uses actions, and an action can be common to many scenarios.
So to generate the test scripts, the tool supports the mapping
of each test action with a concrete automation keyword.

The transformation of the actions consists in defining the
automation functions (Keywords) needed for automated test
execution on the SUT. These Keywords are defined in an Excel
file through a table, which includes the Keywords names and
their parameters. An example of Keywords definition can be
seen in the figure 9. The third line of the table contains the
definition of the Keyword “enter subscription information”,
linked to five parameters: the first name, the name, the date of
birth, the email and the confirmation email. The first column
define the package name where the Keywords file will be
placed. Once the Keywords have been created in the table,
it can be imported in the modeling tool to complete actions
in the interface of actions completion.

Fig. 9. Example of Keywords definition

In figure 10, the completion of the action “Enter sub-
scription information” is illustrated. The associate Keyword
is “enter subscription information” as seen above. The table
at the bottom of the interface shows the chosen Keywords,
with the list of parameters names in the columns headers. The

5



completion of the parameters value is done in the row, in front
of the keyword name.

Fig. 10. Add-on of automation in Yest (for Selenium Java)

The values of these parameters can derive directly from the
data of the scenarios (when we use #1, #2, etc.). It is the
case when the abstract data in the scenarios correspond to the
concrete data in the SUT. Thus the tester has the possibility of
choosing data directly from the scenario (#1, #2, etc) or define
new data if the automation adaptation layer needs it. To define
new data, the required data just have to be written in the linked
cell. If a different name than the one of the existing value is
needed then [#2] can be replaced by the expected value. This
system can be useful when it is necessary to manipulate only
the data required for test execution automation.

Another possibility is to call several Keywords for the same
action. In this way the action in the model can be very abstract
to keep the model simple. Once these tacks are completed, the
script can be produced: the scripts reflect the scenarios and are
composed of a sequence of Keywords.

The approach facilitates the maintenance of the automation
code. Let’s consider two situations:

• Some changes have been made in the interface of the
application, the test script fails. These changes impact the
Keywords but not the model. Here, we have to modify
the implementation of the relevant Keywords to maintain
the test scripts.

• Some changes have been made in the requirements, and
the changes impact the model. These changes can be the
addition of data, modifications of the test workflow. This
may bring the update of existing Keywords or the creation
of new Keywords.

The clear separation between the test scenarios (generated
from the workflows and the tables) and the technical imple-
mentation of the keywords help to manage the maintenance
of the automation code.

VI. CONCLUSION: MBT FOR ATDD IN AGILE

As we discussed earlier, the adoption of MBT by industry
is progressing slowly, and at the same time, the digital and
agile transformation trends increase the need for better and
more automated software testing methods. As stated in the last
edition of the World Quality Report (2017-2018) [11]: “Com-
bined with the increased speed of deployments and growing

complexity of the application landscape, these trends increase
the risk of introducing serious errors ans software failures.
Furthermore, the end-customer today has zero tolerance of
errors or slow performance , and poor quality of software can
result in serious damage to the brand value of an organization
and often incurs huge repair costs”.

We believe that re-designed MBT approach and tool may
strongly help test teams to face the transformation to ag-
ile and the increased complexity of systems by supporting
ATDD - Acceptance Test Driven Development [12]. ATDD
involves team members with different perspectives (customer,
development, testing) collaborating to write acceptance tests in
advance of implementing the corresponding functionality. The
visual test design supported by MBT (i.e. by using graphical
workflows and decision tables in our approach) strongly helps
the collaborative discussions between Business Analyst, Prod-
uct Owner, Testers and even Developers to better understand
the business requirements to be implemented. Then, these
MBT-generated acceptance tests represent the user’s point of
view and act as a form of requirements to describe how the
system will function, as well as serve as a way of verifying
that the system works as intended.

But, to efficiently support ATDD, the MBT solution should
satisfy several requirements:

• Short learning curve and good usability by functional
testers. The MBT approach and tool should easily be
adopted by existing functional testers. We have seen from
the MBT User Survey 2016-2017 [3] that the number
of hours to be proficient in MBT is on average of the
respondents 185 hours, and the median value is 100
hours. This should be reduced to a couple of hours. This
means a drastic simplification of the modeling concepts
and an adapted tool support.

• Adaptation of MBT to iterative and incremental devel-
opment approaches. The adaptation to agile means that
MBT should be efficient for various scope and test
objectives, such as to test a small set of new user stories,
to keep alive a end-to-end test set capturing the main use
cases of the applications, and to capture a specific usage
scenario that create issues in operation. Therefore the
MBT approach and related tool should be very flexible
and never required full modeling of the application to
support test production.

• Supporting both manual and automated test execution
and a seamless adaptation from the first one to the
second one. Manual test execution of acceptance tests
by testers during the agile iteration is generally the first
outcome of MBT-generated tests, then the test team needs
to extend the regression test repository. The MBT tool
should support both usage and facilitate / automated the
adaptation of manual test to automated tests.

We described in this paper a lightweight MBT approach and
tool called Yest. Yest is intended to support the functional test
designer by taking advantage of graphical workflows repre-
sentation. It has been designed for testing business processes

6



and business rules of enterprise IT applications, with a very
short learning curve. In this way, it differs classical MBT tools,
often complex to learn for testers in industry but more general
in the targeted domains.

The first experiences on large-scale enterprise IT projects
by several test teams (functional testers) in agile delivery
show that this requirements tend to be satisfy by the proposed
approach and tool. The process starts by two-hours hand-on
session. Then the test team start test generation of a first
limited scope with 3 or 4 on-hour revue sessions to discuss
good practices for modeling and generating (particularly to
advocate and show how to keep the workflows as simple as
possible). The level of details to test documentation depends
of the project context (i.e condition of execution), but the
general idea is to draw the workflow with the minimum of
details required by the test objectives, test execution meth-
ods and sharing whit stakeholders. The most important is
the improvement in efficiency obtain by the test team by
clarifying the business requirements, visualizing the coverage
of the workflows and requirements (through traceability) and
increasing the global productivity of the test team.

We are currently working on an experimental protocol to
measure on several projects the gains based on metrics (to be
compared with manual test design approach) such: the number
of generated test cases / scripts, and the number of generated
test cases / scripts per person-day, The number of defects
found in the requirements during MBT modeling activities, or
the reusability level of MBT model elements from one project
to another.

REFERENCES

[1] The state of the Software Testing Profession 2016-2017, Techwell
Community. [Online]. Available: https://stickyminds.com/sites/default/
files/webform/file/2017/16-17 SotTP report.pdf

[2] S. Ali and H. Hemmati, “Model-based testing of video conferencing
systems: Challenges, lessons learnt, and results,” in Verification and
Validation 2014 IEEE Seventh International Conference on Software
Testing, pp. 353–362.

[3] A. Kramer, B. Legeard, and R. V. Binder, “2016 MBT
user survey.” [Online]. Available: https://www.researchgate.net/project/
2016-MBT-User-Survey

[4] H. Altinger, F. Wotawa, and M. Schurius, “Testing methods used in
the automotive industry: Results from a survey,” in Proceedings of
the 2014 Workshop on Joining AcadeMiA and Industry Contributions
to Test Automation and Model-Based Testing, ser. JAMAICA 2014.
New York, NY, USA: ACM, 2014, pp. 1–6. [Online]. Available:
http://doi.acm.org/10.1145/2631890.2631891

[5] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” vol. 22, no. 5, pp. 297–312. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/stvr.456/full

[6] B. Legeard and A. Bouzy, “Smartesting certifyit: Model-based testing
for enterprise it,” 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation, pp. 391–397, 2013.

[7] ISTQB Foundation Level Certified Model-Based Tester Syl-
labus, International Software Testing Qualifications Board,
2015. [Online]. Available: https://www.istqb.org/downloads/syllabi/
model-based-tester-extension-syllabus.html

[8] L. Copeland, A Practitioner’s Guide to Software Test Design.
Norwood, MA, USA: Artech House, Inc., 2003. [Online]. Available:
http://www.dahlan.web.id/files/ebooks/2004%20A%20Practitioner%
27s%20Guide%20to%20Software%20Test%20Design Good.pdf

[9] R. Hametner, D. Winkler, and A. Zoitl, “Agile testing concepts based
on keyword-driven testing for industrial automation systems,” in IECON
2012 - 38th Annual Conference on IEEE Industrial Electronics Society,
Oct 2012, pp. 3727–3732.

[10] “Istqb glossary.” [Online]. Available: http://glossary.istqb.org/search
[11] “World quality report 2017-18,” Tech. Rep., 2017-2018. [On-

line]. Available: https://www.sogeti.com/globalassets/global/downloads/
testing/wqr-2017-2018/wqr 2017 v9 secure.pdf

[12] M. Gärtner, ATDD by Example: A Practical Guide to Acceptance Test-
Driven Development. Addison-Wesley, 2012.

7

https://stickyminds.com/sites/default/files/webform/file/2017/16-17_SotTP_report.pdf
https://stickyminds.com/sites/default/files/webform/file/2017/16-17_SotTP_report.pdf
https://www.researchgate.net/project/2016-MBT-User-Survey
https://www.researchgate.net/project/2016-MBT-User-Survey
http://doi.acm.org/10.1145/2631890.2631891
http://onlinelibrary.wiley.com/doi/10.1002/stvr.456/full
https://www.istqb.org/downloads/syllabi/model-based-tester-extension-syllabus.html
https://www.istqb.org/downloads/syllabi/model-based-tester-extension-syllabus.html
http://www.dahlan.web.id/files/ebooks/2004%20A%20Practitioner%27s%20Guide%20to%20Software%20Test%20Design_Good.pdf
http://www.dahlan.web.id/files/ebooks/2004%20A%20Practitioner%27s%20Guide%20to%20Software%20Test%20Design_Good.pdf
http://glossary.istqb.org/search
https://www.sogeti.com/globalassets/global/downloads/testing/wqr-2017-2018/wqr_2017_v9_secure.pdf
https://www.sogeti.com/globalassets/global/downloads/testing/wqr-2017-2018/wqr_2017_v9_secure.pdf

	Introduction
	Workflows and decision tables
	Running example
	Train reservation website under test
	Requirements
	Control of the requirements traceability


	Test generation
	Automated test generation
	Interactive creation of a scenario
	Test data

	Test automation
	Conclusion: MBT for ATDD in agile
	References

