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Abstract—This paper deals with an estimation of the Remain-

ing Useful Life of bearings based on the utilization of the

Wavelet Packet Decomposition (WPD) and the Mixture of

Gaussians Hidden Markov Models (MoG-HMM). The raw

data provided by the sensors are first processed to extract fea-

tures by using the wavelet packet decomposition. This latter

provides a more flexible way of time-frequency representa-

tion and filtering of a signal, by allowing the use of variable

sized windows and different detail levels. The extracted fea-

tures are then fed as inputs of dedicated learning algorithms

in order to estimate the parameters of a mixture of Gaussian

Hidden Markov Model. Once this learning phase is achieved,

the generated model is exploited during a second phase to

continuously assess the current health state of the physical

component and to estimate its remaining useful life with the

associated confidence value. The proposed method is tested

on a benchmark data taken from the “NASA prognostic data

repository” related to several bearings’. Bearings are cho-

sen because they are the most used and also the most faulty

mechanical element in some industrial systems and process.

Furthermore, the method is compared to a traditional time-

feature prognostic and some simulation results are given at

the end of the paper.
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1. INTRODUCTION

The competitiveness requirement in industry involves the

improvement of the availability, the reliability, the security

while reducing the life cycle cost of the production means.

One of the possible solutions that can contribute to fulfill

1 978-1-4244-7351-9/11/$26.00 ©2011 IEEE.
2 IEEEAC Paper #1141, Final Version, Updated December 8, 2010.

these objectives consists in acting on the maintenance by

implementing new maintenance strategies like the Condition

Based Maintenance (CBM) [1,2] and reducing the traditional

corrective and preventive maintenances.

The CBM is based on the exploitation of the data provided by

the monitoring system which continuously tracks the health

state of the system. The data gathered are processed and

transformed to relevant knowledge in order to estimate the

current state of the system and to predict its future one, and

thus helping the maintainers to take adequate decisions at ap-

propriate time.

The input data in the prognostic process are signals, where

the degradation information is usually masked by noise. To

solve this problem and provide the correct information to

perform failure prognostic, several methods have been pro-

posed, based in the time domain behavior of the signal, or

on traditional spectral analysis. Time domain uses statisti-

cal properties from the raw signal as RMS, Kurtosis or crest

factor to track failures with some limited success in local-

ized defects [3]. Frequency analysis are widely used in vibra-

tion signals for bearing fault detection [4]. The Fast Fourier

Transform (FFT) is the simplest frequency domain analysis

method. This method is the examination of high-frequency

resonances caused by a fault in the spectrum of the signal.

However the impact vibration generated by a bearing fault

has relatively low energy, it is often overwhelmed by noise

with higher energy and noise from the environment. In order

to overcome FFT problems, recent advanced signal process-

ing methods such as Short-Time-Fourier-Transform, Wigner-

Ville and wavelet analysis have been used. Wavelets have

been established as the most widespread tool in many areas

of signal processing, due to their flexibility and their efficient

computational implementation [5].

Failure prognostic activity aims at anticipating the failure date

by predicting the future health state of a given system and its

Remaining Useful Life (RUL). According to the International

Standard Organization [6], failure prognostic corresponds to

the “estimation of the time to failure and the risk for one or

more existing and future failure modes”. Several other defini-

tions have been proposed in the literature [1,7–10] during this

last decade. All the reported definitions agree on prediction

step and the estimation of the time before the failure. This

time is called RUL in some of them, Estimated Time To Fail-
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ure (ETTF) in the ISO’s one [11] and in a small number of

publications [12, 13] it is defined as a probability that a ma-

chine operates without a fault up to some future time.

Contrary to fault diagnostic which is a mature activity, well

developed and spread within the research and the industrial

communities, failure prognostic is a new research domain

[1, 14, 15]. However, the increasing interest accorded to fail-

ure prognostic has led to numerous methods, tools and appli-

cations during the last decade. According to what is reported

in the literature [1,10,16] and taking in account the latest con-

tributions in the field, failure prognostic methods can be clas-

sified into three main approaches: model-based, experience-

based and data-driven prognostic, see Fig.1. In addition to

these three categories, other sub-categories resulting from the

intersection between the main ones has been developed.

The methods of the model-based prognostic approach are
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Figure 1: Classification of prognostic approaches.

based on the use of an analytical model to characterize the be-

havior of the system including the degradation phenomenon.

The model can be a set of equations obtained by using tradi-

tional laws of physics (crack by fatigue, wearing and corro-

sion phenomena, etc.) [17, 18]. The advantage of the meth-

ods used in this approach is that they provide more precise

results. However, their disadvantage dwells in the fact that

real systems are often nonlinear and the degradation mech-

anisms are generally stochastic and difficult to obtain in the

form of analytical models. Consequently, the applicability of

this approach may be limited by the modeling hypothesis.

Reliability-based prognostic methods use mainly the data of

the experience feedback gathered during a significant period

of time (maintenance and operating data, failure times, etc.)

in order to adjust the parameters of some reliability models

(Weibull law, exponential law, etc.). These latter are then used

to estimate the RUL [19]. The reliability prognostic meth-

ods are the simplest to implement when a significant amount

of experience feedback data is available. The main advan-

tage of these methods is that they do not use on-line sensors’

data, neither complex mathematical models. Instead, they are

rather based on the use of simple reliability functions. How-

ever, the prognostic results they offer are less precise than

those provided by model-based and data-driven approaches,

especially when the operating conditions are variable or in the

case of new systems because of a lack of experience data.

Data-driven methods attempt to transform the raw monitor-

ing data into relevant information and behavior models of the

system including the degradation instead of building mod-

els based on comprehensive system physics and human ex-

pertise. They use artificial intelligence (AI) tools (neuronal

networks, Bayesian networks, hidden Markov models, etc.)

[20, 21] or statistical models to learn the degradation model

[22, 23] to predict the future health state and the associated

RUL of the system. The principle of these methods consists

in two stages: a first phase during which a behavior model is

learned from the monitoring data and a second phase where

the learned model is used to estimate the current health condi-

tion of the system and to predict its future state. These meth-

ods can be considered as a trade-off between the model-based

and the experience-based methods. This is because, on one

hand, in real industrial applications getting reliable data is

easier than constructing physical or analytical behavior mod-

els. On the other hand, the generated behavioral models from

real monitoring data lead to more precise prognostic results

than those obtained from experience feedback data.

In addition to the aforementioned prognostic approaches,

three fusion ones, resulting from the intersection of the

main approaches, have been reported in the recent litera-

ture. They are named “model-based/data-driven fusion”,

“model-based/reliability fusion” and “data-driven/reliability

fusion”. Model-based/data-driven methods use mathematical

and physical models of a degradation and parametric models

obtained from artificial intelligence and advanced statistics

to build accurate models. Unfortunately, the implementation

of these methods are cost and time consuming. In this cate-

gory, one can cite [24] where the authors proposed a fatigue

degradation model using the well-known Paris-Erdogan law

coupled with a particle filtering model to estimate the failure

probability, and built a cost per unit time variable to choose

the best replacement time.

The model-based/reliability fusion approach offers a good ac-

curacy, due to the use of mathematical models, and a long

forecasting time horizon by the integration of the experience

feedback data. In this field the works of Kacprzynski et al.

[18, 25] deserve to be mentioned. The authors used the Paris

law to determine the crack length in a helicopter’s gearbox

pinion, combined with reliability equations to confirm the

degradation phase and to refine the fatigue propagation pa-

rameters.

Finally, data-driven/reliability fusion approach combines the

ability of data-driven models to capture the non linearity and

the transient phenomena associated to the real world process

by using machine learning techniques. These artificial intelli-

gence models merged with the reliability data allows to make

a good forecasting for a long time horizon. In this category,

one can cite the works of Heng et al. [26] where the Kaplan-

Meier estimator is used to model complete and incomplete

monitoring data histories. The probabilities given by the esti-

mator and the data taken from the monitoring system are used

in a Feed Forward Neuronal Network (FFNN) to estimate the

probability of asset survival for a long future time horizon.

In this paper a data-driven prognostic method based upon the

use of Mixture of Gaussians Hidden Markov Model (MoG-

HMM) and the wavelet packet decomposition for feature ex-

traction is proposed. The use of this AI tool is motivated by

2

ha
l-0

05
76

86
5,

 v
er

si
on

 1
 - 

15
 M

ar
 2

01
1



the fact that it permits to handle complex emission probability

density functions (pdfs) generated by a set of continuous fea-

tures extracted from raw monitoring signals using the WPD

that generalize the wavelet transform. The method, presented

in section 3, is performed in two steps: an off-line step where

the raw data are used to learn a behavioral model of the phys-

ical component’s condition, and an on-line step in which the

learned model is used to identify the current condition of the

component and to estimate its RUL. In section 4 the method

is tested on real operating data related to bearings, and simu-

lation results are given.

2. BACKGROUND

A brief introduction to the fundamentals required to deploy

the method are presented in this section. First the WPD for

feature extraction is presented and then the MoG-HMM used

to build the models is exposed.

Wavelet Packet Decomposition

Wavelet packet decomposition is now becoming a competent

tool for signal analysis. Compared with the normal wavelet

analysis, it has special abilities to attain higher discrimination

by analyzing the higher frequency domains of a signal. The

frequency domains separated by the wavelet packet can be

easily selected and classified according to the characteristics

of the analyzed signal. So the wavelet packet is more appro-

priate than wavelet in signal analysis and has much wider ap-

plications such as signal and image compression, de-noising

and speech coding [27].

Wavelet packet decomposition uses a pair of low pass and

high pass filters to divide a space; this corresponds to split-

ting the frequency content of a signal into approximately a

low-frequency and a high-frequency component. Wavelet de-

composition leaves the high-frequency part alone and keeps

splitting the low-frequency part. In wavelet packet decom-

position, we can choose to split the high-frequency part also

into a low-frequency part and a high-frequency part. Thus, in

general, wavelet packet decomposition divides the frequency

space into various parts and allows better frequency localiza-

tion of signals [28].

As shown in Fig. 2, the wavelet packet decomposition can

be viewed as a tree. The root of the tree is the original data

set. The next level of the tree is the result of one step of

the wavelet transform. Subsequent levels in the tree are con-

structed by recursively applying the wavelet transform step to

the low and high pass filter results from the previous wavelet

transform step. Then when the decomposition process is

achieved the energy in the different spectrum bands can be

calculated.

Mixture of Gaussians Hidden Markov Models

A MoG-HMM is primarily an Hidden Markov Model

(HMM). In [29] an HMM is defined as a statistical model

used to represent stochastic processes where the states are not

directly observed, see Fig. 3.

An HMM is completely defined by the following parameters:

• N: number of states in the model. The individual states are
1, 2, ..., N , and the state at time t is defined as st.
• M: the number of distinct observations for each state. The
observation symbols correspond to the physical output of the

modeled system. The individual observation symbols are de-

noted as V = v1, v2, ..., vM .

• A: the state transition probability distribution, A = aij ,

where aij = P [st+1 = j |st = i ] , 1 ≤ i, j ≤ N.

• B: the observation probability distribution of a state i, B =
bi(k), where bi (k) = P [vk |st = i ] , 1 ≤ i ≤ N, 1 ≤ k ≤
M.

• π: the initial state distribution π = πi, where πi =
P [sl = i] , 1 ≤ i ≤ N.

For simplicity and clarity of presentation, a compact notation

(λ = π,A,B) is used for each HMM. In practice, HMMs are
used to solve the following problems [29]:

• Problem 1 (detection): given a model λ and an observa-
tion sequence O = (O1, O2, ..., OT ), compute the probabil-
ity P (O|λ) of the sequence given the model. The solution
of this problem is obtained by using the forward-backward

algorithm [30].

• Problem 2 (decoding): given an observation sequence

O = (O1, O2, ..., OT ), find the hidden state sequence S =
(S1, S2, ..., ST ) that have most likely produced the observa-
tion sequence. This problem is solved by using the Viterbi

algorithm [31].

• Problem 3 (learning): find the model parameters (π,A,B)
that better fit the observation sequence O, i.e., that maximize

the probability P (O|λ). To solve this problem a solution is
proposed by using the Baum-Welch algorithm [32].

Usually, HMMs consider the observations as discrete sym-

bols and use discrete probability densities to model the tran-

sition and the observation probabilities. The problem with

this approach is that in condition monitoring the observations

are typically continuous signals. In order to use a continu-

ous observation density, some restrictions are placed to insure

that the parameters of the probability density function are re-

estimated. The most general representation of the pdf, for

which a re-estimation procedure has been formulated [29], is

a finite mixture of pdfs in the form:

bi(O) =

M
∑

m=1

Cjmξ(O,µjm, Ujm), 1 ≤ j ≤ N (1)

Where O is the observation vector, Cjm is the mixture coef-

ficient for themth mixture in state i and ξ is any log concave

or elliptically symmetric density (e.g. Gaussian) with mean

vector µjm and covariance matrix Ujm for the mth mixture

component in state j. Usually a Gaussian density is used for

ξ and the corresponding model is called a MoG-HMM, that

is completely defined by the parameters: the A matrix, the

B matrix and the initial probability π. For a MoG-HMM the

observation matrix B is modeled by a Gaussian density with

a mean µ, a standard deviation σ and a mixture matrixM .
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Figure 2: Wavelet packet decomposition tree.

3. WPD/MOG-HMM BASED PROGNOSTIC

METHOD

An unified diagnostic and prognostic method to evaluate the

current health state of a physical component and its remaining

useful life is proposed in this section. The method is based on

a nondestructive control and uses the data provided by sensors

installed to monitor the component’s condition. The original-

ity of the proposed method dwells in the fact that raw signals

are processed using the WPD to extract the relevant infor-

mation to learn the behavior models. Also in the generated

MoG-HMM the states’ stay durations are not assumed to be

a geometrically decaying functions [33] (which is the case in

traditional HMM based prognostic methods), but are learned

from the monitoring data (note that multiple observations are

considered for both learning and simulation phases, instead of

the traditional mono observation approach). Moreover, in the

proposed method there is no limitation for the type of the gen-

erated MoG-HMM (the model can be an ergodic, a left-right

or a parallel left-right). The principle of the proposed method

relies on two main stages, as shown in Fig. 4: a learning

phase and an exploitation phase.

In the first phase, which is executed off-line, the raw data

recorded by the sensors are processed in order to extract the

a12 a23

a13

b1(v1)

b1(v2)

b1(v3)

v1 v2 v3 v1 v2 v3v1 v2 v3

b2(v1)

b2(v2)

b2(v3)

b3(v1)

b3(v2)

b3(v3)

S1 S2 S3

Figure 3: A three state left-to-right HMM.

Off-line phase: Learning

Bearings Data base
Feature extraction 

WPD

Model 

learning

Model 

library

Model

On-line phase: Prognostic

Current bearing

Model

selection

Prognostic: RUL, 

confidence, …

Feature extraction 

WPD

Figure 4: General diagnostics and prognostics process steps.

energy of each node at the last decomposition level [28] us-

ing the WPD. These features are then used to learn several

behavior models (in the form of MoG-HMMs) correspond-

ing to different initial states and operating conditions of the

component. Indeed, each raw data history corresponding to a

given component’s condition is transformed to a feature ma-

trix F , by using the WPD. In the matrix F , each column vec-

tor (of C features at time t) corresponds to a snapshot on the

raw signal, and each cell fct represents the node c of the last

WPD level at time t.

Raw signal
WPD
−−−−→ F = (f1t f2t · · · fct)

′

with 1 ≤ t ≤ T and 1 ≤ c ≤ C
(2)

The nodal energy (features) are then used to estimate the pa-

rameters (π, A and B) and the temporal parameters (stay du-

ration in each state) of the MoG-HMMs. The advantage of

using several features instead of only one dwells in the fact

that it can happen that a single feature may not capture all the

information related to the behavior of the component.

The parameters (π, A and B) of each MoG-HMM are

learned by using the well known Baum-Welch algorithm [30],

whereas the temporal ones are estimated by using the Viterbi

algorithm [31]. In addition, this latter permits to obtain the
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state sequence and to compute the time duration for which the

component has been in each state of the corresponding MoG-

HMM (Fig. 5). Thus, by assuming that the state duration

in each state follows a normal law, it is possible to estimate

the mean duration (3) and the corresponding standard devia-

tion (4) by computing the duration and the number of visits in

each state. Moreover, the Viterbi algorithm permits to iden-

tify the final state which represents the physical component’s

failure state.

D(S31)

3

State

D(S32) D(S33)

1

2

Time

D(S21) D(S22) D(S23)

D(S11) D(S12)

Viterbi decoding

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

t1 t2 tN

Figure 5: Example of Viterbi decoding state.

µ (D (Si)) =
1

Ω

Ω
∑

w=1

D (Siw) (3)

σ (D (Si)) =

√

√

√

√

1

Ω

Ω
∑

w=1

[D (Siw)− µ (D (Si))]
2

(4)

In (3) and (4) D(·) stands for the visit duration, i is the state
index, w is the visit index and Ω corresponds to the total of
visits. A compact representation of each learned MoG-HMM

used to perform diagnostic and prognostic is given by the fol-

lowing expression:

λ = (π, A, B, µ (D (Si)) , σ (D (Si)) , Sfinal) (5)

where Sfinal is the final state (corresponding to the end of

the considered condition monitoring history), µ(D(Si)) is the
mean state duration for the state i and σ(D(Si)) is the stan-
dard deviation over the state duration for the state i.

The second phase, which is performed on-line, consists in

exploiting the learned models to detect the component’s cur-

rent condition (using the Viterbi algorithm) and to compute

the corresponding RUL. The processed data and the extracted

nodal energy using the Wavelet toolbox from Matlab® are

thus continuously fed to the learned models in order to select

the one that best represents the observed data and therefore

the corresponding component’s condition, see Fig. 4. The

selection process is based on the calculation of a likelihood

P (O|λ) of the model over the observations HMMs problem
1). Finally, by knowing the current condition and by using the

stay durations learned in the off-line phase, the component’s

RUL and its associated confidence value can be estimated.

The generated MoG-HMMs are used during the on-line phase

to estimate the RUL and the associated confidence value

of the physical component by using a dedicated procedure

whose steps are the following:

• The first step consists in detecting the appropriate MoG-
HMM that best fits and represents the on-line observed se-

quence of nodal energy. Indeed, the features are continu-

ously fed to the set of learned models (completely defined)

and a likelihood is calculated in order to select the appropriate

model (Fig. 6). The selected model is then used to compute

the RUL.

• The second step of this procedure concerns the identifica-
tion of the current state of the component. The Viterbi algo-

rithm is thus applied on the selected model in order to find the

state sequence, which corresponds to the observed sequence

of nodal energy, and to identify the current state of the com-

ponent by choosing the most persistent state in the last obser-

vations (6).

state sequence = (S1, S2, . . . , St) ,

Last states = (St−l, . . . , St−2, St−1, St) ,

with l = past observations factor and t = current time.

(6)

• The third step consists in using the current identified state,
the final state (the failure state) and the probability transition

matrix A of the selected MoG-HMM to find the critical path,

which goes from the current state to the end state. The idea is

to identify all the non-zero probabilities in the transition ma-

trix as potential transitions, and then to choose the minimal

path among all the possible ones (Fig. 7) with only one visit

per state. In the same way, it is possible to find the longest

path by considering a maximum number of states in the path

with only one visit per state. The shortest path is assimi-

lated to the pessimistic path (rapid evolution to the failure),

whereas the longest path is taken as the optimistic scenario.

Final state
S1 S4

S5 S6

Final state

S5 S6

Actual state

S2 S3

Shortest path

Longest path

Figure 7: Path estimation.
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Model
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Figure 6: Competitive model selection.

• Finally, in the fourth step the paths identified previously
are used to estimate the RUL. This latter is obtained using

the temporal parameters of the stay duration in each state. In

addition, a confidence value over the RUL is calculated based

on the standard deviation values of the stay durations. Thus,

three values (7) are calculated for each path: the upper RUL

(µ+ n · σ), the mean RUL, and the lower RUL (µ− n · σ).

RULupper =

N
∑

i=current state

[µ (D (Si)) + n · σ (D (Si))],

RULmean =

N
∑

i=current state

µ (D (Si)),

RULlower =

N
∑

i=current state

[µ (D (Si))− n · σ (D (Si))],

∀i ∈ state in the active path, n = confidence coef.

(7)

4. APPLICATION AND SIMULATION RESULTS

The failure prognostic method presented previously is tested

on a rich condition monitoring data base taken from [34]

and containing several bearings tested until the failure. The

choice of bearings can be explained by the fact that these

components are considered as the most common mechanical

elements in industry and are present in almost all industrial

processes, especially in those using rotating elements and ma-

chines. Moreover, bearings are the main components which

most frequently fail in rotating machines [35] (Fig. 8). Thus,

the prediction of the ETTF or RUL of these components may

help improving the reliability, the availability and the safety

of the rotating machines while reducing their maintenance

costs, and the operational impact and environmental impact.
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Figure 8: Failure distribution of motors of power greater than

200 hp.

The test data extracted from [34] correspond to several tests

under constant conditions. Four bearings were installed on

one shaft. The angular velocity was kept constant at 2000

rpm and a 6000 lb radial load was applied onto the shaft and

bearings (Fig. 9). On each bearing two Accelerometer were

installed for a total of 8 accelerometers (one vertical Y and

one horizontal X) to register the accelerations generated by

the vibrations, the sampling rate was fixed at 20 kHz. For

simulation purposes (learning and on-line failure prognostic)

twelve condition monitoring data histories are used (eleven

for learning and one for test), each bearing was considered

failed at the end of its associated history. For both learning

Figure 9: The bearing test bed [34].
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and prognostic phases, the nodal energy in third level of the

WPD (using the “Daubechies” wavelet family) at each instant

t have been extracted from the raw signals (vibration signals).

The level chose using (8) that defines the maximum decom-

position level where at lest 3 harmonics of the characteristic

defect frequency are caught. In this expression Jf is the de-

composition level, Fs the sampling frequency and Fd the de-

fect frequency. For this case the fault frequency is the band

pass frequency of the outer race (BPFO) this suggest a de-

composition level of 3.8. Being conservative the decomposi-

tion level is fixed to three. This choice permits to obtain wide

frequency bands of 2.5 kHz. The principle of the procedure

for feature extraction is shown in Fig. 10.

Jf 6 log2
Fs

3Fd

− 1 (8)

Raw signal for the bearing 1 in the test # 2 at 10 minutes

A
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n
A

WPD
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%
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E
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e
rg

y
 (
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Figure 10: Feature extraction principle.

During the learning phase, three states are defined for each

MoG-HMM. The parameters of each MoG-HMM are first

randomly initialized and then the continuous extracted fea-

tures are fed to the learning algorithms in order to re-estimate

the initialized parameters (π, A and B). The number of mix-

tures in each MoG-HMM is set to two, which allows a trade-

off between precision and computation time. Eleven MoG-

HMMs are thus obtained by using the Baum-Welch algo-

rithm. The re-estimated numerical values of the parameters

π, A and M of a MoG-HMM related to bearing one in the

test N◦1 are :

π =





0

1

0



 , A =





0.98 0.01 0.01

0.01 0.99 0

0.02 0 0.98



 ,M =





0.18 0.82

0.86 0.14

0.58 0.42





The mean state duration, the standard deviation and the final

state for this history are presented below.





S1
S2
S3



 =





µ(S1), σ(S1)
µ(S2), σ(S2)
µ(S3), σ(S3)



 =





2773, 1748
1300, 260
5320, 4280



min

Sfinal = S2

In order to simulate an on-line failure the “test” data history is

used. The selection process shown in Fig. 6 is then applied on

the data history corresponding to the bearing 2 in the test N◦2
in order to identify the “best MoG-HMM” and to estimate the

RUL. A simulation result of the predicted RUL and his error

is shown in Fig. 11, where the data history used to perform

the test correspond to a faulty bearing that ends at 9840min.

From Fig. 11-(a) and Fig. 11-(b) one can see that the preci-

sion of the estimated RUL increases as the prediction time is

approaching the real failure time. Similarly, after 7440 min

the mean estimation error drops below 16.5 % whereas when

considering the upper RUL limit the error drops to 7 % and

continues to decrease as the real failure time approaches. Af-

ter 9610 min the mean error stabilizes arround the value of

1.08 %. The 68 % confidence interval keeps the RUL estima-

tion limits near acceptable values, a wide confidence intervals

(95 % and 99.5 %) will give more sparse limits and will in-

crease the prediction error. These results are better that those

obtained in our previous work [36] where the temporal fea-

tures used where: RMS, mean, skewness and kurtosis. The

RUL and the associated prediction error of the same test his-

tory using temporal features are shown in Fig. 11-(c) and Fig.

11-(d). One can appreciate the strong inertia on the behavior

of the prognostic results whereas the model that uses WPD

for feature extraction evolves progressively converging to the

real RUL.

5. CONCLUSIONS

An estimation of the current health condition of physical

components, particularly bearings, and an estimation of their

remaining useful life before their complete failure has been

proposed in this paper. The method is based on the transfor-

mation of the data provided by the sensors installed to moni-

tor the component into relevant models. These latter are rep-

resented by MoG-HMMs, which take as input continuous ob-

servations and permit to model the state of the component at

each time. A WPD has been used to extract appropriate fea-

tures from the monitoring signals. This type of decomposi-

tion allowed getting deeper into the signal features by adjust-

ing both the time and the frequency scales. These features are

then used to model the degradation behaviour of the compo-
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Figure 11: Simulation results: (a) RUL estimation for the bearing 2 in test N◦2 using WPD; (b) prediction error for the bearing
2 in test N◦2 using WPD; (c) RUL estimation for the bearing 2 in test N◦2 using temporal features; and, (d) prediction error for
the bearing 2 in test N◦2 using temporal features.

nent by learning the parameters of the corresponding MoG-

HMMs models. The derived models are finally exploited

to asses the current condition and to estimate the RUL and

the confidence value. The time-frequency features allowed

getting more precise result than using only time features as

shown in the comparison done in this paper.
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